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The present paper describes a parallel preconditioned algorithm for the solution of partial eigen-
value problems for large sparse symmetric matrices, on parallel computers. Namely, we consider
the Deflation-Accelerated Conjugate Gradient (DACG) algorithm accelerated by factorized-
sparse-approximate-inverse- (FSAI-) type preconditioners. We present an enhanced parallel im-
plementation of the FSAI preconditioner and make use of the recently developed Block FSAI-IC
preconditioner, which combines the FSAI and the Block Jacobi-IC preconditioners. Results onto
matrices of large size arising from finite element discretization of geomechanical models reveal
that DACG accelerated by these type of preconditioners is competitive with respect to the available
public parallel hypre package, especially in the computation of a few of the leftmost eigenpairs. The
parallel DACG code accelerated by FSAI is written in MPI-Fortran 90 language and exhibits good
scalability up to one thousand processors.

1. Introduction

The computation by iterativemethods of the s partial eigenspectrum of the generalized eigen-
problem:

Au = λBu, (1.1)

where A,B ∈ R
n×n are large sparse symmetric positive definite (SPD) matrices, is an

important and difficult task in many applications. It has become increasingly widespread
owing to the development in the last twenty years of robust and computationally efficient
schemes and corresponding software packages. Among the most well-known approaches for
the important class of symmetric positive definite (SPD) matrices are the implicitly restarted
Arnoldi method (equivalent to the Lanczos technique for this type of matrices) [1, 2],
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the Jacobi-Davidson (JD) algorithm [3], and schemes based on preconditioned conjugate
gradient minimization of the Rayleigh quotient [4, 5].

The basic idea of the latter is to minimize the Rayleigh Quotient

q(x) =
xTAx
xTBx

. (1.2)

in a subspace which is orthogonal to the previously computed eigenvectors via a
preconditioned CG-like procedure. Among the different variants of this technique we
chose to use the Deflation-Accelerated Conjugate Gradient (DACG) scheme [4, 6] which
has been shown to be competitive with the Jacobi Davidson method and with the
PARPACK package [7]. As in any other approach, for our DACG method, the choice of
the preconditioning technique is a key factor to accelerate and, in some cases even to allow
for, convergence. To accelerate DACG in a parallel environment we selected the Factorized
Sparse Approximate inverse (FSAI) preconditioner introduced in [8]. We have developed
a parallel implementation of this algorithm which has displayed excellent performances on
both the setup phase and the application phase within a Krylov subspace solver [9–11]. The
effectiveness of the FSAI preconditioner in the acceleration of DACG is compared to that of
the Block FSAI-IC preconditioner, recently developed in [12], which combines the FSAI and
the Block Jacobi-IC preconditioners obtaining good results on a small number of processors
for the solution of SPD linear systems and for the solution of large eigenproblems [13]. We
used the resulting parallel codes to compute a few of the leftmost eigenpairs of a set of test
matrices of large size arising from Finite Element discretization of geomechanical models.
The reported results show that DACG preconditioned with either FSAI or BFSAI is a scalable
and robust algorithm for the partial solution of SPD eigenproblems. The parallel performance
of DACG is also compared to that of the publicly available parallel package hypre [14]which
implements a number of preconditioners which can be used in combination with the Locally
Optimal Block PCG (LOBPCG) iterative eigensolver [15]. The results presented in this paper
show that the parallel DACG code accelerated by FSAI exhibits good scalability up to one
thousand processors and displays comparable performance with respect to hypre, specially
when a low number of eigenpairs is sought.

The outline of the paper is as follows: in Section 2 we describe the DACG Algorithm;
in Sections 3 and 4 we recall the definition and properties of the FSAI and BFSAI
preconditioners, respectively. Section 5 contains the numerical results obtained with the
proposed algorithm in the eigensolution of very large SPD matrices of size up to almost 7
million unknowns and 3×108 nonzeros. A comparison with the hypre eigensolver code is also
included. Section 6 ends the paper with some conclusions.

2. The DACG Iterative Eigensolver and Implementation

The DACG algorithm sequentially computes the eigenpairs, starting from the leftmost one
(λ1,u1). To evaluate the jth eigenpair, j > 1, DACGminimizes the Rayleigh Quotient (RQ) in
a subspace orthogonal to the j − 1 eigenvectors previously computed. More precisely, DACG
minimizes the Rayleigh Quotient:

q(z) =
zTAz
zTz

, (2.1)
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Choose tolerance ε, setU = 0.
DO j = 1, s

(1) Choose x0 such that UTx0 = 0; set k = 0, β0 = 0;
(2) xA0 = Ax0, γ = xT0 x

A
0 , η = xT0 x0, q0 ≡ q(x0) = γ/η, r0 = xA0 − q0x0;

(3) REPEAT
(3.1) gk ≡ ∇q(xk) = (2/η)rk ;
(3.2) gM

k
= Mgk ;

(3.3) IF k > 0 THEN βk = gT
k
(gM

k
− gM

k−1)/g
T
k−1g

M
k−1;

(3.4) p̃k = gM
k

+ βkpk−1;
(3.5) pk = p̃k −U(UT p̃k)
(3.6) pA

k
= Apk ,

(3.7) αk = argmint{q(xk + tpk)} = (ηd − γb +
√
Δ)/2(bc − ad), with

a = pT
k
xA
k
, b = pT

k
pA
k
, c = pT

k
xk, d = pT

k
pk ,

Δ = (ηd − γb)2 − 4(bc − ad)(γa − ηc);
(3.8) xk+1 = xk + αkpk, xAk+1 = xA

k
+ αkpA

k
;

(3.9) γ = γ + 2aαk + bα2
k
, η = η + 2cαk + dα2

k
;

(3.10) qk+1 ≡ q(xk+1) = γ/η;
(3.11) k = k + 1;
(3.12) rk = xA

k
− qkxk

UNTIL (qk+1 − qk)/qk+1 < tol;
(4) λj = qk, uj = xk/

√
η, U = [U,uj].

END DO

Algorithm 1: DACG Algorithm.

where

z = x −Uj

(

UT
j x

)

, Uj =
[

u1, . . . ,uj−1
]

, x ∈ Rn. (2.2)

The first eigenpair (λ1,u1) is obtained by minimization of (2.1)with z = x(U1 = ∅). Indicating
withM the preconditioning matrix, that is,M ≈ A−1, the s leftmost eigenpairs are computed
by the conjugate gradient procedure [6] described in Algorithm 1.

The schemes relying on the Rayleigh quotient optimization are quite attractive for
parallel computations; however preconditioning is an essential feature to ensure practical
convergence. When seeking for an eigenpair (λj ,uj) it can be proved that the number of
iterations is proportional to the square root of the condition number ξj = κ(Hj) of the Hessian
of the Rayleigh quotient in the stationary point uj [4]. It turns out that Hj is similar to (A −
λjI)M which is not SPD. However, Hj operates on the orthogonal space spanned by the
previous eigenvectors, so that the only important eigenvalues are the positive ones. In the
non-preconditioned case (i.e.,M = I) we would have

κ
(

Hj

) ≈ λN
λj+1 − λj

. (2.3)

where in the ideal case M ≡ A−1, we have

κ
(

Hj

) ≈ λj

λj+1 − λj
= ξj � λN

λj+1 − λj
. (2.4)
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Therefore, even though A−1 is not the optimal preconditioner for A − λjI, however, if M is a
good preconditioner of A then the condition number κ(Hj) will approach ξj .

3. The FSAI Preconditioner

The FSAI preconditioner, initially proposed in [8, 16], has been later developed and
implemented in parallel by Bergamaschi and Martı́nez in [9]. Here, we only shortly recall
the main features of this preconditioner. Given an SPD matrix A the FSAI preconditioner
approximately factorizes its inverse as a product of two sparse triangular matrices as

A−1 ≈ WTW. (3.1)

The choice of nonzeros inW is based on a sparsity patternwhich in ourworkmay be the same
as ˜Ad where ˜A is the result of prefiltration [10] of A, that is, dropping of all elements below of
a threshold parameter δ. The entries of W are computed by minimizing the Frobenius norm
of I −WL, where L is the exact Cholesky factor ofA, without forming explicitly the matrix L.
The computed W is then sparsified by dropping all the elements which are below a second
tolerance parameter (ε). The final FSAI preconditioner is therefore related to the following
three parameters: δ, prefiltration threshold; d, power of A generating the sparsity pattern
(we allow d ∈ {1, 2, 4} in our experiments); ε, postfiltration threshold.

3.1. Parallel Implementation of FSAI-DACG

We have developed a parallel code written in FORTRAN 90 and which exploits the MPI
library for exchanging data among the processors. We used a block row distribution of all
matrices (A,W , and WT), that is, with complete rows assigned to different processors. All
these matrices are stored in static data structures in CSR format.

Regarding the preconditioner computation, we stress that any row i of matrix W of
FSAI preconditioner is computed independently of each other, by solving a small SPD dense
linear system of size ni equal to the number of nonzeros allowed in row i of W . Some of
the rows which contribute to form this linear system may be nonlocal to processor i and
should be received from other processors. To this aim we implemented a routine called
get extra rows which carries out all the row exchanges among the processors, before starting
the computation of W , which proceed afterwards entirely in parallel. Since the number of
nonlocal rows needed by each processor is relatively small we chose to temporarily replicate
these rows on auxiliary data structures. Once W is obtained a parallel transposition routine
provides every processor with its part ofWT .

The DACG iterative solver is essentially based on scalar and matrix-vector products.
We made use of an optimized parallel matrix-vector product which has been developed in
[17] showing its effectiveness up to 1024 processors.

4. Block FSAI-IC Preconditioning

The Block FSAI-IC preconditioner, BFSAI-IC in the following, is a recent development for the
parallel solution to Symmetric Positive Definite (SPD) linear systems. Assume that D is an
arbitrary nonsingular block diagonal matrix consisting of nb equal size blocks.
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Let SL and SBD be a sparse lower triangular and a dense block diagonal nonzero
pattern, respectively, for an n × n matrix. Even though not strictly necessary, for the sake
of simplicity assume that SBD consists of nb diagonal blocks with equal sizem = n/nb and let
D ∈ R

n×n be an arbitrary full-rank matrix with nonzero pattern SBD.
Consider the set of lower block triangularmatrices Fwith a prescribed nonzero pattern

SBL and minimize over F the Frobenius norm:

‖D − FL‖F, (4.1)

where L is the exact lower Cholesky factor of an SPD matrix A. A matrix F satisfying the
minimality condition (4.1) for a given D is the lower block triangular factor of BFSAI-IC.
Recalling the definition of the classical FSAI preconditioner, it can be noticed that BFSAI-IC
is a block generalization of the FSAI concept.

The differentiation of (4.1)with respect to the unknown entries [F]ij , (i, j) ∈ SBL, yields
the solution to n independent dense subsystems which, in the standard FSAI case, do not
require the explicit knowledge of L. The effect of applying F to A is to concentrate the largest
entries of the preconditionedmatrix FAFT into nb diagonal blocks. However, asD is arbitrary,
it is still not ensured that FAFT is better than A in an iterative method, so it is necessary to
precondition FAFT again. As FAFT resembles a block diagonal matrix, an efficient technique
relies on using a block diagonal matrix which collects an approximation of the inverse of each
diagonal block Bib of FAFT .

It is easy to show that F is guaranteed to exist with SPD matrices and Bib is SPD, too
[12]. Using an IC decomposition with partial fill-in for each block Bib and collecting in J the
lower IC factors, the resulting preconditioned matrix reads

J−1FAFTJ−T = WAWT (4.2)

with the final preconditioner

M = WTW = FTJ−TJ−1F. (4.3)

M in (4.3) is the BFSAI-IC preconditioner of A.
For its computation BFSAI-IC needs the selection of nb and SL. The basic requirement

for the number of blocks nb is to be larger than or equal to the number of computing cores p.
From a practical viewpoint, however, themost efficient choice in terms of bothwall clock time
and iteration count is to keep the blocks as large as possible, thus implying nb = p. Hence, nb

is by default set equal to p. By distinction, the choice of SL is theoretically more challenging
and still not completely clear. A widely accepted option for other approximate inverses, such
as FSAI or SPAI, is to select the nonzero pattern ofAd for small values of d on the basis of the
Neumann series expansion of A−1. Using a similar approach, in the BFSAI construction we
select SL as the lower block triangular pattern of Ad. As the nonzeros located in the diagonal
blocks are not used for the computation of F a larger value of d, say 3 or 4, can still be
used.
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Though theoretically not necessary, three additional user-specified parameters are
worth introducing in order to better control the memory occupation and the BFSAI-IC
density:

(1) ε is a postfiltration parameter that allows for dropping the smallest entries of F. In
particular, [F]ij is neglected if [F]ij < ε‖fi‖2, where fi is the ith row of F;

(2) ρB is a parameter that controls the fill-in of Bib and determines the maximum
allowable number of nonzeros for each row of Bib in addition to the corresponding
entries of A. Quite obviously, the largest ρB entries only are retained;

(3) ρL is a parameter that controls the fill-in of each IC factor ˜Lib denoting themaximum
allowable number of nonzeros for each row of ˜Lib in addition to the corresponding
entries of Bib .

An OpenMP implementation of the algorithms above is available in [18].

5. Numerical Results

In this section we examine the performance of the parallel DACG preconditioned by both
FSAI and BFSAI in the partial solution of four large-size sparse eigenproblems. The test
cases, which we briefly describe below, are taken from different real engineering mechanical
applications. In detail, they are as follows.

(i) FAULT-639 is obtained from a structural problem discretizing a faulted gas
reservoir with tetrahedral finite elements and triangular interface elements [19].
The interface elements are used with a penalty formulation to simulate the faults
behavior. The problem arises from a 3D discretization with three displacement
unknowns associated to each node of the grid.

(ii) PO-878 arises in the simulation of the consolidation of a real gas reservoir of the Po
Valley, Italy, used for underground gas storage purposes (for details, see [20]).

(iii) GEO-1438 is obtained from a geomechanical problem discretizing a region of the
earth crust subject to underground deformation. The computational domain is a
box with an areal extent of 50 × 50 km and 10 km deep consisting of regularly
shaped tetrahedral finite elements. The problem arises from a 3Ddiscretizationwith
three displacement unknowns associated to each node of the grid [21].

(iv) CUBE-6091 arises from the equilibrium of a concrete cube discretized by a regular
unstructured tetrahedral grid.

Matrices FAULT-639 and GEO-1438 are publicly available in the University of Florida
Sparse Matrix Collection at http://www.cise.ufl.edu/research/sparse/matrices/.

In Table 1 we report sizes and nonzeros of the four matrices together with three of the
most significant eigenvalues for each problem.

The computational performance of FSAI is compared to the one obtained by using
BFSAI as implemented in [12]. The comparison is done evaluating the number of iterations
niter to converge at the same tolerance, the wall clock time in seconds Tprec and Titer for the
preconditioner computation, and the eigensolver to converge, respectively, with the total
time Ttot = Tprec + Titer. All tests are performed on the IBM SP6/5376 cluster at the CINECA
Centre for High Performance Computing, equipped with IBM Power6 processors at 4.7GHz
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Table 1: Size, number of nonzeros, and three representative eigenvalues of the test matrices.

Size Nonzeros λ1 λ10 λN

FAULT-639 638,802 28,614,564 6.99 · 106 1.73 · 107 2.52 · 1016
PO-878 878,355 38,847,915 1.46 · 106 4.45 · 106 5.42 · 1015
GEO-1438 1,437,960 63,156,690 7.81 · 105 1.32 · 106 1.11 · 1013
CUBE-6091 6,091,008 270,800,586 1.82 · 101 3.84 · 102 1.05 · 1007

with 168 nodes, 5376 computing cores, and 21Tbyte of internal network RAM. The FSAI-
DACG code is written in Fortran 90 and compiledwith -O4 -q64 -qarch=pwr6 -qtune=pwr6
-qnoipa -qstrict -bmaxdata:0x70000000 options. For the BFSAI-IC code only an OpenMP
implementation is presently available.

To study parallel performance we will use a strong scaling measure to see how the
CPU times vary with the number of processors for a fixed total problem size. Denote with
Tp the total CPU elapsed times expressed in seconds on p processors. We introduce a relative

measure of the parallel efficiency achieved by the code, S(p)
p , which is the pseudo speedup

computed with respect to the smallest number of processors (p) used to solve a given
problem. Accordingly, we will denote by E

(p)
p the corresponding efficiency:

S
(p)
p =

Tpp

Tp
, E

(p)
p =

S
(p)
p

p
=

Tpp

Tpp
. (5.1)

5.1. FSAI-DACG Results

In this section we report the results of our FSAI-DACG implementation in the computation
of the 10 leftmost eigenpairs of the 4 test problems. We used the exit test described in
the DACG algorithm (see Algorithm 1) with tol = 10−10. The results are summarized in
Table 2. As the FSAI parameters, we choose δ = 0.1, d = 4, and ε = 0.1 for all the test
matrices. This combination of parameters produces, on the average, the best (or close to
the best) performance of the iterative procedure. Note that the number of iterations does
not change with the number of processors, for a fixed problem. The scalability of the code
is very satisfactory in both the setup stage (preconditioner computation) and the iterative
phase.

5.2. BFSAI-IC-DACG Results

We present in this section the results of DACG accelerated by the BFSAI-IC preconditioner
for the approximation of the s = 10 leftmost eigenpairs of the matrices described above.

Table 3 provides iteration count and total CPU time for BFSAI-DACG with different
combinations of the parameters needed to construct the BFSAI-IC preconditioner for matrix
PO-878 and using from 2 to 8 processors. It can be seen from Table 3 that the assessment of
the optimal parameters, ε, ρB, and ρL, is not an easy task, since the number of iterations may
highly vary depending on the number of processors. We chose in this case the combination
of parameters producing the second smallest total time with p = 2, 4, 8 processors. After
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Table 2: Number of iterations, timings, and scalability indices for FSAI-DACG in the computation of the
10 leftmost eigenpairs of the four test problems.

p iter Tprec Titer Ttot S
(4)
p E

(4)
p

FAULT-639

4 4448 25.9 261.4 287.3
8 4448 13.2 139.0 152.2 7.6 0.94
16 4448 6.6 69.4 76.0 15.1 0.95
32 4448 4.0 28.2 32.2 35.7 1.11
64 4448 1.9 15.5 17.4 66.1 1.03
128 4448 1.1 9.4 10.5 109.0 0.85

PO-878

4 5876 48.1 722.5 770.6
8 5876 25.2 399.8 425.0 7.3 0.91
16 5876 11.4 130.2 141.6 21.8 1.36
32 5876 6.8 65.8 72.5 42.5 1.33
64 5876 4.1 30.1 34.1 90.3 1.41
128 5876 1.9 19.1 21.0 146.8 1.15

GEO-1437

4 6216 90.3 901.5 991.7
8 6216 47.5 478.9 526.4 7.5 0.94
16 6216 24.7 239.4 264.1 15.0 0.94
32 6216 13.6 121.0 134.6 29.5 0.92
64 6216 8.2 60.9 69.1 57.4 0.90
128 6216 4.2 29.5 33.8 117.5 0.92
256 6216 2.3 19.1 21.4 185.4 0.72

p iter Tprec Titer Ttot S
(16)
p E

(16)
p

CUBE-6091

16 15796 121.5 2624.8 2746.2
32 15796 62.2 1343.8 1406.0 31.3 0.98
64 15796 32.5 737.0 769.5 57.1 0.89
128 15796 17.3 388.4 405.7 108.3 0.85
256 15796 9.1 183.9 192.9 227.8 0.89
512 15796 5.7 106.0 111.7 393.5 0.77
1024 15796 3.8 76.6 80.4 546.6 0.53

intensive testing for all the test problems, we selected similarly the “optimal” values which
are used in the numerical experiments reported in Table 4:

(i) FAULT-639: d = 3, ε = 0.05, ρB = 10, ρL = 60,

(ii) PO-878 d = 3, ε = 0.05, ρB = 10, ρL = 10,

(iii) GEO-1438: d = 3, ε = 0.05, ρB = 10, ρL = 50,

(iv) CUBE-6091: d = 2, ε = 0.01, ρB = 0, ρL = 10.

The user-specified parameters for BFSAI-IC given above provide evidence that it is
important to build a dense preconditioner based on the lower nonzero pattern of A3 (except
for CUBE-6091, which is built on a regular discretization)with the aim at decreasing the num-
ber of DACG iterations. Anyway, the cost for computing such a dense preconditioner appears
to be almost negligible with respect to the wall clock time needed to iterate to convergence.

We recall that, presently, the code BFSAI-IC is implemented in OpenMP, and the results
in terms of CPU time are significant only for p ≤ 8. For this reason the number of iterations
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Table 3: Performance of BFSAI-DACG for matrix PO-878 with 2 to 8 processors and different parameter
values.

d ρB ε ρL
p = 2 p = 4 p = 8

iter Ttot iter Ttot iter Ttot

2 10 0.01 10 2333 385.76 2877 286.24 3753 273.77
2 10 0.05 10 2345 415.81 2803 245.42 3815 142.93
2 10 0.05 20 2186 370.86 2921 276.41 3445 257.18
2 10 0.00 10 2328 445.16 2880 241.23 3392 269.41
2 20 0.05 10 2340 418.20 2918 224.32 3720 253.98
3 10 0.05 10 2122 375.17 2638 228.39 3366 149.59
3 10 0.05 20 1946 433.04 2560 304.43 3254 263.51
3 10 0.05 30 1822 411.00 2481 321.30 3176 179.67
3 10 0.05 40 1729 439.47 2528 346.82 3019 188.13
4 10 0.05 10 2035 499.45 2469 350.03 3057 280.31

Table 4: Number of iterations for BFSAI-DACG in the computations of the 10 leftmost eigenpairs.

Matrix
nb

2 4 8 16 32 64 128 256 512 1024

FAULT-639 1357 1434 1594 2002 3053 3336 3553
PO-878 2122 2638 3366 4157 4828 5154 5373
GEO-1438 1458 1797 2113 2778 3947 4647 4850 4996
CUBE-6091 5857 6557 7746 8608 9443 9996 10189 9965

reported in Table 4 is obtainedwith increasing number of blocks nb andwith p = 8 processors.
This iteration number accounts for a potential implementation of BFSAI-DACG under the
MPI (or hybrid OpenMP-MPI) environment as the number of iterations depends only on the
number of blocks, irrespective of the number of processors.

The only meaningful comparison between FSAI-DACG and BFSAI-DACG can be
carried out in terms of iteration numbers which are smaller for BFSAI-DACG for a small
number of processors. The gap between FSAI and BFSAI iterations reduces when the number
of processors increases.

5.3. Comparison with the LOBPCG Eigensolver Provided by hypre

In order to validate the effectiveness of our preconditioning in the proposed DACG algo-
rithm with respect to already available public parallel eigensolvers, the results given
in Tables 2 and 4 are compared with those obtained by the schemes implemented in
the hypre software package [14]. The Locally Optimal Block Preconditioned Conjugate
Gradient method (LOBPCG) [15] is experimented with, using the different preconditioners
developed in the hypre project, that is, algebraic multigrid (AMG), diagonal scaling (DS),
approximate inverse (ParaSails), additive Schwarz (Schwarz), and incomplete LU (Euclid).
The hypre preconditioned CG is used for the inner iterations within LOBPCG. For details
on the implementation of the LOBPCG algorithm, see, for instance, [22]. The selected
preconditioner, ParaSails, is on its turn based on the FSAI preconditioner, so that the different
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Table 5: Iterations and CPU time for the iterative solver of LOBPCG-hypre preconditioned by Parasails
with different values of bl and p = 16 processors.

Matrix
bl = 10 bl = 11 bl = 12 bl = 15

iter Titer iter Titer iter Titer iter Titer

FAULT-639 156 79.5 157 85.3 157 96.1 160 128.1
PO-878 45 117.0 41 131.6 38 151.3 35 192.6
GEO-1438 23 123.7 72 173.7 30 152.5 121 291.1
CUBE-6091 101 1670.5 143 2414.0 38 1536.7 35 1680.9

FSAI-DACG and ParaSails-LOBPCG performances should be ascribedmainly to the different
eigensolvers rather than to the preconditioners.

We first carried out a preliminary set of runs with the aim of assessing the optimal
value of the block size bl parameter, that is, the size of the subspace where to seek for the
eigenvectors. Obviously it must be bl ≥ s = 10. We fixed to 16 the number of processors
and obtained the results summarized in Table 5 with different values of bl ∈ [10, 15]. We
found that, only in problem CUBE-6091, a value of bl larger than 10, namely, bl = 12, yields
an improvement in the CPU time. Note that we also made this comparison with different
number of processors, and we obtained analogous results.

Table 6 presents the number of iterations and timings using the LOBPCG algorithm in
the hypre package. The LOBPCGwall clock time is obtained with the preconditioner allowing
for the best performance in the specific problem at hand, that is, ParaSails for all the problems.
Using AMG as the preconditioner did not allow for convergence in three cases out of four,
with the only exception of the FAULT-639 problem, in which the CPU timings were however
very much larger than using ParaSails.

All matrices have to be preliminarily scaled by their maximum coefficient in order to
allow for convergence. To make the comparison meaningful, the outer iterations of the differ-
ent methods are stopped when the average relative error measure of the computed leftmost
eigenpairs gets smaller than 10−10, in order to obtain a comparable accuracy as in the other
codes. We also report in Table 6 the number of inner preconditioned CG iterations (pcgitr).

To better compare our FSAI DACG with the LOBPCG method, we depict in Figure 1
the total CPU time versus the number of processor for the two codes. FSAI-DACG and
LOBPCG provide very similar scalability, being the latter code a little bit more performing
on the average. On the FAULT-639 problem, DACG reveals faster than LOBPCG, irrespective
of the number of processors employed.

Finally, we have carried out a comparison of the two eigensolvers in the computation
of only the leftmost eigenpair. Differently from LOBPCG, which performs a simultaneous
approximation of all the selected eigenpairs, DACG proceeds in the computation of the
selected eigenpairs in a sequential way. For this reason, DACG should be the better choice,
at least in principle, when just one eigenpair is sought. We investigate this feature, and the
results are summarized in Table 7. We include the total CPU time and iteration count needed
by LOBPCG and FSAI-DACG to compute the leftmost eigenpair with 16 processors. For the
LOBPCG code we report only the number of outer iterations.

The parameters used to construct the FSAI preconditioner for these experiments are as
follows:

(1) FAULT-639. δ = 0.1, d = 2, ε = 0.05,

(2) PO-878. δ = 0.2, d = 4, ε = 0.1,
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Figure 1: Comparison between FSAI-DACG and LOBPCG-hypre in terms of total CPU time for different
number of processors.

(3) GEO-1438. δ = 0.1, d = 2, ε = 0.1,

(4) CUBE-6091. δ = 0.0, d = 1, ε = 0.05.

These parameters differ from those employed to compute the FSAI preconditioner in the
assessment of the 10 leftmost eigenpairs and have been selected in order to produce a
preconditioner relatively cheap to compute. This is so because otherwise the setup time
would prevail over the iteration time. Similarly, to compute just one eigenpair with LOBPCG
we need to setup a different value for pcgitr, the number of inner iterations. As it can be seen
from Table 7, in themajority of the test cases, LOBPCG takes less time to compute 2 eigenpairs
than just only 1. FSAI-DACG reveals more efficient than the best LOBPCG on problems
PO-878 and GEO-1438. On the remaining two problems the slow convergence exhibited by
DACG is probably due to the small relative separation ξ1 between λ1 and λ2.
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Table 6: Number of iterations, timings, and scalability of LOBPCG-hypre preconditioned by Parasails.

p iter Tprec Titer Ttot S
(4)
p E

(4)
p

FAULT-639
pcgitr = 5

4 155 2.5 331.2 333.7
8 156 1.3 167.6 168.9 7.9 0.99
16 156 0.8 79.5 80.3 16.6 1.04
32 150 0.5 38.8 39.3 34.0 1.06
64 145 0.3 22.2 22.5 59.4 0.93
128 157 0.1 14.8 14.9 89.7 0.70

PO-878
pcgitr = 30

4 45 3.3 438.4 441.7
8 50 1.3 232.3 234.0 7.6 0.94
16 45 1.0 117.0 118.0 15.0 0.94
32 45 0.7 63.2 63.9 27.6 0.86
64 47 0.4 34.4 34.8 50.8 0.79
128 41 0.3 19.44 19.74 89.5 0.70

GEO-1438
pcgitr = 30

4 26 7.7 478.0 485.7
8 22 4.0 256.8 260.8 7.5 0.93
16 23 2.1 123.7 125.8 15.4 0.96
32 28 1.2 73.1 74.3 26.2 0.82
64 23 0.8 35.5 36.3 53.5 0.84
128 25 0.5 20.3 20.8 93.2 0.73
256 26 0.3 12.9 13.2 147.2 0.57

p iter Tprec Titer Ttot S
(16)
p E

(16)
p

CUBE-6091

16 38 9.2 1536.7 1545.9
32 36 4.7 807.5 812.2 30.5 0.95
64 38 3.2 408.2 411.4 60.1 0.94
128 41 1.6 251.4 253.0 97.8 0.76
256 35 0.9 105.9 106.8 231.6 0.90
512 39 0.6 65.3 65.9 375.3 0.73
1024 37 0.3 37.7 38.0 650.9 0.64

Table 7: Performance of LOBPCG-hyprewith Parasails and 16 processors in the computation of the smallest
eigenvalue using bl = 1 and bl = 2 and FSAI-DACG.

LOBPCG, bl = 1 LOBPCG, bl = 2 FSAI-DACG

iter Ttot iter Ttot iter Ttot

FAULT-639 144 10.1 132 17.5 1030 15.4
PO-878 99 43.2 34 29.1 993 20.4
GEO-1493 55 40.2 26 37.3 754 27.0
CUBE-6091 144 5218.8 58 522.4 3257 561.1

6. Conclusions

We have presented the parallel DACG algorithm for the partial eigensolution of large and
sparse SPD matrices. The scalability of DACG, accelerated with FSAI-type preconditioners,
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has been studied on a set of test matrices of very large size arising from real engineering
mechanical applications. Our FSAI-DACG code has shown comparable performances with
the LOBPCG eigensolver within the well-known public domain package, hypre. Numerical
results reveal that not only the scalability achieved by our code is roughly identical to that
of hypre but also, in some instances, FSAI-DACG proves more efficient in terms of absolute
CPU time. In particular, for the computation of the leftmost eigenpair, FSAI-DACG is more
convenient in 2 problems out of 4.
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