JAMJournal of Applied Mathematics1687-00421110-757XHindawi Publishing Corporation69198110.1155/2012/691981691981Research ArticleStability of Jensen-Type Functional Equations on Restricted Domains in a Group and Their Asymptotic BehaviorsChungJae-Young1KimDohan2RassiasJohn Michael3WeiJunjie1Department of MathematicsKunsan National UniversityKunsan 573-701Republic of Koreakunsan.ac.kr2Department of MathematicsSeoul National UniversitySeoul 151-747Republic of Koreauseoul.edu3Section of Mathematics and InformaticsPedagogical Department E. E.National and Kapodistrian University of Athens4 Agamemnonos StreetAghia Paraskevi15342 AthensGreeceuoa.gr20121292011201220062011050920112012Copyright © 2012 Jae-Young Chung et al.This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We consider the Hyers-Ulam stability problems for the Jensen-type functional equations in general restricted domains. The main purpose of this paper is to find the restricted domains for which the functional inequality satisfied in those domains extends to the inequality for whole domain. As consequences of the results we obtain asymptotic behavior of the equations.

1. Introduction

The Hyers-Ulam stability problems of functional equations was originated by Ulam in 1960 when he proposed the following question .

Let f be a mapping from a group G1 to a metric group G2 with metric d(·,·) such that d(f(xy),f(x)f(y))ε.Then does there exist a group homomorphism h and δϵ>0 such that d(f(x),h(x))δϵfor all xG1?

One of the first assertions to be obtained is the following result, essentially due to Hyers , that gives an answer for the question of Ulam.

Theorem 1.1.

Suppose that S is an additive semigroup, Y is a Banach space, ϵ0, and f:SY satisfies the inequality f(x+y)-f(x)-f(y)ϵ for all x,  yS. Then there exists a unique function A:SY satisfying A(x+y)=A(x)+A(y) for which f(x)-A(x)ϵ for all xS.

We call the functions satisfying (1.4) additive functions. Perhaps Aoki in 1950 was the first author treating the generalized version of Hyers’ theorem . Generalizing Hyers’ result he proved that if a mapping f:XY between two Banach spaces satisfies f(x+y)-f(x)-f(y)Φ(x,y)  for  x,yX with Φ(x,y)=ϵ(xp+yp)  (ϵ0,  0p<1), then there exists a unique additive function A:XY such that f(x)-A(x)2ϵxp/(2-2p) for all xX. In 1951 Bourgin [4, 5] stated that if Φ is symmetric in x and y with j=1Φ(2jx,2jx)/2j< for each xX, then there exists a unique additive function A:XY such that f(x)-A(x)j=1Φ(2jx,2jx)/2j for all xX. Unfortunately, there was no use of these results until 1978 when Rassias  dealt with the inequality of Aoki . Following Rassias’ result, a great number of papers on the subject have been published concerning numerous functional equations in various directions . Among the results, stability problem in a restricted domain was investigated by Skof, who proved the stability problem of inequality (1.3) in a restricted domain [16, 17]. Developing this result, Jung, Rassias, and M. J. Rassias considered the stability problems in restricted domains for some functional equations including the Jensen functional equation  and Jensen-type functional equations . We also refer the reader to  for some related results on Hyers-Ulam stabilities in restricted conditions. The results can be summarized as follows. Let X and Y be a real normed space and a real Banach space, respectively. For fixed d0, if f:XY satisfies the functional inequalities (such as that of Cauchy, quadratic, Jensen, and Jensen type) for all x,yX with x+yd (which is the case where the inequalities are given by two indeterminate variables x and y), the inequalities hold for all x,yX. Following the approach in  we consider the Jensen-type equation in various restricted domains in an Abelian group. As applications, we obtain the stability problems for the above equations in more general restricted domains than that of the form {(x,y)X:x+yd}, which generalizes and refines the stability theorems in . As an application we obtain asymptotic behaviors of the equations.

2. Stability of Jensen-Type Functional Equations

Throughout this section, we denote by G, X, and Y, an Abelian group, a real normed space, and a Banach space, respectively. In this section we consider the Hyers-Ulam stability of the Jensen and Jensen-type functional inequalities for the functions f:GYf(x+y)+f(x-y)-2f(x)ϵ,f(x+y)-f(x-y)-2f(y)ϵ in restricted domains UG×G.

Inequalities (2.1) and (2.2) were previously treated by J. M. Rassias and M. J. Rassias , who proved the Hyers-Ulam stability of the inequalities in the restricted domain U={(x,y):x+yd},  d0, for the functions f:XY:

Theorem 2.1.

Let d0 and ϵ>0 be fixed. Suppose that f:XY satisfies the inequality f(x+y)+f(x-y)-2f(x)ϵ for all x,yX, with x+yd. Then there exists a unique additive function A:XY such that f(x)-A(x)-f(0)52ϵ for all xX.

Theorem 2.2.

Let d0 and ϵ>0 be fixed. Suppose that f:XY satisfies the inequality f(x+y)-f(x-y)-2f(y)ϵ for all x,yX, with x+yd and f(x)+f(-x)3ϵ for all xX, with xd. Then there exists a unique additive function A:XY such that f(x)-A(x)332ϵ for all xX.

We use the following usual notations. We denote by G×G={(a1,a2):a1,a2G} the product group; that is, for a=(a1,a2),  b=(b1,b2)G×G, we define a+b=(a1+b1,a2+b2),  a-b=(a1-b1,a2-b2). For a subset H of G×G and a,bG×G, we define a+H={a+h:hH}.

For given x,yG we denote by Px,y,  Qx,y the subsets of points of the forms (not necessarily distinct) in G×G, respectively, Px,y={(0,0),(x,-x),(y,y),(x+y,-x+y)},Qx,y={(-x,x),(y,y),(-x+y,x+y)}. The set Px,y can be viewed as the vertices of rectangles in G×G, and Qx,y can be viewed as a subset of the vertices of rectangles in G×G.

Definition 2.3.

Let UG×G. One introduces the following conditions (J1) and (J2) on U. For any x,yG, there exists a zG such that (J1)(0,z)+Px,y={(0,z),(x,-x+z),(y,y+z),(x+y,-x+y+z)}U,(J2)(z,0)+Qx,y={(-x+z,x),(y+z,y),(-x+y+z,x+y)}U, respectively.

The sets (0,z)+Px,y,  (z,0)+Qx,y can be understood as the translations of Px,y and Qx,y by (0,z) and (z,0), respectively.

There are many interesting examples of the sets U satisfying some of the conditions (J1) and (J2). We start with some trivial examples.

Example 2.4.

Let G be a real normed space. For d0,  x0,y0G, let U={(x,y)G×G  :kx+syd},V={(x,y)G×G  :kx+syd}. Then U satisfies (J1) if s>0, (J2) if k>0 and V satisfies (J1) if s0, (J2) if k0.

Example 2.5.

Let G be a real inner product space. For d0,  x0,y0GU={(x,y)G×G  :x0,x+y0,yd}. Then U satisfies (J1) if y00, (J2) if x00.

Example 2.6.

Let G be the group of nonsingular square matrices with the operation of matrix multiplication. For k,s,  δ,d0, let U={(P1,P2)G×G  :|detP1|k|detP2|sδ},V={(P1,P2)G×G  :|detP1|k|detP2|sd}. Then both U and V satisfy (J1) if s0, (J2) if k0.

In the following one can see that if Px,y and Qx,y are replaced by arbitrary subsets of four points (not necessarily distinct) in G×G, respectively, then the conditions become stronger; that is, there are subsets U1 and U2 which satisfy the conditions (J1) and (J2), respectively, but U1 and U2 fail to fulfill the following conditions (2.13) and (2.14), respectively. For any subset {X1,X2,X3,X4} of points (not necessarily distinct) in G×G, there exists a zG such that (0,z)+{X1,X2,X3,X4}U1,(z,0)+{X1,X2,X3,X4}U2, respectively.

Now we give examples of U1 and U2 which satisfy (J1) and (J2), respectively, but not (2.13) and (2.14), respectively.

Example 2.7.

Let G= be the group of integers. Enumerate Z×Z={(a1,b1),(a2,b2),,(an,bn),}R2 such that |a1|+|b1||a2|+|b2||an|+|bn|, and let Pn={(0,0),(an,-an),(bn,bn),(an+bn,-an+bn)},  n=1,2,. Then it is easy to see that U=n=1((0,2n)+Pn) satisfies the condition (J1). Now let P={(p1,q1),(p2,q2)}× with |q2-q1||p2-p1|,  p1p2>0. Then (0,z)+P is not contained in U for all z. Indeed, for any choices of (xn,yn)Pn+(0,2n),  n=1,2,, we have ym-yn>|xm-xn| for all m>n,  m,n=1,2,. Thus, if (0,z)+PU for some z, then P+(0,z)(0,2n)+Pn for some n. Thus, it follows from the condition q2-q1|p2-p1| that the line segment joining the points of P+(-z,z) intersects the line x=0 in 2, which contradicts the condition p1p2>0. Similarly, let Qn={(-an,an),(bn,bn),(-an+bn,an+bn)}. Then it is easy to see that U=n=1((2n,0)+Qn) satisfies the condition (J2) but not (2.14).

Theorem 2.8.

Let UG×G satisfy the condition (J1) and ϵ0. Suppose that f:GY satisfies (2.1) for all (x,y)U. Then there exists an additive function A:GY such that f(x)-A(x)-f(0)2ϵ for all xG.

Proof.

For given x,yG, choose a zG such that (0,z)+Px,yU. Replacing x by x+y, y by -x+y+z; x by x, y by -x+z; x by y, y by y+z; x by 0, y by z in (2.1), respectively, we have f(2y+z)+f(2x-z)-2f(x+y)ϵ,f(z)+f(2x-z)-2f(x)ϵ,f(2y+z)+f(-z)-2f(y)ϵ,f(z)+f(-z)-2f(0)ϵ. From (2.18), using the triangle inequality and dividing the result by 2, we have |f(x+y)-f(x)-f(y)+f(0)|2ϵ for all x,yG. From (2.19), using Theorem 1.1, we get the result.

Let d0,s, and let U={(x,y):x+syd}. Then U satisfies the condition (J1). Thus, as a direct consequence of Theorem 2.8, we obtain the following (cf. Theorem 2.1).

Corollary 2.9.

Let d0,s. Suppose that f:XY satisfies inequality (2.1) for all x,yX, with x+syd. Then there exists a unique additive function A:XY such that f(x)-A(x)-f(0)2ϵ for all xX.

Theorem 2.10.

Let UG×G satisfy the condition (J2) and ϵ0. Suppose that f:GY satisfies (2.2) for all (x,y)U. Then there exists a unique additive function A:GY such that f(x)-A(x)32ϵ for all xG.

Proof.

For given x,yG, choose a zG such that (z,0)+Qx,yU. Replacing x by -x+y+z, y by x+y; x by -x+z, y by x; x by y+z, y by y in (2.2), respectively, we have f(2y+z)-f(-2x+z)-2f(x+y)ϵ,f(z)-f(-2x+z)-2f(x)ϵ,f(2y+z)-f(z)-2f(y)ϵ. From (2.22), using the triangle inequality and dividing the result by 2, we have |f(x+y)-f(x)-f(y)|32ϵ. Now by Theorem 1.1, we get the result.

Let d0,k, and let U={(x,y):kx+yd}. Then U satisfies the condition (J2). Thus, as a direct consequence of Theorem 2.10, we generalize and refine Theorem 2.2 as follows.

Corollary 2.11.

Letd0,k. Suppose that f:XY satisfies inequality (2.2) for all x,y, with kx+yd. Then there exists a unique additive function A:XY such that f(x)-A(x)32ϵ for all xX.

Remark 2.12.

Corollary 2.11 refines Theorem 2.2 in both the bounds and the condition (2.6).

Now we discuss other possible restricted domains. We assume that G is a 2-divisible Abelian group. For given x,yG, we denote by Rx,y,  Sx,yG×G, Rx,y={(x,x),(x,y),(x-y2,x-y2),(x-y2,-x+y2)},Sx,y={(x,x),(y,x),(x-y2,x-y2),(-x+y2,x-y2)}. One can see that Rx,y and Sx,y consist of the vertices of parallelograms in G×G, respectively.

Definition 2.13.

Let UG×G. One introduces the following conditions (J3),(J4) on U. For any x,yG, there exists a zG such that (J3)(z,-z)+Rx,y={(x+z,x-z),(x+z,y-z),(x-y2+z,x-y2-z),(x-y2+z,-x+y2-z)}U,(J4)(z,-z)+Sx,y={(x+z,x-z),(y+z,x-z),(x-y2+z,x-y2-z),(-x+y2+z,x-y2-z)}U, respectively.

Example 2.14.

Let G be a real normed space. For k,s,d, let U={(x,y)G×G:kx+syd},V={(x,y)G×G:kx+syd}. Then U satisfies (J3) and (J4) if k+s>0, and V satisfies (J3) and (J4) if ks.

Example 2.15.

Let G be a real inner product space. For d0,  x0,y0G, U={(x,y)G×G:x0,x+y0,yd}. Then U satisfies (J3),(J4) if x0y0.

Example 2.16.

Let G be the group of nonsingular square matrices with the operation of matrix multiplication. For k,s,δ,d0, let U={(P1,P2)G×G:|detP1|k|detP2|sδ},V={(P1,P2)G×G:|detP1|k|detP2|sd}. Then U and V satisfy both (J3) and (J4) if ks.

From now on, we assume that G is a 2-divisible Abelian group.

Theorem 2.17.

Let UG×G satisfy the condition (J3) and ϵ0. Suppose that f:GY satisfies (2.1) for all (x,y)U. Then there exists a unique additive function A:GY such that f(x)-A(x)-f(0)4ϵ for all xG.

Proof.

For given x,yG, choose a zG such that (z,-z)+Rx,yU. Replacing x by x+z, y by x-z; x by x+z, y by y-z; x by (x-y)/2+z, y by (x-y)/2-z; x by (x-y)/2+z, y by (-x+y)/2-z in (2.1), respectively, we have f(2x)+f(2z)-2f(x+z)ϵ,f(x+y)+f(x-y+2z)-2f(x+z)ϵ,f(x-y)+f(2z)-2f(x-y2+z)ϵ,f(0)+f(x-y+2z)-2f(x-y2+z)ϵ. From (2.31), using the triangle inequality, we have |f(2x)-f(x+y)-f(x-y)+f(0)|4ϵ for all x,yG. Replacing x by (x+y/2), y by (x-y/2) in (2.32), we have |f(x+y)-f(x)-f(y)+f(0)|4ϵ for all x,yG. From (2.33), using Theorem 1.1, we get the result.

Let d0,  k,s with k+s>0, and let U={(x,y):kx+syd}. Then U satisfies the conditions (J3) and (J4). Thus, as a direct consequence of Theorem 2.17 we generalize Theorem 2.1 as follows.

Corollary 2.18.

Letd0,  k,s with k+s>0. Suppose that f:XY satisfies the inequality (2.1) for all x,y, with kx+syd. Then there exists a unique additive function A:XY such that f(x)-A(x)-f(0)4ϵ for all xX.

Theorem 2.19.

Let UG×G satisfy the condition (J4) and ϵ0. Suppose that f:GY satisfies (2.2) for all (x,y)U. Then there exists a unique additive function A:GY such that f(x)-A(x)4ϵ for all xG.

Proof.

For given x,yG, choose a zG such that (z,-z)+Sx,yU. Replacing x by x+z, y by x-z; x by y+z, y by x-z; x by (x-y)/2+z, y by (x-y)/2-z; x by (-x+y)/2+z, y by (x-y)/2-z in (2.2), respectively, we have f(2x)-f(2z)-2f(x-z)ϵ,f(x+y)-f(-x+y+2z)-2f(x-z)ϵ,f(x-y)-f(2z)-2f(x-y2+z)ϵ,f(0)-f(-x+y+2z)-2f(x-y2+z)ϵ. From (2.36), using the triangle inequality, we have |f(2x)-f(x+y)-f(x-y)+f(0)|4ϵ for all x,yG. Replacing x by (x+y)/2, y by (x-y)/2 in (2.37) and using Theorem 1.1, we get the result.

As a direct consequence of Theorem 2.19, we have the following.

Corollary 2.20.

Let d0,  k,s with k+s>0. Suppose that f:XY satisfies the inequality (2.2) for all x,y, with kx+syd. Then there exists a unique additive function A:XY such that f(x)-A(x)4ϵ for all xX.

3. Asymptotic Behavior of the Equations

In this section we discuss asymptotic behaviors of the equations which gives refined versions of the results in .

Using Theorems 2.8 and 2.17, we have the following (cf. ).

Theorem 3.1.

Let U satisfy (J1) or (J3). Suppose that f:XY satisfies the asymptotic condition f(x+y)+f(x-y)-2f(x)0 as x+y,(x,y)U. Then there exists a unique additive function A:XY such that f(x)=A(x)+f(0) for all xX.

Proof.

By the condition (3.1), for each n, there exists dn>0 such that f(x+y)+f(x-y)-2f(x)1n for all (x,y)U with x+ydn. Let U0=U{(x,y):  x+ydn}. Then U0 satisfies both the conditions (J1) and (J3). By Theorems 2.8 and 2.17, there exists a unique additive function An:XY such that f(x)-An(x)-f(0)2nor  4n for all xX. Putting n=m in (3.4) and using the triangle inequality, we have An(x)-Am(x)8 for all xX. Using the additivity of An,  Am, we have An=Am for all n,m. Letting n in (3.4), we get the result.

Corollary 3.2.

Let k,s satisfy one of the conditions: s>0,  k+s>0. Suppose that f:XY satisfies the condition f(x+y)+f(x-y)-2f(x)0 as kx+sy. Then there exists a unique additive function A:XY such that f(x)=A(x)+f(0) for all xX.

Using Theorems 2.10 and 2.19, we have the following (cf. ).

Theorem 3.3.

Let U satisfy (J2) or (J4). Suppose that f:XY satisfies the condition f(x+y)-f(x-y)-2f(y)0 as x+y,(x,y)U. Then f is an additive function.

Corollary 3.4.

Let k,s satisfy one of the conditions: k>0,  k+s>0. Suppose that f:XY satisfies the condition f(x+y)-f(x-y)-2f(y)0 as kx+sy. Then f is an additive function.

Acknowledgments

The first author was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (MEST) (no. 2011-0003898), and the second author was partially supported by the Research Institute of Mathematics, Seoul National University.

UlamS. M.A Collection of Mathematical Problems1960New York, NY, USAInterscience Publishers0120127HyersD. H.On the stability of the linear functional equationProceedings of the National Academy of Sciences of the United States of America194127222224000407610.1073/pnas.27.4.222ZBL0061.26403AokiT.On the stability of the linear transformation in Banach spacesJournal of the Mathematical Society of Japan195026466004058010.2969/jmsj/00210064ZBL0040.35501BourginD. G.Classes of transformations and bordering transformationsBulletin of the American Mathematical Society195157223237004261310.1090/S0002-9904-1951-09511-7ZBL0043.32902BourginD. G.Multiplicative transformationsProceedings of the National Academy of Sciences of the United States of America195036564570003856910.1073/pnas.36.10.564ZBL0039.33403RassiasT. M.On the stability of the linear mapping in Banach spacesProceedings of the American Mathematical Society197872229730010.2307/204279550732710.1090/S0002-9939-1978-0507327-1ZBL0398.47040FortiG. L.The stability of homomorphisms and amenability, with applications to functional equationsAbhandlungen aus dem Mathematischen Seminar der Universität Hamburg19875721522692717610.1007/BF02941612ZBL0619.39012HyersD. H.IsacG.RassiasT. M.Stability of Functional Equations in Several Variables1998Boston, Mass, USABirkhäuser Boston1639801JungS.-M.Hyers-Ulam-Rassias stability of Jensen's equation and its applicationProceedings of the American Mathematical Society1998126113137314310.1090/S0002-9939-98-04680-21476142ZBL0909.39014JunK.-W.KimH.-M.Stability problem for Jensen-type functional equations of cubic mappingsActa Mathematica Sinica20062261781178810.1007/s10114-005-0736-92262437ZBL1118.39013KimG. H.LeeY. H.Boundedness of approximate trigonometric functional equationsAppled Mathematics Letters200931439443ParkC. G.Hyers-Ulam-Rassias stability of homomorphisms in quasi-Banach algebrasBulletin des Sciences Mathématiques20081322879610.1016/j.bulsci.2006.07.0042387819ZBL1144.39025RassiasJ. M.RassiasM. J.On the Ulam stability of Jensen and Jensen type mappings on restricted domainsJournal of Mathematical Analysis and Applications2003281251652410.1016/S0022-247X(03)00136-71982670ZBL1028.39011RassiasJ. M.On the Ulam stability of mixed type mappings on restricted domainsJournal of Mathematical Analysis and Applications2002276274776210.1016/S0022-247X(02)00439-01944787ZBL1021.39015RassiasJ. M.On approximation of approximately linear mappings by linear mappingsJournal of Functional Analysis198246112613010.1016/0022-1236(82)90048-9654469ZBL0482.47033SkofF.Sull’approssimazione delle applicazioni localmente δ−additiveAtti della Accademia delle Scienze di Torino Classe di Scienze Fisiche, Matematiche e Naturali1983117377389SkofF.Local properties and approximation of operatorsRendiconti del Seminario Matematico e Fisico di Milano19835311312910.1007/BF02924890858541ZBL0599.39007BatkoB.Stability of an alternative functional equationJournal of Mathematical Analysis and Applications2008339130331110.1016/j.jmaa.2007.07.0012370652ZBL1133.39025BatkoB.On approximation of approximate solutions of Dhombres' equationJournal of Mathematical Analysis and Applications2008340142443210.1016/j.jmaa.2007.08.0092376165ZBL1133.39026BrzdękJ.On stability of a family of functional equationsActa Mathematica Hungarica20101281-213914910.1007/s10474-010-9169-82665805BrzdękJ.On the quotient stability of a family of functional equationsNonlinear Analysis200971104396440410.1016/j.na.2009.02.1232548669BrzdękJ.On a method of proving the Hyers-Ulam stability of functional equations on restricted domainsThe Australian Journal of Mathematical Analysis and Applications200961102540539ZBL1175.39014BrzdękJ.SikorskaJ.A conditional exponential functional equation and its stabilityNonlinear Analysis20107262923293410.1016/j.na.2009.11.0362580149JungS.-M.Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis201148New York, NY, USASpringer2790773SikorskaJ.Exponential functional equation on spheresApplied Mathematics Letters201023215616010.1016/j.aml.2009.09.0042559460ZBL1205.39032SikorskaJ.On two conditional Pexider functional equations and their stabilitiesNonlinear Analysis20097072673268410.1016/j.na.2008.03.0542499734ZBL1162.39018SikorskaJ.On a Pexiderized conditional exponential functional equationActa Mathematica Hungarica2009125328729910.1007/s10474-009-9019-82557037ZBL1212.39039ChungJ.Stability of functional equations on restricted domains in a group and their asymptotic behaviorsComputers & Mathematics with Applications20106092653266510.1016/j.camwa.2010.09.0032728095ZBL1205.39022