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Let C be a nonempty closed convex subset of a real uniformly smooth Banach space X, {Tk}∞k=1 :
C → C an infinite family of nonexpansive mappings with the nonempty set of common fixed
points

⋂∞
k=1 Fix(Tk), and f : C → C a contraction. We introduce an explicit iterative algorithm

xn+1 = αnf(xn) + (1 − αn)Lnxn, where Ln =
∑n

k=1(ωk/sn)Tk, Sn =
∑n

k=1 ωk, and wk > 0 with∑∞
k=1 ωk = 1. Under certain appropriate conditions on {αn}, we prove that {xn} converges strongly

to a common fixed point x∗ of {Tk}∞k=1, which solves the following variational inequality: 〈x∗ −
f(x∗), J(x∗ − p)〉 ≤ 0, p ∈ ⋂∞

k=1 Fix(Tk), where J is the (normalized) duality mapping of X. This
algorithm is brief and needs less computational work, since it does not involve W-mapping.

1. Introduction

LetX be a real Banach space, C a nonempty closed convex subset ofX, andX∗ the dual space
of X. The (normalized) duality mapping J : X → 2X

∗
is defined by

J(x) =
{
x∗ ∈ X∗ : 〈x, x∗〉 = ‖x‖2, ‖x∗‖ = ‖x‖

}
, ∀x ∈ X. (1.1)

If X is a Hilbert space, then J = I, where I is the identity mapping. It is well known that if X
is smooth, then J is single valued.

Recall that a mapping f : C → C is a contraction, if there exists a constant α ∈ [0, 1)
such that

∥
∥f(x) − f

(
y
)∥
∥ ≤ α

∥
∥x − y

∥
∥, ∀x, y ∈ C. (1.2)
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We use ΠC to denote the collection of all contractions on C, that is,

ΠC =
{
f : f is a contraction on C

}
. (1.3)

A mapping T : C → C is said to be nonexpansive, if

∥
∥Tx − Ty

∥
∥ ≤ ∥

∥x − y
∥
∥, ∀x, y ∈ C. (1.4)

We use Fix(T) to denote the set of fixed points of T , namely, Fix(T) = {x ∈ C : Tx = x}.
One classical way to study nonexpansive mappings is to use contractions to approximate a
nonexpansive mapping ([1–11]). Browder [1] first considered the following approximation
in a Hilbert space. Fix u ∈ C and define a contraction Ft from C into itself by

Ftx = tu + (1 − t)Tx, x ∈ C, (1.5)

where t ∈ (0, 1). Banach contraction mapping principle guarantees that Ft has a unique fixed
point in C. Denote by zt ∈ C the unique fixed point of Ft, that is,

zt = tu + (1 − t)Tzt. (1.6)

In the case of T having fixed points, Browder [1] proved the following.

Theorem 1.1. In a Hilbert space, as t → 0, zt defined in (1.6) converges strongly to a fixed point of
T that is closest to u, that is, the nearest point projection of u onto Fix(T).

Halpern [3] introduced an iteration process (discretization of (1.6)) in a Hilbert as
follows:

zn+1 = αnu + (1 − αn)Tzn, n ≥ 0, (1.7)

where u, z0 ∈ C are arbitrary (but fixed) and {αn} is a sequence in (0, 1). Lions [4] proved the
following.

Theorem 1.2. In a Hilbert space, if {αn} satisfies the following conditions:

(K1) limn→∞αn = 0;

(K2)
∑∞

n=0 αn = ∞;

(K3) limn→∞|αn − αn−1|/α2
n+1 = 0.

Then {zn} converges strongly to the nearest point projection of u onto Fix(T).

The Banach space versions of Theorems 1.1 and 1.2 were obtained by Reich [5]. He
proved the following.
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Theorem 1.3. In a uniformly smooth Banach space X, both zt defined in (1.6) and {zn} defined in
(1.7) converge strongly to a same fixed point of T. If one defines Q : C → Fix(T) by

Q(u) = lim
t→ 0

zt, (1.8)

then Q is the sunny nonexpansive retraction from C onto Fix(T). Namely, Q satisfies the property:

∥
∥Qx −Qy

∥
∥2 ≤ 〈x − y, J

(
Qx −Qy

)〉, x, y ∈ C, (1.9)

where J is the duality mapping of X.

Moudafi [6] introduced a viscosity approximation method and proved the strong
convergence of both the implicit and explicit methods in Hilbert spaces. Xu [7] extended
Moudafi’s results in Hilbert spaces. Given a real number t ∈ (0, 1) and a contraction f ∈ ΠC,
define a contraction T

f
t : C → C by

T
f
t x = tf(x) + (1 − t)Tx, x ∈ C. (1.10)

Let xt ∈ C be the unique fixed point of Tf
t . Thus,

xt = tf(xt) + (1 − t)Txt. (1.11)

Corresponding explicit iterative process is defined by

xn+1 = αnf(xn) + (1 − αn)Txn, (1.12)

where x0 ∈ C is arbitrary (but fixed) and {αn} is a sequence in (0, 1). It was proved by Xu
[7] that under certain appropriate conditions on {αn}, both xt defined in (1.11) and {xn}
defined in (1.12) converged strongly to x∗ ∈ C, which is the unique solution of the variational
inequality:

〈(I − f
)
x∗, x − x∗〉 ≥ 0, x ∈ Fix(T). (1.13)

Xu [7] also extended Moudafi’s results to the setting of Banach spaces and proved the strong
convergence of both the implicit method (1.11) and explicit method (1.12) in uniformly
smooth Banach spaces.

In order to deal with some problems involving the common fixed points of infinite
family of nonexpansive mappings, W-mapping is often used, see [12–20]. Let {Tk}∞k=1 : C →
C be an infinite family of nonexpansive mappings and let {ξk}∞k=1 be a real number sequence
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such that 0 < ξk < 1 for every k ∈ N. For any n ∈ N, we define a mapping Wn of C into itself
as follows:

Un,n+1 = I,

Un,n = ξnTnUn,n+1 + (1 − ξn)I,

Un,n−1 = ξn−1Tn−1Un,n + (1 − ξn−1)I,

...

Un,k = ξkTkUn,k+1 + (1 − ξk)I,

Un,k−1 = ξk−1Tk−1Un,k + (1 − ξk−1)I,

...

Un,2 = ξ2T2Un,3 + (1 − ξ2)I,

Wn = Un,1 = ξ1T1Un,2 + (1 − ξ1)I.

(1.14)

Such Wn is called the W-mapping generated by {Tk}∞k=1 and {ξk}∞k=1, see [12, 13].
Yao et al. [10] introduced the following iterative algorithm for infinite family of non-

expansive mappings. Let X be a uniformly convex Banach space with a uniformly Gâteaux
differentiable norm and C a nonempty closed convex subset of X. Sequence {xn} is defined
by

xn+1 = αnu + (1 − αn)Wnxn, n ≥ 0, (1.15)

where u, x0 ∈ C are arbitrary (but fixed) and {αn} ⊂ (0, 1). It was proved that under certain
appropriate conditions on {αn}, the sequence {xn} generated by (1.15) converges strongly to
a common fixed point of {Tk}∞k=1 [13].

Since W-mapping contains many composite operations of {Tk}, it is complicated and
needs large computational work. In this paper, we introduce a new iterative algorithm for
solving the common fixed point problem of infinite family of nonexpansive mappings. Let X
be a real uniformly smooth Banach space, C a nonempty closed convex subset of X, {Tk}∞k=1 :
C → C an infinite family of nonexpansive mappings with the nonempty set of common fixed
points

⋂∞
k=1 Fix(Tk), and f ∈ ΠC. Given any x0 ∈ C, define a sequence {xn} by

xn+1 = αnf(xn) + (1 − αn)Lnxn, n ≥ 0, (1.16)

where {αn} ⊂ (0, 1), Ln =
∑n

k=1(ωk/sn)Tk, Sn =
∑n

k=1 ωk and wk > 0 with
∑∞

k=1 ωk = 1.
Under certain appropriate conditions on {αn}, we prove that {xn} converges strongly to x∗ ∈
⋂∞

k=1 Fix(Tk), which solves the following variational inequality:

〈x∗ − f(x∗), J
(
x∗ − p

)〉 ≤ 0, p ∈
∞⋂

k=1

Fix(Tk), (1.17)
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where J is the duality mapping of X. Because Ln doesn’t contain many composite operations
of {Tk}, this algorithm is brief and needs less computational wok.

We will use M to denote a constant, which may be different in different places.

2. Preliminaries

Let B = {x ∈ X : ‖x‖ = 1} denotes the unit sphere of X. A Banach space X is said to be
strictly convex, if ‖(x + y)/2‖ < 1 holds for all x, y ∈ B, x /=y. A Banach space X is said to be
uniformly convex if for each ε ∈ (0, 2], there exists a constant δ > 0 such that for any x, y ∈ B,
‖x − y‖ ≥ ε implies ‖(x + y)/2‖ ≤ 1 − δ. It is known that a uniformly convex Banach space is
reflexive and strictly convex, see [21].

The norm of X is said to be Gâteaux differentiable if

lim
t→ 0

∥
∥x + ty

∥
∥ − ‖x‖
t

(2.1)

exists for each x, y ∈ B and in this case X is said to be smooth. The norm of X is said to be
uniformly Gâteaux differentiable if for each y ∈ B, the limit (2.1) is attained uniformly for
x ∈ B. The norm of X is said to be Frêchet differentiable, if for each x ∈ B, the limit (2.1) is
attained uniformly for y ∈ B. The norm of X is said to be uniformly Frêchet differentiable,
if the limit (2.1) is attained uniformly for x, y ∈ B and in this case X is said to be uniformly
smooth.

Let D be a nonempty subset of C. A mapping Q : C → D is said to be sunny [22] if

Q(x + t(x −Q(x))) = Q(x), ∀x ∈ C, t ≥ 0, (2.2)

whenever x + t(x −Q(x)) ∈ C. A mapping Q : C → D is called a retraction if Qx = x for all
x ∈ D. Furthermore, Q is sunny nonexpansive retraction from C onto D if Q is a retraction
from C onto D which is also sunny and nonexpansive.

A subset D of C is called a sunny nonexpansive retraction of C if there exits a sunny
nonexpansive retraction from C onto D.

Lemma 2.1 (see [22]). Let C be a closed convex subset of a smooth Banach space X. Let D be a
nonempty subset of C and Q : C → D be a retraction. Then the following are equivalent.

(a) Q is sunny and nonexpansive.

(b) ‖Qx −Qy‖2 ≤ 〈x − y, J(Qx −Qy)〉, for all x, y ∈ C.

(c) 〈x −Qx, J(y −Qx)〉 ≤ 0, for all x ∈ C, y ∈ D.

Lemma 2.2 (see [23]). Let {sn} be a sequence of nonnegative real numbers satisfying

sn+1 ≤
(
1 − γn

)
sn + γnβn + δn, n ≥ 0, (2.3)
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where {γn} ⊂ (0, 1), {βn} and {δn} satisfy the following conditions:

(A1)
∑∞

n=0 γn = ∞;

(A2) lim supn→∞βn ≤ 0;

(A3) δn ≥ 0 (n ≥ 0),
∑∞

n=1 δn < ∞.

Then limn→∞sn = 0.

Lemma 2.3 (see [24]). In a Banach space X, the following inequality holds:

∥
∥x + y

∥
∥2 ≤ ‖x‖2 + 2

〈
y, j

(
x + y

)〉
, ∀x, y ∈ X, (2.4)

where j(x + y) ∈ J(x + y).

Lemma 2.4 (see [25]). Let C be a closed convex subset of a strictly convex Banach space X. Let
{Tn : n ∈ N} be a sequence of nonexpansive mappings on C. Suppose

⋂∞
n=1 Fix(Tn) is nonempty.

Let {λn} be a sequence of positive numbers with
∑∞

n=1 λn = 1. Then a mapping S on C defined by
Sx =

∑∞
n=1 λnTnx for x ∈ C is well defined, nonexpansive and Fix(S) =

⋂∞
n=1 Fix(Tn) holds.

Lemma 2.5 (see [7]). Let X be a uniformly smooth Banach space, C a closed convex subset of X,
T : C → C a nonexpansive mapping with Fix(T)/= ∅, and f ∈ ΠC. Then {xt} defined by

xt = tf(xt) + (1 − t)Txt (2.5)

converges strongly to a point in Fix(T). If we define a mapping Q : ΠC → Fix(T) by

Q
(
f
)
:= lim

t→ 0
xt, f ∈ ΠC, (2.6)

then Q(f) solves the variational inequality:

〈(
I − f

)
Q
(
f
)
, J
(
Q
(
f
) − p

)〉 ≤ 0, f ∈ ΠC, p ∈ Fix(T). (2.7)

Lemma 2.6. LetX be a Banach space, {xk} a bounded sequence ofX, and {ωk} a sequence of positive
numbers with

∑∞
k=1 ωk = 1. Then

∑∞
k=1 ωkxk is convergent in X.

Lemma 2.7. Let X be Banach space, {Tk : k ∈ N} a sequence of nonexpansive mappings on X with
⋂∞

k=1 Fix(Tk)/= ∅, and {ωk} a sequence of positive numbers with
∑∞

k=1 ωk = 1. Let T =
∑∞

k=1 ωkTk,
Lm =

∑m
k=1(ωk/Sm)Tk, and Sm =

∑m
k=1 ωk. Then Lm uniformly converges to T in each bounded

subset S of X.
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Proof. For all x ∈ S, we observe that

‖Lmx − Tx‖ =

∥
∥
∥
∥
∥

m∑

k=1

ωk

Sm
Tkx −

∞∑

k=1

ωkTkx

∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥

m∑

k=1

ωk −ωkSm

Sm
Tkx −

∞∑

k=m+1

ωkTkx

∥
∥
∥
∥
∥

≤
∥
∥
∥
∥
∥

m∑

k=1

1 − Sm

Sm
ωkTkx

∥
∥
∥
∥
∥
+

∥
∥
∥
∥
∥

∞∑

k=m+1

ωkTkx

∥
∥
∥
∥
∥

≤ 1 − Sm

Sm

m∑

k=1

ωk‖Tkx‖ +
∞∑

k=m+1

ωk‖Tkx‖

≤ 1 − Sm

Sm
M +M

∞∑

k=m+1

ωk,

(2.8)

where M = supx∈S,k≥1‖Tkx‖ < ∞. Taking m → ∞ in above last inequality, we have that

lim
m→∞

‖Lmx − Tx‖ = 0 (2.9)

holds uniformly for x ∈ S and this completes the proof.

3. Main Results

Theorem 3.1. Let C be a nonempty closed convex subset of a real uniformly smooth Banach space
X, {Tk}∞k=1 : C → C an infinite family of nonexpansive mappings with

⋂∞
k=1 Fix(Tk)/= ∅, and {ωk}

a sequence of positive numbers with
∑∞

k=1 ωk = 1. Let Ln =
∑n

k=1(ωk/Sn)Tk, Sn =
∑n

k=1 ωk, and
f ∈ ΠC with coefficient α ∈ [0, 1). Given any x0 ∈ C, let {xn} be a sequence generated by

xn+1 = αnf(xn) + (1 − αn)Lnxn, n ≥ 0, (3.1)

where {αn} ⊂ (0, 1) satisfies the following conditions:

(A1) limn→∞αn = 0;

(A2)
∑∞

n=0 αn = ∞;

(A3) either
∑∞

n=0 |αn+1 − αn| < ∞ or limn→∞(αn+1/αn) = 1.

Then {xn} converges strongly to x∗ ∈ ⋂∞
k=1 Fix(Tk), which solves the following variational inequality:

〈x∗ − f(x∗), J
(
x∗ − p

)〉 ≤ 0, p ∈
∞⋂

k=1

Fix(Tk). (3.2)
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Proof.

Step 1. We show that {xn} is bounded.
Noticing nonexpansiveness of Ln, take a p ∈ ⋂∞

k=1 Fix(Tk) to derive that

∥
∥xn+1 − p

∥
∥ =

∥
∥αnf(xn) + (1 − αn)Lnxn − p

∥
∥

≤ αn

∥
∥f(xn) − p

∥
∥ + (1 − αn)

∥
∥Lnxn − p

∥
∥

= αn

∥
∥f(xn) − f

(
p
)
+ f

(
p
) − p

∥
∥ + (1 − αn)

∥
∥Lnxn − p

∥
∥

≤ αn

∥
∥f(xn) − f

(
p
)∥
∥ + αn

∥
∥f

(
p
) − p

∥
∥ + (1 − αn)

∥
∥Lnxn − p

∥
∥

≤ ααn

∥
∥xn − p

∥
∥ + αn

∥
∥f

(
p
) − p

∥
∥ + (1 − αn)

∥
∥xn − p

∥
∥

= (1 − (1 − α)αn)
∥
∥xn − p

∥
∥ + αn

∥
∥
(
f
(
p
) − p

)∥
∥

= (1 − (1 − α)αn)
∥
∥xn − p

∥
∥ + (1 − α)αn

∥
∥
(
f
(
p
) − p

)∥
∥

1 − α

≤ max

{∥
∥
(
f
(
p
) − p

)∥
∥

1 − α
,
∥
∥xn − p

∥
∥

}

.

(3.3)

By induction, we obtain

∥
∥xn+1 − p

∥
∥ ≤ max

{∥
∥
(
f
(
p
) − p

)∥
∥

1 − α
,
∥
∥x0 − p

∥
∥

}

, n ≥ 0, (3.4)

and {xn} is bounded, so are {Tkxn}, {Lnxn}, and {f(xn)}.

Step 2. We prove that limn→∞‖xn+1 − xn‖ = 0.
By (3.1), We have

‖xn+1 − xn‖ =
∥
∥αnf(xn) + (1 − αn)Lnxn − αn−1f(xn−1) − (1 − αn−1)Ln−1xn−1

∥
∥

=
∥
∥αnf(xn) − αnf(xn−1) + αnf(xn−1) − αn−1f(xn−1)

+(1 − αn)Lnxn − (1 − αn)Ln−1xn−1 + (1 − αn)Ln−1xn−1 − (1 − αn−1)Ln−1xn−1‖
≤ ααn‖xn − xn−1‖ + |αn − αn−1|

∥
∥f(xn−1)

∥
∥

+ (1 − αn)‖Lnxn − Ln−1xn−1‖ + |αn − αn−1|‖Ln−1xn−1‖
= ααn‖xn − xn−1‖ + |αn − αn−1|

(∥
∥f(xn−1)

∥
∥ + ‖Ln−1xn−1‖

)

+ (1 − αn)‖Lnxn − Ln−1xn−1‖
≤ ααn‖xn − xn−1‖ + |αn − αn−1|

(∥
∥f(xn−1)

∥
∥ + ‖Ln−1xn−1‖

)

+ (1 − αn)‖Lnxn − Lnxn−1‖ + (1 − αn)‖Lnxn−1 − Ln−1xn−1‖
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≤ (1 − (1 − α)αn)‖xn − xn−1‖ + (1 − αn)‖Lnxn−1 − Ln−1xn−1‖
+ |αn − αn−1|

(∥
∥f(xn−1)

∥
∥ + ‖Ln−1xn−1‖

)

≤ (1 − (1 − α)αn)‖xn − xn−1‖ + (1 − αn)‖Lnxn−1 − Ln−1xn−1‖
+ |αn − αn−1|M,

(3.5)

where M = supn≥1(‖f(xn−1)‖ + ‖Ln−1xn−1‖). At the same time, we observe that

∞∑

n=1

‖Lnxn−1 − Ln−1xn−1‖ =
∞∑

n=1

∥
∥
∥
∥
∥

n∑

k=1

ωk

Sn
Tkxn−1 −

n−1∑

k=1

ωk

Sn−1
Tkxn−1

∥
∥
∥
∥
∥

=
∞∑

n=1

∥
∥
∥
∥
∥

ωn

Sn
Tnxn−1 +

n−1∑

k=1

−ωnωk

SnSn−1
Tkxn−1

∥
∥
∥
∥
∥

≤
∞∑

n=1

{∥
∥
∥
∥
ωn

Sn
Tnxn−1

∥
∥
∥
∥ +

∥
∥
∥
∥
∥

n−1∑

k=1

ωnωk

SnSn−1
Tkxn−1

∥
∥
∥
∥
∥

}

≤
∞∑

n=1

ωn

Sn
‖Tnxn−1‖ +

∞∑

n=1

n−1∑

k=1

ωnωk

SnSn−1
‖Tkxn−1‖

≤
∞∑

n=1

ωn

Sn
M +

∞∑

n=1

ωn

Sn
M

=
∞∑

n=1

2M
Sn

ωn,

(3.6)

whereM = supk≥1,n≥1‖Tkxn−1‖. Applying Lemma 2.6 and compatibility test of series, we have

∞∑

n=1

‖Lnxn−1 − Ln−1xn−1‖ < ∞. (3.7)

Put

γn = (1 − α)αn, βn =
|αn − αn−1|M
(1 − α)αn

,

δn = (1 − αn)‖Lnxn−1 − Ln−1xn−1‖.
(3.8)

It follows that

‖xn+1 − xn‖ ≤ (
1 − γn

)‖xn − xn−1‖ + γnβn + δn. (3.9)
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It is easily seen from (A2), (A3), and (3.7) that

∞∑

n=1

γn = ∞, lim sup
n→∞

βn ≤ 0,
∞∑

n=1

δn < ∞. (3.10)

Applying Lemma 2.2 to (3.9), we obtain

lim
n→∞

‖xn+1 − xn‖ = 0. (3.11)

Step 3. We show that limn→∞‖xn − Txn‖ = 0.
Indeed we observe that

‖xn − Txn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − Txn‖
= ‖xn − xn+1‖ +

∥
∥αnf(xn) + (1 − αn)Lnxn − Txn

∥
∥

≤ ‖xn − xn+1‖ + αn

∥
∥f(xn) − Txn

∥
∥ + (1 − αn)‖Lnxn − Txn‖.

(3.12)

Hence, by (3.11), (A1), and Lemma 2.7, we have

lim
n→∞

‖xn − Txn‖ = 0. (3.13)

Step 4. We prove that

lim sup
n→∞

〈
f(x∗) − x∗, J(xn − x∗)

〉 ≤ 0, (3.14)

where x∗ = limt→ 0xt with xt being the fixed point of the contraction

x �−→ tf(x) + (1 − t)Tx. (3.15)

From Lemma 2.5, we have x∗ ∈ Fix(T) and

〈(
I − f

)
x∗, J

(
x∗ − p

)〉 ≤ 0, p ∈ Fix(T). (3.16)

By Lemma 2.4, we have x∗ ∈ ⋂∞
k=1 Fix(Tk) and

〈(
I − f

)
x∗, J

(
x∗ − p

)〉 ≤ 0, p ∈
∞⋂

k=1

Fix(Tk). (3.17)

By xt = tf(xt) + (1 − t)Txt, we have

xt − xn = t
(
f(xt) − xn

)
+ (1 − t)(Txt − xn). (3.18)
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It follows from Lemma 2.3 that

‖xt − xn‖2 =
∥
∥t(f(xt) − xn) + (1 − t)(Txt − xn)

∥
∥2

≤ (1 − t)2‖Txt − xn‖2 + 2t〈f(xt) − xn, J(xt − xn)〉

≤ (1 − t)2(‖Txt − Txn‖ + ‖Txn − xn‖)2 + 2t〈f(xt) − xt, J(xt − xn)〉
+ 2t〈xt − xn, J(xt − xn)〉

≤ (1 − t)2(‖xt − xn‖ + ‖Txn − xn‖)2 + 2t〈f(xt) − xt, J(xt − xn)〉
+ 2t〈xt − xn, J(xt − xn)〉

≤ (1 − t)2‖xt − xn‖2 + bn(t) + 2t〈f(xt) − xt, J(xt − xn)〉

+ 2t‖xt − xn‖2,

(3.19)

where bn(t) = ‖Txn − xn‖(2‖xt − xn‖ + ‖Txn − xn‖) → 0 (n → ∞). It follows from above last
inequality that

〈xt − f(xt), J(xt − xn)〉 ≤ t

2
‖xt − xn‖2 + 1

2t
bn(t). (3.20)

Taking n → ∞ in (3.20) yields

lim sup
n→∞

〈xt − f(xt), J(xt − xn)〉 ≤ t

2
M, (3.21)

where M ≥ ‖xt − xn‖2 for all n ≥ 1 and t ∈ (0, 1). Taking t → 0 in (3.21), we have

lim sup
t→ 0

lim sup
n→∞

〈xt − f(xt), J(xt − xn)〉 ≤ 0. (3.22)

Noticing the fact that two limits are interchangeable due to the fact the duality mapping J is
norm-to-norm uniformly continuous on bounded sets, it follows from (3.22), we have

lim sup
n→∞

〈
f(x∗) − x∗, J(xn − x∗)

〉
= lim sup

n→∞
lim sup

t→ 0
〈xt − f(xt), J(xt − xn)〉

= lim sup
t→ 0

lim sup
n→∞

〈xt − f(xt), J(xt − xn)〉

≤ 0.

(3.23)

Hence (3.14) holds.

Step 5. Finally, we prove that xn → x∗ (n → ∞).
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Indeed we observe that

‖xn+1 − x∗‖2 = ∥
∥αnf(xn) + (1 − αn)Lnxn − x∗∥∥2

=
∥
∥αn(f(xn) − f(x∗)) + (1 − αn)(Lnxn − x∗) + αn(f(x∗) − x∗)

∥
∥2

≤ ∥
∥αn(f(xn) − f(x∗)) + (1 − αn)(Lnxn − x∗)

∥
∥2

+ 2〈αn

(
f(x∗) − x∗), J(xn+1 − x∗)〉

≤ {
αn

∥
∥f(xn) − f(x∗)

∥
∥ + (1 − αn)‖Lnxn − x∗‖}2

+ 2αn〈f(x∗) − x∗, J(xn+1 − x∗)〉

≤ (ααn‖xn − x∗‖ + (1 − αn)‖xn − x∗‖)2

+ 2αn〈f(x∗) − x∗, J(xn+1 − x∗)〉

≤ (1 − (1 − α)αn)2‖xn − x∗‖2 + 2αn〈f(x∗) − x∗, J(xn+1 − x∗)〉

≤ (1 − (1 − α)αn)‖xn − x∗‖2 + 2αn〈f(x∗) − x∗, J(xn+1 − x∗)〉.

(3.24)

By view of (3.14) and condition (A2), it follows from Lemma 2.2 that xn → x∗(n → ∞). This
completes the proof.

Corollary 3.2. Let C be a nonempty closed convex subset of a real uniformly smooth Banach space
X, {Tk}∞k=1 : C → C an infinite family of nonexpansive mappings with

⋂∞
k=1 Fix(Tk)/= ∅, {ωk} a

sequence of positive numbers with
∑∞

k=1 ωk = 1. Let Ln =
∑n

k=1(ωk/Sn)Tk, Sn =
∑n

k=1 ωk, and
u ∈ C. Given any x0 ∈ C, let {xn} be a sequence generated by

xn+1 = αnu + (1 − αn)Lnxn, n ≥ 0, (3.25)

where {αn} ⊂ (0, 1) satisfies the following conditions:

(A1) limn→∞αn = 0;

(A2)
∑∞

n=0 αn = ∞;

(A3) either
∑∞

n=0 |αn+1 − αn| < ∞ or limn→∞(αn+1/αn =)1.

Then {xn} converges strongly to x∗ ∈ ⋂∞
k=1 Fix(Tk), which solves the following variational inequality:

〈
x∗ − u, J

(
x∗ − p

)〉 ≤ 0, p ∈
∞⋂

k=1

Fix(Tk). (3.26)
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