
Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2012, Article ID 735973, 10 pages
doi:10.1155/2012/735973

Research Article
Limiting Behavior of the Maximum of
the Partial Sum for Linearly Negative Quadrant
Dependent Random Variables under Residual
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Linearly negative quadrant dependence is a special dependence structure. By relating such con-
ditions to residual Cesàro alpha-integrability assumption, as well as to strongly residual Cesàro
alpha-integrability assumption, some Lp-convergence and complete convergence results of the
maximum of the partial sum are derived, respectively.

1. Introduction

The classical notion of uniform integrability of a sequence {Xn}n∈N
of integrable random vari-

ables is defined through the condition lima→∞supn≥1E|Xn|I(|Xn| > a) = 0. Landers and
Rogge [1] proved that the uniform integrability condition is sufficient in order that a sequ-
ence of pairwise independent random variables verifies the weak law of large numbers
(WLLNs). Chandra [2]weakened the assumption of uniform integrability to Cesáro uniform
integrability (CUI) and obtained L1-convergence for pairwise independent random variables.

Chandra and Goswami [3] improved the above-mentioned result of Landers and
Rogge [1]. They showed that for a sequence of pairwise independent random variables, CUI
is sufficient for theWLLN to hold and strong Cesáro uniform integrability (SCUI) is sufficient
for the strong law of large numbers (SLLNs) to hold. Landers and Rogge [4] obtained a slight
improvement over the results of Chandra [2] and Chandra and Goswami [3] for the case of
nonnegative random variables. They showed that, in this case, the condition of pairwise in-
dependence can be replaced by the weaker assumption of pairwise nonpositive correlation.

Chandra and Goswami [5] introduced a new set of conditions called Cesáro α-in-
tegrability (CI(α)) and strong Cesáro α-integrability (SCI(α)) for a sequence of random
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variables, which are strictly weaker than CUI and SCUI, respectively. They showed that, for
α < 1/2, CI(α) is sufficient for the WLLN to hold and SCI(α) is sufficient for the SLLN to hold
for a sequence of pairwise independent random variables, which are improvements over the
results of Landers and Rogge [4] and the earlier results.

Chandra and Goswami [6] relaxed the condition of CI(α) to residual Cesáro alpha-
integrability (RCI(α), see Definition 2.1 below) and the condition of SCI(α) to strong residual
Cesáro alpha-integrability (SRCI(α), see Definition 2.3 below) and significantly improved the
results of Chandra and Goswami [5].

Recently, Yuan andWu [7] discussed some limiting behaviors of the maximum of par-
tial sum for asymptotically negatively associated random variables when such random vari-
ables are subject to RCI(α) and SRCI(α).

In this paper, we will derive some Lp-convergence and complete convergence of the
maximum of partial sum for linearly negative quadrant dependent random variables when
such random variables are subject to RCI(α) and SRCI(α). These results generalize previous
work in the literature.

2. Preliminaries

First let us specify the two special kinds of uniform integrability we are dealing with in the
subsequent sections, which were introduced by Chandra and Goswami [6].

Definition 2.1. For α ∈ (0,∞), a sequence {Xn}n∈N
of random variables is said to be residual

Cesáro alpha-integrable (RCI(α), in short) if

sup
n≥1

1
n

n∑

i=1

E|Xi| < ∞, lim
n→∞

1
n

n∑

i=1

E(|Xi| − iα)I(|Xi| > iα) = 0. (2.1)

Clearly, {Xn} is RCI(α) for any α > 0 if {Xn}n∈N
is identically distributed with E|X1| <

∞, and {|Xn|p}n∈N
is RCI(α) for any α > 0 if {Xn}n∈N

is stochastically dominated by a non-
negative random variable X with EXp < ∞ for some p ≥ 1.

Definition 2.2. For α ∈ (0,∞), a sequence {Xn}n∈N
of random variables is said to be strongly

residual Cesáro alpha-integrable (SRCI(α), in short) if

sup
n≥1

1
n

n∑

i=1

E|Xi| < ∞,
∞∑

n=1

1
n
E(|Xn| − nα)I(|Xn| > nα) < ∞. (2.2)

We point out that, {|Xn|p}n∈N
is SRCI(α) for any α > 0, provided that {Xn}n∈N

is sto-
chastically dominated by a nonnegative random variable X with EXp+δ < ∞ for some p ≥ 1
and δ > 0.

The condition of SRCI(α) is a “strong” version of the condition of RCI(α). Moreover,
for any α > 0, RCI(α) is strictly weaker than CI(α), thereby weaker than CUI, while SRCI(α)
is strictly weaker than SCI(α), thereby much weaker than SCUI.

Next, we turn our attention to the dependence structure for random variables. For our
purpose, we have tomention a special kind of dependence, namely, negative quadrant depen-
dence.
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Definition 2.3 (cf. Lehmann [8]). Two random variablesX and Y are said to be negative quad-
rant dependent (NQD, in short) if for any x, y ∈ R,

P
(
X < x, Y < y

) ≤ P(X < x)P
(
Y < y

)
. (2.3)

A sequence {Xn}n∈N
of random variables is said to be pairwise NQD ifXi andXj are NQD for

all i, j ∈ N
+ and i /= j.

Definition 2.4 (cf. Newman [9]). A sequence{Xn}n∈N
of random variables is said to be linearly

negative quadrant dependent (LNQD, in short) if for any disjoint subsets A,B ∈ Z
+ and

positive r ′js,

∑

k∈A
rkXk,

∑

j∈B
rjXj are NQD. (2.4)

Remark 2.5. It is easily seen that if {Xn}n∈N
is a sequence of LNQD random variables, then

{aXn + b}n∈N
is still a sequence of LNQD random variables, where a and b are real numbers.

The concept of LNQD sequence was introduced by Newman [9]. Some applications
for LNQD sequence have been found; see, for example, the work by Newman [9]who estab-
lished the central limit theorem for a strictly stationary LNQD process. Wang and Zhang [10]
provided uniform rates of convergence in the central limit theorem for LNQD sequence. Ko
et al. [11] obtained the Hoeffding-type inequality for LNQD sequence. Ko et al. [12] studied
the strong convergence for weighted sums of LNQD arrays. Fu and Wu [13] studied the
almost sure central limit theorem for LNQD sequences, and so forth. We note that “�” means
“O.”

Lemma 2.6 (cf. Lehmann [8]). Let random variables X and Y be NQD. Then

(1) EXY ≤ EXEY ;

(2) P(X < x, Y < y) ≤ P(X < x)P(Y < y);

(3) If f and g are both nondecreasing (or both nonincreasing) functions, then f(X) and g(Y )
are NQD.

Lemma 2.7 (cf. Hu et al. [14]). Let {Xn}n∈N
be a LNQD sequence of random variables with EXn =

0. Assume that there exists a p > 2 satisfying E|Xi|p < ∞ for every i ≥ 1. Then, there exists a positive
constant c such that

E

(
max
1≤k≤n

∣∣∣∣∣

k∑

i=1

Xi

∣∣∣∣∣

)p

≤ cA
(
p
)
(

n∑

i=1

(
E|Xi|p

)2/p
)p/2

, ∀n ≥ 1, (2.5)

where A(p) = Ap,p/2 is a positive constant depending only on p.

It is easily seen that when p = 2, the above equation still holds true.
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Lemma 2.8. Let {Xn}n∈N
be LNQD random variables sequences with mean zero. Then for 1 < p < 2,

there exists a positive constant c such that

E

(
max
1≤i≤n

|Si|p
)

≤ c

(
n∑

i=1

(
E|Xi|p

)1/p
)p

, ∀n ≥ 1. (2.6)

This lemma is easily proved by the results of Zhang [15] and Yuan and Wu [7]. Here
we omit the details of the proof.

Lemma 2.9. Let {Xk}k∈Nd be a centered LNQD random field. Then for any p > 1, there exists a posi-
tive constant c such that

E

∣∣∣∣∣

n∑

i=1

Xi

∣∣∣∣∣

p

≤ c
n∑

i=1

E|Xi|p, (2.7)

for all n ≥ 1.

This lemma is due to Zhang [15, Lemma 3.3].
Finally, we give a lemma which supplies us with the analytical part in the proofs of

theorems in the subsequent sections.

Lemma 2.10 (cf. Landers and Rogge [4]). For sequences {an}n∈N
and {bn}n∈N

of nonnegative real
numbers, if

sup
n≥1

n−1
n∑

i=1

ai < ∞,
∞∑

n=1

bn < ∞, (2.8)

then

n∑

i=1

aibi ≤
(
sup
m≥1

m−1
m∑

i=1

ai

)
n∑

i=1

bi < ∞, (2.9)

for every n ≥ 1.

3. Residual Cesáro Alpha-Integrability and Lp-Convergence of
the Maximum of the Partial Sum

Let p > 1, and let h(x) be a strictly positive function defined on (1,+∞). In this section, we dis-
cuss Lp-convergence of the form of n−h(p)max1≤i≤n|Si − ESi| for a LNQD sequence {Xn}n∈N

of
random variables, provided that {|Xn|p}n∈N

is RCI(α) for an appropriate condition.
Our first result is dealing with the case 1 < p < 2.

Theorem 3.1. Let 1 < p < 2, and let {Xn}n∈N
be a LNQD sequence of random variables. If {|Xn|p}n∈N

is RCI(α) for some α ∈ (0, 1/(2 − p)), then

n−1max
1≤i≤n

|Si − ESi| −→ 0 in Lp. (3.1)
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Proof of Theorem 3.1. Let Yn = −nαI(Xn < −nα) + XnI(|Xni| ≤ nα) + nαI(Xn > nα), n ≥ 1, and
define, for each n ≥ 1, Zn = Xn − Yn, S

(1)
n =

∑n
i=1 Yi, and S

(2)
n =

∑n
i=1 Zi. It is easy to see that

|Yn| = min{|Xn|, nα}, |Zn| = (|Xn| − nα)I(|Xn| > nα), and

|Zn|p ≤ (|Xn|p − nα)I
(|Xn|p > nα) (3.2)

for all p > 1. Note that, for each n ≥ 1, Yn and Zn are monotone transformations of the initial
variable Xn. This implies that LNQD assumption is preserved by this construction in view
of Lemma 2.6. Precisely, {Yn − EYn}n∈N

and {Zn − EZn}n∈N
are also LNQD sequences of zero

mean random variables.
For our purpose, it suffices to prove

n−1max
1≤i≤n

∣∣∣S(1)
i − ES

(1)
i

∣∣∣ −→ 0 in L2, (3.3)

n−1max
1≤i≤n

∣∣∣S(2)
i − ES

(2)
i

∣∣∣ −→ 0 in Lp. (3.4)

Using Lemma 2.8, the Hölder inequality, relation (3.2), and the second condition in
(2.1) of the RCI(α) property of the sequence {|Xn|p}n∈N

, we obtain

n−pE
(
max
1≤i≤n

∣∣∣S(2)
i − ES

(2)
i

∣∣∣
p
)

� n−p
(

n∑

i=1

(
E|Zi − EZi|p

)1/p
)p

� n−1
n∑

i=1

E|Zi − EZi|p � n−1
n∑

i=1

E|Zi|p

≤ n−1
n∑

i=1

E
(|Xi|p − iα

)
I
(|Xi|p > iα

) −→ 0.

(3.5)

This proves (3.4). To verify (3.3), using Lemma 2.7, we have

n−2E
(
max
1≤i≤n

∣∣∣S(1)
i − ES

(1)
i

∣∣∣
2
)

� n−2
(

n∑

i=1

E(Yi − EYi)2
)

� n−2
n∑

i=1

EY 2
i ≤ n−2+(2−p)α

n∑

i=1

E|Xi|p

≤ n−1+(2−p)α · sup
n≥1

(
n−1

n∑

i=1

E|Xi|p
)
.

(3.6)

Using the first condition of (2.1) of the RCI(α) property of the sequence {|Xn|p}n∈N
, the last ex-

pression above clearly goes to 0 as n → ∞, from 1 < p < 2 and α < 1/(2−p), thus completing
the proof.

Remark 3.2. Let 1 < p < 2, and let {Xn}n∈N
be a LNQD sequence of random variables. If

{|Xn|p}n∈N
is RCI(α) for some α ∈ (0, 1/p), then n−1/p(Sn − ESn) → 0 in Lp.
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Compared with Theorem 3.1, this result, whose proof can be completed by using
Lemma 2.9, drops the maximum of the partial sum at the price of enlarging 1/n into 1/n1/p.

Next we consider the case p ≥ 2.

Theorem 3.3. Let p ≥ 2, and let {Xn}n∈N
be a LNQD sequence of random variables. If {Xn}n∈N

satisfies

sup
n≥1

1
n

n∑

i=1

E|Xi|p < ∞, (3.7)

then for any δ > 1/2

n−δmax
1≤i≤n

|Si − ESi| −→ 0 in Lp. (3.8)

Proof of Theorem 3.3. By Lemma 2.7 and the Hölder inequality,

E

(
n−δmax

1≤i≤n
|Si − ESi|

)p

� n−pδ
(

n∑

i=1

(
E|Xi|p

)2/p
)p/2

≤ n−pδ+(p/2)−1
n∑

i=1

E|Xi|p

≤ n−pδ+(p/2) · sup
n≥1

1
n

n∑

i=1

E|Xi|p −→ 0.

(3.9)

The proof is completed.

4. Strongly Residual Cesáro Alpha-Integrability and
Complete Convergence of the Maximum of the Partial Sum

A sequence of random variables {Xn}n∈N
is said to converge completely to a constant a if for

any ε > 0,

∞∑

n=1

P(|Xn − a| > ε) < ∞. (4.1)

In this case we write Xn → a completely. This notion was given by Hsu and Robbins [16].
Note that the complete convergence implies the almost sure convergence in view of the Borel-
Cantelli lemma.

The condition of SRCI(α) is a strong version of the condition of RCI(α). In this section,
we will show that each of the theorems in the previous section has a corresponding “strong”
analogue in the sense of complete convergence.

Theorem 4.1. Let 1 < p < 2, and let {Xn}n∈N
be a LNQD sequence of random variables. If {|Xn|p}n∈N

is SRCI(α) for some α ∈ (0, 1/(2 − p)), then

n−1max
1≤i≤n

|Si − ESi| −→ 0 completely. (4.2)
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Proof of Theorem 4.1. For any n ≥ 1, letm = mn be the integer such that 2m−1 < n ≤ 2m. Observe
that

n−1max
1≤i≤n

|Si − ESi| ≤ n−1 max
1≤i≤2m

|Si − ESi|

≤
(
2m−1

)−1
max
1≤i≤2m

|Si − ESi|

= 2 · 2−m max
1≤i≤2m

|Si − ESi|.

(4.3)

Hence it suffices to show that

2−m max
1≤i≤2m

|Si − ESi| −→ 0 completely. (4.4)

Let Yn, Zn, S
(1)
n , and S

(2)
n be defined as in the proof of Theorem 3.1. We first prove that

2−mmax1≤i≤2m |S(2)
i − ES

(2)
i | → 0 completely; that is,

2−m max
1≤i≤2m

∣∣∣∣∣

i∑

k=1

(Zk − EZk)

∣∣∣∣∣ −→ 0 completely. (4.5)

Using Lemma 2.8, the Hölder inequality, relation (3.2), and the second condition in (2.1) of
the RCI(α) property of the sequence {|Xn|p}n∈N

, we have

∞∑

m=0

E

(
2−m max

1≤i≤2m

∣∣∣∣∣

i∑

k=1

(Zk − EZk)

∣∣∣∣∣

)p

�
∞∑

m=0

2−mp

(
2m∑

i=1

(
E|Zi|p

)1/p
)p

≤
∞∑

m=0

2−m
2m∑

i=1

E|Zi|p

=
∞∑

i=1

E|Zi|p
∑

m:2m≥i
2−m

≤
∞∑

i=1

i−1E|Zi|p

≤
∞∑

i=1

i−1E
(|Xi|p − iα

)
I
(|Xi|p > iα

)

< ∞,

(4.6)

which implies (4.4).
Next we show that 2−mmax1≤i≤2m |S(1)

i − ES
(1)
i | → 0 completely; that is,

2−m max
1≤i≤2m

∣∣∣∣∣

i∑

k=1

(Yk − EYk)

∣∣∣∣∣ −→ 0 completely. (4.7)
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By Lemma 2.7 and the Hölder inequality,

∞∑

m=0

E

(
2−m max

1≤i≤2m

i∑

k=1

(Yk − EYk)

)2

�
∞∑

m=0

2−2m
2m∑

i=1

EY 2
i

≤
∞∑

m=0

2−2m
2m∑

i=1

i(2−p)αE|Xi|p.
(4.8)

In view of the first condition in (2.1) of the RCI(α) property of the sequence {|Xn|p}n∈N
, we

have

∞∑

m=0

E

(
2−m max

1≤i≤2m

i∑

k=1

(Yk − EYk)

)2

≤
∞∑

m=0

2−2m
2m∑

i=1

i(2−p)αE|Xi|p

≤
∞∑

m=0

2−2m · 2m(2−p)α
2m∑

i=1

E|Xi|p

≤
∞∑

m=0

2−m · 2m(2−p)α · sup
m:2m≥i

1
2m

2m∑

i=1

E|Xi|p.

(4.9)

The last series above converges since α ∈ (0, 1/(2−p)) implies −1+(2−p)α < 0, and therefore
(4.7) holds. This completes the proof.

For the case p ≥ 2, we have the following result.

Theorem 4.2. Let p ≥ 2, and let {Xn}n∈N
be a LNQD sequence of random variables. If {Xn}n∈N

satisfies

sup
n≥1

1
n

n∑

i=1

E|Xi|p < ∞, (4.10)

then for any δ > 1/2

n−δmax
1≤i≤n

|Si − ESi| −→ 0 completely. (4.11)

Proof of Theorem 4.2. Let mn, n ≥ 1 be defined as in the proof of Theorem 4.1. Proceeding in
the proof of (4.3), we see that it suffices to show that

2−mδ max
1≤i≤2m

|Si − ESi| −→ 0 completely. (4.12)
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Indeed by Lemma 2.7 and the Hölder inequality,

∞∑

m=0

E

(
2−mδ max

1≤i≤2m
|Si − ESi|

)p

�
∞∑

m=0

2−mpδ

(
2m∑

i=1

(
E|Xi|p

)2/p
)p/2

≤
∞∑

i=1

E|Xi|p
∑

m:2m≥i
2−mpδ−m+2m/p

≤
∞∑

i=1

i−pδ−1+p/2E|Xi|p.

(4.13)

In view of Lemma 2.10,

∞∑

i=1

i−pδ−1+p/2E|Xi|p ≤ sup
n≥1

1
n

2m∑

i=1

E|Xi|p
∞∑

n=1

n−pδ−1+p/2

�
∞∑

n=1

n−pδ−1+p/2 < ∞
(4.14)

from −pδ − 1 + p/2 < −1. Therefore (4.12) holds. The proof is completed.
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