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By using the Leggett-Williams fixed theorem, we establish the existence of multiple positive
solutions for second-order nonhomogeneous Sturm-Liouville boundary value problems with
linear functional boundary conditions. One explicit example with singularity is presented to
demonstrate the application of our main results.

1. Introduction

In this paper, we consider the following Sturm-Liouville boundary value problems on the
half-line

(
p(t)u′(t)

)′ + Φ(t)f
(
t, u(t), u′(t)

)
= 0, 0 < t < +∞,

α1u(0) − β1 lim
t→ 0+

p(t)u′(t) = T(u),

α2 lim
t→+∞

u(t) + β2 lim
t→+∞

p(t)u′(t) = K(u),

(1.1)

where f : R+ × R+ × R → R+ is a continuous function, f /≡ 0 on any subinterval of R+, here
R+ = [0,+∞); Φ : R+ → R+ is a Lebesgue integrable function and may be singular at
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t = 0; p ∈ C(R+, R+)
⋂
C1(R+),

∫+∞
0 ds/p(s) < +∞; αi, βi ≥ 0 (i = 1, 2) with ρ = α1β2 +

α2β1 +α1α2
∫+∞
0 ds/p(s); T, K are linear positive functionals on C(R+) (T, Kwhich are called

positive if T(u), K(u) ≥ 0 for u ∈ C(R+)).
The theory of nonlocal boundary value problems for ordinary differential equations

arises in different areas of applied mathematics and physics. There are many studies for
nonlocal, including three-point, m-point, and integral boundary value problems on finite
interval by applying different methods [1–3]. It is well known that boundary value problems
on infinite interval arise in the study of radial solutions of nonlinear elliptic equations and
models of gas pressure in a semi-infinite porous medium [4–6]. But the theory of Sturm-
Liouville nonhomogeneous boundary value problems on infinite interval is yet rare.

The linear functional boundary conditions cover some nonlocal three-point, m-point,
and integral boundary conditions. In [7], Zhao and Li investigated some nonlinear singular
differential equations with linear functional boundary conditions. However, the differential
equations were defined only in a finite interval. Recently, Liu et al. [6] studied multiple
positive solutions for Sturm-Liouville boundary value problems on the half-line

(
p(t)u′(t)

)′ +m(t)f(t, u(t)) = 0, 0 ≤ t < +∞,

α1u(0) − β1 lim
t→ 0+

p(t)u′(t) = 0,

α2 lim
t→+∞

u(t) + β2 lim
t→+∞

p(t)u′(t) = 0.

(1.2)

However, the authors did not consider the case when Sturm-Liouville boundary value
problems are nonhomogeneous. Therefore BVP(1.1) is the direct extension of [7]. So it is
worthwhile to investigate BVP(1.1).

We denote

a(t) = β1 + α1

∫ t

0

ds

p(s)
, b(t) = β2 + α2

∫+∞

t

ds

p(s)
, (1.3)

u(t) = ρ−1[1 + a(t)b(t)]y1(t), u′(t) = y2(t), f
(
t, u, u′) = Ψ

(
t, y1, y2

)
,

a(0) = lim
t→ 0+

a(t) = β1, a(∞) = lim
t→+∞

a(t) = β1 + α1

∫+∞

0

ds

p(s)
,

b(0) = lim
t→ 0+

b(t) = β2 + α2

∫+∞

0

ds

p(s)
, b(∞) = lim

t→+∞
b(t) = β2.

(1.4)

In this paper, we always assume that the following conditions hold.

(H1) Ψ(t, y1, y2) ≤ q(t)Q(y1, y2), q(t) ∈ C(R+, R+), Q(y1, y2) ∈ C(R+ × R,R+) and∫+∞
0 Φ(s)q(s)ds < +∞.

(H2) For any constant τ ∈ [0,+∞), 0 < T(a(τ)) < ρ, 0 < K(b(τ)) < ρ and

Δ =

∣∣∣∣∣

ρ − T(b(τ)) T(a(τ))

K(b(τ)) ρ −K(a(τ))

∣∣∣∣∣
> 0. (1.5)



Journal of Applied Mathematics 3

Motivated and inspired by [5–9], we are concerned with the existence of multiple pos-
itive solutions for BVP(1.1) by applying Leggett-Williams fixed theorem. The main new fea-
tures presented in this paper are as follows. Firstly, Sturm-Liouville nonhomogeneous bound-
ary value problems with linear functional boundary conditions are seldom researched, it
brings about many difficulties whenwe imply the integral equations of BVP(1.1). To solve the
problem, we use a newmethod of undetermined coefficient to obtain the integral equations of
boundary value problems with nonhomogeneous boundary conditions. Secondly, we discuss
the existence of triple positive solutions and 2m−1 positive solutions of BVP(1.1). Finally, the
methods used in this paper are different from [1, 6, 7] and the results obtained in this paper
generalize and involve some results in [5].

The rest of paper is organized as follows. In Section 2, we present some preliminaries
and lemmas. We state and prove the main results in Section 3. Finally, in Section 4, one exam-
ple with a singular nonlinearity is presented to demonstrate the application of Theorem 3.1.

2. Preliminary

In order to discuss the main results, we need the following lemmas.

Lemma 2.1. Under the condition
∫+∞
0 ds/p(s) < +∞ and ρ > 0, the boundary value problem

(
p(t)u′(t)

)′ + y(t) = 0, 0 < t < +∞,

α1u(0) − β1 lim
t→ 0+

p(t)u′(t) = T(u),

α2 lim
t→+∞

u(t) + β2 lim
t→+∞

p(t)u′(t) = K(u),

(2.1)

has a unique solution for any y ∈ L[0,+∞). Moreover, this unique solution can be expressed in the
form

u(t) =
∫+∞

0
G(t, s)y(s)ds +A

(
y
)
a(t) + B

(
y
)
b(t), (2.2)

where G(t, s), A(y), and B(y) are defined by

G(t, s) = ρ−1
{
a(t)b(s), 0 ≤ t ≤ s < ∞,

a(s)b(t), 0 ≤ s < t < ∞,
(2.3)

A
(
y
)
=

1
Δ

∣∣∣∣∣∣∣∣∣

T
(∫+∞

0
G(τ, s)y(s)ds

)
ρ − T(b(τ))

−K
(∫+∞

0
G(τ, s)y(s)ds

)
K(b(τ))

∣∣∣∣∣∣∣∣∣

, (a)

B
(
y
)
=

1
Δ

∣∣∣∣∣∣∣∣∣

K
(∫+∞

0
G(τ, s)y(s)ds

)
ρ −K(b(τ))

−T
(∫+∞

0
G(τ, s)y(s)ds

)
T(b(τ))

∣∣∣∣∣∣∣∣∣

. (b)
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Proof. a(t) and b(t) in (1.3) are two linear independent solutions of the equation (p(t)u′(t))′ =
0, so the general solutions for the equation (p(t)u′(t))′ + y(t) = 0 can be expressed in the form

u(t) =
∫+∞

0
G(t, s)y(s)ds + Ca(t) +Db(t), (2.4)

where C, D are undetermined constants. Through verifying directly, when C and D satisfy
(a) and (b) separately, u(t) in (2.4) is a solution of BVP(2.1).

Nowwe need to prove that when u(t) in (2.4) is a solution of BVP(2.1),C andD satisfy
(a) and (b) separately.

Let u(t) =
∫+∞
0 G(t, s)y(s)ds + Ca(t) +Db(t) be a solution of BVP(2.1), then

u(t) =
∫ t

0

1
ρ
a(s)b(t)y(s)ds +

∫+∞

t

1
ρ
a(t)b(s)y(s)ds + Ca(t) +Db(t),

u′(t) =
b′(t)
ρ

∫ t

0
a(s)y(s)ds +

a′(t)
ρ

∫+∞

t

b(s)y(s)ds +
Cα1

p(t)
− Dα2

p(t)

=
1

p(t)

(
−α2

ρ

∫ t

0
a(s)y(s)ds +

α1

ρ

∫+∞

t

b(s)y(s)ds + Cα1 −Dα2

)

,

(
p(t)u′(t)

)′ =
−α2

ρ
a(t)y(t) − α1

ρ
b(t)y(t) = −α2a(t) + α1b(t)

ρ
y(t) = −y(t).

(2.5)

That is, (p(t)u′(t))′ + y(t) = 0.
By (2.4), we have

u(0) =
β1
ρ

∫+∞

0
b(s)y(s)ds + Cβ1 +Dβ2 +Dα2

∫+∞

0

ds

p(s)
,

u′(0) =
1

p(0)

(
α1

ρ

∫+∞

0
b(s)y(s)ds + Cα1 −Dα2

)
,

u(∞) =
β2
ρ

∫+∞

0
a(s)y(s)ds + Cβ1 +Dβ2 + Cα1

∫+∞

0

ds

p(s)
,

u′(∞) =
1

p(∞)

(
−α2

ρ

∫+∞

0
a(s)y(s)ds + Cα1 −Dα2

)
,

(2.6)

then

Dρ = T
(∫+∞

0
G(τ, s)y(s)ds

)
+ CT(a(τ)) +DT(b(τ)),

Cρ = K
(∫+∞

0
G(τ, s)y(s)ds

)
+ CK(a(τ)) +DK(b(τ)).

(2.7)

From (2.7), we obtain that C andD satisfy (a) and (b) separately. The proof is completed.
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Remark 2.2. Assume that (H2) holds. Then 0 ≤ A(y) < +∞, 0 ≤ B(y) < +∞ for any y ≥ 0 and
any solution u(t) of BVP(2.1) is nonnegative.

Lemma 2.3. From (1.3) and (2.3), it is easy to get the following properties.

(1) G(t, s)/ρ−1[1 + a(t)b(t)] ≤ 1, a(t)/1 + a(t)b(t) < 1/b(t) ≤ 1/β2, b(t)/1 + a(t)b(t) <
1/a(t) ≤ 1/β1.

(2) G(s) = limt→+∞G(t, s) = (β2/ρ)a(s) < +∞.

(3) G(t, s) ≤ G(s, s) ≤ a(s)b(s)/ρ < +∞.

Lemma 2.4. For any constant 0 < a∗ < b∗ < ∞, there exists 0 < c∗ < 1, such that, for τ, s ∈ [0,∞),
G(t, s)/ρ−1[1+a(t)b(t)] ≥ c∗G(τ, s)/ρ−1[1+a(τ)b(τ)], a(t)/ρ−1[1+a(t)b(t)] ≥ c∗a(τ)/ρ−1[1+
a(τ)b(τ)], b(t)/ρ−1[1 + a(t)b(t)] ≥ c∗b(τ)/ρ−1[1 + a(τ)b(τ)], t ∈ [a∗, b∗].

Proof. By (1.3), it is obvious that a(t) is increasing, and b(t) is decreasing on t ∈ [0,+∞);
therefore, by (2.3), we have

G(t, s)
ρ−1[1 + a(t)b(t)]

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a(t)b(s)
1 + a(t)b(t)

≥ a(a∗)β2
1 + a(b∗)b(a∗)

, t ≤ s,

a(s)b(t)
1 + a(t)b(t)

≥ b(b∗)β1
1 + a(b∗)b(a∗)

, s ≤ t.

(2.8)

We take c∗ = min{a(a∗)β2/(1 + a(b∗)b(a∗)), b(b∗)β1/(1 + a(b∗)b(a∗))}, then 0 < c∗ < 1; this is
because that

a(a∗)β2
1 + a(b∗)b(a∗)

≤ a(b∗)b(a∗)
1 + a(b∗)b(a∗)

< 1,
b(b∗)β1

1 + a(b∗)b(a∗)
≤ a(b∗)b(a∗)

1 + a(b∗)b(a∗)
< 1. (2.9)

By Lemma 2.3(1), we have G(τ, s)/ρ−1[1 + a(τ)b(τ)] ≤ 1, then

G(t, s)
ρ−1[1 + a(t)b(t)]

≥ c∗ ≥ c∗
G(τ, s)

ρ−1[1 + a(τ)b(τ)]
,

a(t)
1 + a(t)b(t)

≥ a(a∗)
1 + a(b∗)b(a∗)

=
a(a∗)β2

1 + a(b∗)b(a∗)
1
β2

≥ c∗
1

b(t)
> c∗

a(τ)
1 + a(τ)b(τ)

.

(2.10)

Similarly, we can obtain that b(t)/(1 + a(t)b(t)) ≥ c∗(b(τ)/(1 + a(τ)b(τ))). The proof is
completed.

In this paper, we use the space

E =

{

u ∈ C1(R+) : sup
t∈[0,+∞)

|u(t)|
ρ−1[1 + a(t)b(t)]

< +∞, sup
t∈[0,+∞)

∣∣u′(t)
∣∣ < +∞

}

(2.11)

with the norm ‖u‖ = max{‖u‖1, ‖u′‖∞}, where ‖u‖1 = supt∈[0,+∞)|u(t)|/ρ−1[1 + a(t)b(t)] and
‖u‖∞ = supt∈[0,+∞)|u(t)|, then (E, ‖u‖) is a Banach space.
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Let

P =
{
u ∈ E : u(t) ≥ 0,mint∈[a∗,b∗]

u(t)
ρ−1[1 + a(t)b(t)]

≥ c∗
u(τ)

ρ−1[1 + a(τ)b(τ)]
, τ ∈ R+

}
. (2.12)

Clearly P is a cone of E.

Lemma 2.5 (see [10]). Let M ⊆ Cl(R+, R) = {x ∈ C(R+, R) | limt→+∞x(t) exists}, then M is
precompact if the following conditions hold:

(a) M is bounded in Cl;

(b) the functions belonging to M are locally equicontinuous on any interval of R+;

(c) the functions from M are equiconvergent; that is, given ε > 0, there corresponds T(ε) > 0
such that |x(t) − x(∞)| < ε for any t ≥ T(ε) and x ∈ M.

We shall consider nonnegative continuous and concave functional α on P ; that is, α :
P → [0,∞) is continuous and satisfies

α
(
tx + (1 − t)y

) ≥ tα(x) + (1 − t)α
(
y
)
, ∀x, y ∈ P, 0 ≤ t ≤ 1. (2.13)

We denote the set {x ∈ P | a ≤ α(x), ‖x‖ ≤ b}(b > a > 0) by P(α, a, b) and

Pr = {x ∈ P | ‖x‖ < r}. (2.14)

The key tool in our approach is the following Leggett-Williams fixed point theorem.

Theorem 2.6 (see [11]). Let T : Pc → Pc be completely continuous and α a nonnegative continuous
concave functional on P with α(x) ≤ ‖x‖ for any x ∈ Pc. Suppose that there exist 0 < a < b < d ≤ c
such that

(c1) {x ∈ P(α, b, d) | α(x) > b}/=φ, and α(Tx) > b, for x ∈ P(α, b, d);

(c2) ‖Tx‖ < a, for x ∈ Pa;

(c3) α(Tx) > b for x ∈ P(α, b, c) with ‖Tx‖ > d.

Then T has at least three fixed points x1, x2, x3, with

‖x1‖ < a, b < α(x2), ‖x3‖ > a, α(x3) < b. (2.15)

3. Existence Results

Define the operator T : P → P by

(Tu)(t) =
∫+∞

0
G(t, s)Φ(s)f

(
s, u(s), u′(s)

)
ds +A

(
Φf
)
a(t) + B

(
Φf
)
b(t), 0 < t < ∞. (3.1)

Then u(t) is a fixed point of operator T if and only if u(t) is a solution of BVP(1.1).
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For convenience, we denote δ, α(x) by

0 < δ ≤ a(a∗)b(b∗)
1 + a(b∗)b(a∗)

∫b∗

a∗
Φ(s)ds, α(u) = min

t∈[a∗,b∗]
u(t)

ρ−1[1 + a(t)b(t)]
, ∀u ∈ P. (3.2)

Theorem 3.1. Suppose that (H1), (H2) hold, and assume there exist 0 < r1 < b1 < l1 < r2 with
l1 = max{b1/c∗, supt∈[0,+∞)(b1/c

∗p(t))}, such that

(H3) Q(y1, y2) ≤ min{r2/
∫+∞
0 Φ(s)q(s)ds + A(Φq)/ρ−1β2 + B(Φq)/ρ−1β1, r2/

supt∈[0,+∞)(1/p(t))(
∫+∞
0 Φ(s)q(s)ds +A(Φq)α1 + B(Φq)α2)}, 0 ≤ y1 ≤ r2, |y2| ≤ r2,

(H4) Ψ(t, y1, y2) > b1/δ, t ∈ [a∗, b∗], b1 ≤ y1 ≤ r2, |y2| ≤ r2,

(H5) Q(y1, y2) < min{r1/
∫+∞
0 Φ(s)q(s)ds + (A(Φq)/ρ−1β2) + (B(Φq)/ρ−1β1), r1/

supt∈[0,+∞)(1/p(t))(
∫+∞
0 Φ(s)q(s)ds +A(Φq)α1 + B(Φq)α2)}, 0 ≤ y1 ≤ r1, |y2| ≤ r1.

Then BVP(1.1) has at least three positive solutions u1, u2, and u3 with

‖u1‖ < r1, b1 < α(u2), ‖u3‖ > r1, α(u3) < b1. (3.3)

Proof. Firstly we prove that T : P → P is continuous.
We will show that T : P → P is well defined and T(P) ⊂ P . For all u(t) ∈ P , by (H2),

Φ(t) and f are nonnegative functions, and we have Tu(t) ≥ 0. From (H1), (H2), we obtain

A
(
Φf
)
=

1
Δ

∣∣∣∣∣∣∣∣∣

T
(∫+∞

0
G(τ, s)Φ(s)f

(
s, u(s), u′(s)

)
ds

)
ρ − T(b(τ))

−K
(∫+∞

0
G(τ, s)Φ(s)f

(
s, u(s), u′(s)

)
ds

)
K(b(τ))

∣∣∣∣∣∣∣∣∣

≤ maxy1∈[0,‖u‖],|y2|≤‖u‖Q
(
y1, y2

)

Δ

∣∣∣∣∣∣∣∣∣

T
(∫+∞

0
G(τ, s)Φ(s)q(s)ds

)
ρ − T(b(τ))

−K
(∫+∞

0
G(τ, s)Φ(s)q(s)ds

)
K(b(τ))

∣∣∣∣∣∣∣∣∣

= A
(
Φq
)

max
y1∈[0,‖u‖],|y2|≤‖u‖

Q
(
y1, y2

)
.

(A)

In the same way, we have

B
(
Φf
) ≤ B

(
Φq
)

max
y1∈[0,‖u‖],|y2|≤‖u‖

Q
(
y1, y2

)
. (B)
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By Lemma 2.3(1), (A), (B), and (H1), for all u(t) ∈ P , we have

(Tu)(t)
ρ−1[1 + a(t)b(t)]

=
∫+∞

0

G(t, s)
ρ−1[1 + a(t)b(t)]

Φ(s)f
(
s, u(s), u′(s)

)
ds +

A
(
Φf
)
a(t)

ρ−1[1 + a(t)b(t)]

+
B
(
Φf
)
b(t)

ρ−1[1 + a(t)b(t)]

≤
∫+∞

0
Φ(s)f

(
s, u(s), u′(s)

)
ds +

A
(
Φf
)

ρ−1β2
+
B
(
Φf
)

ρ−1β1

≤ max
y1∈[0,‖u‖],|y2|≤‖u‖

Q
(
y1, y2

)
(∫+∞

0
Φ(s)q(s)ds +

A
(
Φq
)

ρ−1β2
+
B
(
Φq
)

ρ−1β1

)

< +∞,

(3.4)

∣∣(Tu)′(t)
∣∣ =

1
p(t)

∣∣∣∣∣

∫ t

0

−α2a(s)
ρ

Φ(s)f
(
s, u(s), u′(s)

)
ds

+
∫+∞

t

α1b(s)
ρ

Φ(s)f
(
s, u(s), u′(s)

)
ds +A

(
Φf
)
α1 − B

(
Φf
)
α2

∣∣∣∣

≤ sup
t∈[0,+∞)

1
p(t)

max
y1∈[0,‖u‖],|y2|≤‖u‖

Q
(
y1, y2

)

×
(∫+∞

0
Φ(s)q(s)ds +A

(
Φq
)
α1 + B

(
Φq
)
α2

)

< +∞.

(3.5)

Hence, T : P → P is well defined. By (3.1), (H1), the Lebesgue dominated convergence
theorem and the continuity of p(t), for any u ∈ P, t1, t2 ∈ R+, we have

∣∣(Tu)′(t1) − (Tu)′(t2)
∣∣ ≤ α2a(∞)

ρ

∣∣∣∣
1

p(t1)
− 1
p(t2)

∣∣∣∣

∫ t1

0
Φ(s)f

(
s, u(s), u′(s)

)
ds

+
α2a(∞)
ρp(t2)

∫ t2

t1

Φ(s)f
(
s, x(s), x′(s)

)
ds

+
α1b(0)

ρ

∣∣∣∣
1

p(t1)
− 1
p(t2)

∣∣∣∣

∫+∞

0
Φ(s)f

(
s, u(s), u′(s)

)
ds

+
α1b(0)
ρp(t2)

∫ t2

t1

Φ(s)f
(
s, x(s), x′(s)

)
ds

+
(
A
(
Φf
)
α1 + B

(
Φf
)
α2
)
∣∣∣∣

1
p(t1)

− 1
p(t2)

∣∣∣∣

−→ 0, as t1 −→ t2.

(3.6)

That is, (Tu)(t) ∈ C1(R+
0 ); therefore, (Tu)(t) ∈ E.
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By Lemma 2.4, we have

min
t∈[a∗,b∗]

(Tu)(t)
ρ−1[1 + a(t)b(t)]

= min
t∈[a∗,b∗]

(∫+∞

0

G(t, s)
ρ−1[1 + a(t)b(t)]

Φ(s)f
(
s, u(s), u′(s)

)
ds

+
a(t)A

(
Φf
)

ρ−1[1 + a(t)b(t)]
+

b(t)B
(
Φf
)

ρ−1[1 + a(t)b(t)]

)

≥ c∗
(∫+∞

0

G(τ, s)
ρ−1[1 + a(τ)b(τ)]

Φ(s)f
(
s, u(s), u′(s)

)
ds

+
a(τ)A

(
Φf
)

ρ−1[1 + a(t)b(t)]
+

b(τ)B
(
Φf
)

ρ−1[1 + a(t)b(t)]

)

= c∗
(Tu)(τ)

ρ−1[1 + a(τ)b(τ)]
,

(3.7)

therefore T : P → P .
We show that T : P → P is continuous. In fact suppose {um} ⊆ P, u0 ∈ P and um →

u0(m → +∞), then there exists M > 0, such that ‖um‖ ≤ M. By (H1), we have

∫+∞

0
Φ(s)

∣∣f
(
s, um(s), u′

m(s)
) − f

(
s, u0(s), u′

0(s)
)∣∣ds ≤ 2

∫+∞

0
Φ(s)f

(
s, u(s), u′(s)

)
ds

≤ 2 max
y1∈[0,M],|y2|≤M

Q
(
y1, y2

)

×
∫+∞

0
Φ(s)q(s)ds

< +∞.

(3.8)

Therefore, by Lemma 2.3(1), the continuity of f and the Lebesgue dominated convergence
theorem imply that

∣∣∣∣
(Tum)(t) − (Tu0)(t)
ρ−1[1 + a(t)b(t)]

∣∣∣∣ =
∣∣∣∣

∫+∞

0

G(t, s)
ρ−1[1 + a(t)b(t)]

× Φ(s)
[
f
(
s, um(s), u′

m(s)
) − f

(
s, u0(s), u′

0(s)
)]
ds

∣∣∣∣

≤
∫+∞

0
Φ(s)

∣∣f
(
s, um(s), u′

m(s)
) − f

(
s, u0(s), u′

0(s)
)∣∣ds −→ 0,

m −→ +∞,
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∣∣(Tum)′(t) − (Tu0)′(t)
∣∣ ≤ sup

t∈[0,+∞)

1
p(t)

∫+∞

0
Φ(s)

∣∣f
(
s, um(s), u′

m(s)
) − f

(
s, u0(s), u′

0(s)
)∣∣ds

−→ 0, m −→ +∞.
(3.9)

Thus, ‖Tum − Tu0‖ → 0(m → +∞). Therefore T : P → P is continuous.
Secondly we show that T : P → P is compact operator.
For any bounded set B ⊂ P , there exists a constant L > 0 such that ‖u‖ ≤ L, for all

u ∈ B. By Lemma 2.3(1), (A), (B), and (H1), we have

(Tu)(t) = ρ−1[1 + a(t)b(t)]
(Tu)(t)

ρ−1[1 + a(t)b(t)]

≤ ρ−1[1 + a(∞)b(0)]
(∫+∞

0

G(t, s)
ρ−1[1 + a(t)b(t)]

Φ(s)f
(
s, u(s), u′(s)

)
ds

+
A
(
Φf
)
a(t)

ρ−1[1 + a(t)b(t)]
+

B
(
Φf
)
b(t)

ρ−1[1 + a(t)b(t)]

)

≤ ρ−1[1 + a(∞)b(0)]

(∫+∞

0
Φ(s)f

(
s, u(s), u′(s)

)
ds +

A
(
Φf
)

ρ−1β2
+
B
(
Φf
)

ρ−1β1

)

≤ ρ−1[1 + a(∞)b(0)] max
y1∈[0,L],|y2|≤L

Q
(
y1, y2

)
(∫+∞

0
Φ(s)q(s)ds +

A
(
Φq
)

ρ−1β2
+
B
(
Φq
)

ρ−1β1

)

< +∞,

(Tu)(∞) =
∫+∞

0
G(s)Φ(s)f

(
s, u(s), u′(s)

)
ds +A

(
Φf
)
a(∞) + B

(
Φf
)
b(∞)

=
β2
ρ

∫+∞

0
a(s)Φ(s)f

(
s, u(s), u′(s)

)
ds +A

(
Φf
)
a(∞) + B

(
Φf
)
b(∞)

≤ max
y1∈[0,L],|y2|≤L

Q
(
y1, y2

)
(
β2a(∞)

ρ

∫+∞

0
Φ(s)q(s)ds +A

(
Φq
)
a(∞) + B

(
Φq
)
b(∞)

)

< +∞.
(3.10)

Therefore, (Tu)(t) ⊆ Cl(R+, R).
By (3.4) and (3.5), we have

‖Tu‖1 = sup
t∈[0,+∞)

(Tu)(t)
ρ−1[1 + a(t)b(t)]

≤ max
y1∈[0,L],|y2|≤L

Q
(
y1, y2

)
(∫+∞

0
Φ(s)q(s)ds +

A
(
Φq
)

ρ−1β2
+
B
(
Φq
)

ρ−1β1

)

< +∞,
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∥
∥(Tu)′

∥
∥
∞ = max

t∈[0,+∞)

∣
∣(Tu)′(t)

∣
∣

≤ sup
t∈[0,+∞)

1
p(t)

max
y1∈[0,L],|y2|≤L

Q
(
y1, y2

)
(∫+∞

0
Φ(s)q(s)ds +A

(
Φq
)
α1 + B

(
Φq
)
α2

)

< +∞,
(3.11)

so TB is bounded.
Given T > 0, t1, t2 ∈ [0, T], by (H1) and Lemma 2.3(1), we have

∣
∣
∣
∣

G(t1, s)
ρ−1[1 + a(t1)b(t1)]

− G(t2, s)
ρ−1[1 + a(t2)b(t2)]

∣
∣
∣
∣Φ(s)f

(
s, u(s), u′(s)

) ≤ 2 max
y1∈[0,L],|y2|≤L

Q
(
y1, y2

)

×Φ(s)q(s).
(3.12)

Therefore for any u ∈ B, by (3.1), the Lebesgue dominated convergence theorem and the
continuity of G(t, s), a(t), and b(t), we have

∣∣∣∣
(Tu)(t1)

ρ−1[1 + a(t1)b(t1)]
− (Tx)(t2)
ρ−1[1 + a(t2)b(t2)]

∣∣∣∣

≤
∫+∞

0

∣∣∣∣
G(t1, s)

ρ−1[1 + a(t1)b(t1)]
− G(t2, s)
ρ−1[1 + a(t2)b(t2)]

∣∣∣∣

×Φ(s)f
(
s, u(s), u′(s)

)
ds

+A
(
Φf
)
∣∣∣∣

a(t1)
ρ−1[1 + a(t1)b(t1)]

− a(t2)
ρ−1[1 + a(t2)b(t2)]

∣∣∣∣

+ B
(
Φf
)
∣
∣∣∣

b(t1)
ρ−1[1 + a(t1)b(t1)]

− b(t2)
ρ−1[1 + a(t2)b(t2)]

∣∣∣∣

−→ 0, as t1 −→ t2.

(3.13)

By a similar proof as (3.6), we obtain |(Tu)′(t1) − (Tu)′(t2)| → 0, as t1 → t2. Thus, TB is
equicontinuous on [0, T]. Since T > 0 is arbitrary, TB is locally equicontinuous on [0,+∞).

By Lemma 2.3(2), (H2) and the Lebesgue dominated convergence theorem, we obtain

lim
t→+∞

∣∣∣∣
(Tu)(t)

ρ−1[1 + a(t)b(t)]

∣∣∣∣

=
1

ρ−1[1 + a(∞)b(∞)]

∣∣∣∣

∫+∞

0
β2a(s)Φ(s)f

(
s, x(s), x′(s)

)
ds +A

(
Φf
)
a(∞) + B

(
Φf
)
b(∞)

∣∣∣∣



12 Journal of Applied Mathematics

≤ maxy1∈[0,L],|y2|≤LQ
(
y1, y2

)

ρ−1
(
1 + β1β2

)
(
β2a(∞)

∫+∞

0
Φ(s)q(s)ds +A

(
Φq
)
a(∞) + B

(
Φq
)
b(∞)

)

< +∞,

∣
∣
∣
∣

(Tu)(t)
ρ−1[1 + a(t)b(t)]

− (Tu)(∞)
ρ−1[1 + a(∞)b(∞)]

∣
∣
∣
∣

≤
∫ t

0
a(s)b(t)

∣
∣
∣
∣

1
1 + a(t)b(t)

− 1
1 + a(∞)b(∞)

∣
∣
∣
∣Φ(s)f

(
s, x(s), x′(s)

)
ds

+
∫ t

0

a(s)
1 + a(∞)b(∞)

∣
∣b(t) − β2

∣
∣Φ(s)f

(
s, x(s), x′(s)

)
ds

+
∫+∞

t

b(s)
|a(t) − a(s)|
1 + a(t)b(t)

Φ(s)f
(
s, x(s), x′(s)

)
ds

+
∫+∞

t

a(s)b(s)
∣∣∣∣

1
1 + a(t)b(t)

− 1
1 + a(∞)b(∞)

∣∣∣∣Φ(s)f
(
s, x(s), x′(s)

)
ds

+
∫+∞

t

a(s)
1 + a(∞)b(∞)

∣∣b(s) − β2
∣∣Φ(s)f

(
s, x(s), x′(s)

)
ds +A

(
Φf
) |a(t) − a(∞)|
ρ−1[1 + a(t)b(t)]

+ B
(
Φf
) |b(t) − b(∞)|
ρ−1[1 + a(t)b(t)]

+
[
A
(
Φf
)
a(∞) + B

(
Φf
)
b(∞)

]

×
∣∣∣∣

1
ρ−1[1 + a(t)b(t)]

− 1
ρ−1[1 + a(∞)b(∞)]

∣∣∣∣

≤ max
y1∈[0,M],|y2|≤M

Q
(
y1, y2

)

×
{

b(0)a(∞)
∫ t

0

∣∣∣∣
1

1 + a(t)b(t)
− 1
1 + a(∞)b(∞)

∣∣∣∣Φ(s)q(s)ds

+
a(∞)

1 + a(∞)b(∞)

∫ t

0

∣∣b(t) − β2
∣∣Φ(s)q(s)ds +

b(0)
1 + β1β2

∫∞

t

|a(t) − a(s)|Φ(s)q(s)ds

+ a(∞)b(0)
∫∞

t

∣∣∣∣
1

1 + a(t)b(t)
− 1
1 + a(∞)b(∞)

∣∣∣∣Φ(s)q(s)ds

+
a(∞)

1 + a(∞)b(∞)

∫+∞

t

∣∣b(s) − β2
∣∣Φ(s)q(s)ds +A

(
Φq
) |a(t) − a(∞)|
ρ−1[1 + a(t)b(t)]

+ B
(
Φq
) |b(t) − b(∞)|
ρ−1[1 + a(t)b(t)]

+
(
A
(
Φq
)
a(∞) + B

(
Φq
)
b(∞)

)

×
∣∣∣∣

1
ρ−1[1 + a(t)b(t)]

− 1
ρ−1[1 + a(∞)b(∞)]

∣∣∣∣

}
−→ 0, as t −→ +∞.

(3.14)
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By (3.5), we know that limt→+∞|(Tu)′(t)| < +∞, then

∣
∣(Tu)′(t) − (Tu)′(∞)

∣
∣

=

∣
∣
∣
∣
∣

1
p(t)

∫ t

0

−α2a(s)
ρ

Φ(s)f
(
s, u(s), u′(s)

)
ds +

1
p(t)

∫+∞

t

α1b(s)
ρ

Φ(s)f
(
s, u(s), u′(s)

)
ds

+
1

p(t)
A
(
Φf
)
α1 − 1

p(t)
B
(
Φf
)
α2 +

1
p(∞)

∫ t

0

α2a(s)
ρ

Φ(s)f
(
s, u(s), u′(s)

)
ds

+
1

p(∞)

∫+∞

t

α2a(s)
ρ

Φ(s)f
(
s, u(s), u′(s)

)
ds − 1

p(∞)
A
(
Φf
)
α1 +

1
p(∞)

B
(
Φf
)
α2

∣
∣
∣
∣

≤ max
y1∈[0,L],|y2|≤L

Q
(
y1, y2

)
∣
∣
∣
∣

1
p(t)

− 1
p(∞)

∣
∣
∣
∣

×
{∫ t

0

α2a(s)
ρ

Φ(s)q(s)ds +
1

p(t)

∫+∞

t

α1b(s)
ρ

Φ(s)q(s)ds +
1

p(∞)
∫+∞

t

α2a(s)
ρ

Φ(s)q(s)ds +
(
A
(
Φq
)
α1 + B

(
Φq
)
α2
)
∣∣∣∣

1
p(t)

− 1
p(∞)

∣∣∣∣

}
−→ 0,

as t −→ +∞.

(3.15)

Therefore, TB is equiconvergent at∞. By Lemma 2.5, TB is completely continuous.
Finally we will show that all conditions of Theorem 2.6 hold.
From the definition of α, we can get α(u) ≤ ‖u‖ for all u ∈ P . For all u ∈ Pr2 , we have

‖u‖ ≤ r2; therefore 0 ≤ y1 ≤ r2, |y2| ≤ r2. By (3.4), (3.5), and (H3), we have

|(Tu)(t)|
ρ−1[1 + a(t)b(t)]

≤ max
y1∈[0,r2],|y2|≤r2

Q
(
y1, y2

)
(∫+∞

0
Φ(s)q(s)ds +

A
(
Φq
)

ρ−1β2
+
B
(
Φq
)

ρ−1β1

)

≤ r2,

∣∣(Tu)′(t)
∣∣ ≤ sup

t∈[0,+∞)

1
p(t)

max
y1∈[0,r2],|y2|≤r2

Q
(
y1, y2

)

×
(∫+∞

0
Φ(s)q(s)ds +A

(
Φq
)
α1 + B

(
Φq
)
α2

)

≤ r2,

(3.16)

that is, ‖Tu‖ ≤ r2 for u ∈ Pr2 . Thus T : Pr2 → Pr2 .
Similarly for any u ∈ Pr1 , we have ‖Tu‖ < r1, which means that condition (c2) of

Theorem 2.6 holds.
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In order to apply condition (c1) of Theorem 2.6, we choose u(t) = b1ρ
−1[1 + a(t)b(t)]/

c∗, t ∈ R+
0 , then ‖u‖ ≤ l1; this is because

‖u‖1 =
b1
c∗

≤ l1,

∥
∥u′∥∥

∞ = sup
t∈[0,+∞)

∣
∣u′(t)

∣
∣ = sup

t∈[0,+∞)

∣
∣
∣
∣
∣
b1ρ

−1[a′(t)b(t) + a(t)b′(t)]
c∗

∣
∣
∣
∣
∣
≤ sup

t∈[0,+∞)

1
p(t)

b1
c∗

≤ l1,

(3.17)

and α(u) = mint∈[a∗,b∗](u(t)/ρ−1[1 + a(t)b(t)]) = b1/c
∗ > b1, which means that {u ∈

P(α, b1, l1)|α(u) > b1}/=φ. For all u ∈ P(α, b1, l1), we have α(u) ≥ b1 and ‖u‖ ≤ l1, thus
b1 ≤ u(t)/ρ−1[1 + a(t)b(t)] ≤ l1, |u′(t)| ≤ l1, that is, b1 ≤ y1 ≤ l1, |y2| ≤ l1. By (H4), we can
get

α(Tu(t)) = min
t∈[a∗,b∗]

(Tu)(t)
ρ−1[1 + a(t)b(t)]

≥ min
t∈[a∗,b∗]

1
ρ−1[1 + a(t)b(t)]

×
(∫a∗

0

a(s)b(t)
ρ

Φ(s)f
(
s, u(s), u′(s)

)
ds

+
∫ t

a∗

a(s)b(t)
ρ

Φ(s)f
(
s, u(s), u′(s)

)
ds +

∫b∗

t

a(t)b(s)
ρ

Φ(s)f
(
s, u(s), u′(s)

)
ds

+
∫+∞

b∗

a(t)b(s)
ρ

Φ(s)f
(
s, u(s), u′(s)

)
ds

)

>
a(a∗)b(b∗)

1 + a(b∗)b(a∗)

∫b∗

a∗
Φ(s)f

(
s, u(s), u′(s)

)
ds

>
a(a∗)b(b∗)

1 + a(b∗)b(a∗)

∫b∗

a∗
Φ(s)ds

b1
δ

≥ b1.

(3.18)

Consequently condition (c1) of Theorem 2.6 holds.
Wewill prove that condition (c3) of Theorem 2.6 holds. If u ∈ P(α, b1, r2), and ‖Tu(t)‖ >

l1, by (H4), we have

α(Tu(t)) = min
t∈[a∗,b∗]

(Tu)(t)
ρ−1[1 + a(t)b(t)]

>
a(a∗)b(b∗)

1 + a(b∗)b(a∗)

∫b∗

a∗
Φ(s)ds

b1
δ

≥ b1. (3.19)

Therefore, condition (c3) of Theorem 2.6 is satisfied. Then we can complete the proof of this
theorem by Leggett-Williams fixed point theorem.

Theorem 3.2. Suppose that (H1), (H2) hold, and assume there exist 0 < r1 < b1 < l1 < r2 < b2 <
l2 < r3 < · · · < rm with li = max{bi/c∗, supt∈[0,+∞)bi/c

∗p(t)}, such that
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(H6) Q(y1, y2) < min{ri/
∫+∞
0 Φ(s)q(s)ds + A(Φq)/ρ−1β2 + B(Φq)/ρ−1β1, ri/

supt∈[0,+∞)(1/p(t))(
∫+∞
0 Φ(s)q(s)ds + A(Φq)α1 + B(Φq)α2)}, 0 ≤ y1 ≤ ri, |y2| ≤ ri,

1 ≤ i ≤ m,

(H7) Ψ(t, y1, y2) > bi/δ, t ∈ [a∗, b∗], bi ≤ y1 ≤ ri+1, |y2| ≤ ri+1, 1 ≤ i ≤ m − 1.

Then BVP(1.1) has at least 2m − 1 positive solutions.

Proof. When m = 1, it follows from (H6) that T has at least one positive solution by the
Schauder fixed point theorem. When m = 2, it is clear that Theorem 3.1 holds. Then we
can obtain three positive solutions. In this way, we can finish the proof by the method of
induction.

4. Example

Consider the following singular Sturm-Liouville singular boundary value problems for
second-order differential equation on the half-line

(
(1 + t)2u′(t)

)′
+
e−t(1 + t)√

t
f
(
t, u(t), u′(t)

)
= 0, 0 < t < +∞,

u(0) − lim
t→ 0+

p(t)u′(t) =
m−2∑

i=1

(
1
3

)i

u(ξi), 0 < ξi < +∞,

lim
t→+∞

u(t) + lim
t→+∞

p(t)u′(t) =
∫+∞

0

1
3
e−s(1 + s)u(s)ds,

(4.1)

where

f
(
t, u(t), u′(t)

)
= Ψ
(
t, y1, y2

)
=

⎧
⎪⎪⎨

⎪⎪⎩

y4
1 +

1
550
∣∣y2
∣∣, y1 ≤ 1,

1 +
1
550
∣∣y2
∣∣, y1 ≥ 1,

(4.2)

p(t) = (1+t)2, α1 = α2 = β1 = β2 = 1, a(t) = 2−1/(1+t), b(t) = 1+1/(1+t), Φ(t) = e−t(1+t)/
√
t

which is singular at t = 0, ρ = 3, T(u) =
∑m−2

i=1 (1/3)iu(ξi), K(u) =
∫+∞
0 (1/3)e−s(1 + s)u(s)ds.

Set q(t) = 1 and

Q
(
y1, y2

)
=

⎧
⎪⎪⎨

⎪⎪⎩

y4
1 +

1
550
∣∣y2
∣∣, y1 ≤ 1,

1 +
1

550
∣∣y2
∣∣, y1 ≥ 1,

(4.3)

then
∫+∞
0 Φ(s)q(s)ds < 3, a(0) = 1, a(∞) = 2, b(0) = 2, b(∞) = 1, 1/2 < T(a(τ)) < 1, 1/2 <

T(b(τ)) < 1, K(a(τ)) = K(b(τ)) = 1, Δ > 3, A(Φq) < 26/9, B(Φq) < 20/9.
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Choose r1 = 1/3, b1 = 7/5, r2 = 19. When a∗ = 1, b∗ = 2, by the definition of δ, we
may choose δ = 8/5. By direct calculations, we imply that

min

{
r1∫+∞

0 Φ(s)q(s)ds +A
(
Φq
)
/ρ−1β2 + B

(
Φq
)
/ρ−1β1

,

r1

supt∈[0,+∞)

(
1/p(t)

)(∫+∞
0 Φ(s)q(s)ds +A

(
Φq
)
α1 + B

(
Φq
)
α2

)

⎫
⎬

⎭
>

3r1
55

,

min

{
r2∫+∞

0 Φ(s)q(s)ds +A
(
Φq
)
/ρ−1β2 + B

(
Φq
)
/ρ−1β1

,

r2

supt∈[0,+∞)

(
1/p(t)

)(∫+∞
0 Φ(s)q(s)ds +A

(
Φq
)
α1 + B

(
Φq
)
α2

)

⎫
⎬

⎭
>

3r2
55

,

Q
(
y1, y2

) ≤
(
1
3

)4

+
1

550
× 1
3
<

1
55

=
3r1
55

, for 0 ≤ y1 ≤ 1
3
,
∣∣y2
∣∣ ≤ 1

3
,

Q
(
y1, y2

) ≤ 1 +
19
550

<
3 × 19
55

=
3r2
55

, for 0 ≤ y1 ≤ 19,
∣∣y2
∣∣ ≤ 19,

Ψ
(
t, y1, y2

) ≥ 1 >
7/5
8/5

=
b1
δ
, for t ∈ [1, 2], 7/5 ≤ y1 ≤ 19,

∣∣y2
∣∣ ≤ 19.

(4.4)

Therefore, the conditions (H1)–(H5) hold. Applying Theorem 3.1 we conclude that
BVP(4.1) has at least three positive solutions.
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