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We present some results for the asymptotic stability of solutions for nonlinear fractional difference
equations involvingRiemann-Liouville-like difference operator. The results are obtained by using
Krasnoselskii’s fixed point theorem and discrete Arzela-Ascoli’s theorem. Three examples are also
provided to illustrate our main results.

1. Introduction

In this paper we consider the asymptotic stability of solutions for nonlinear fractional
difference equations:

Δαx(t) = f(t + α, x(t + α)), t ∈ N0, 0 < α ≤ 1,

Δα−1x(t)|t=0 = x0,
(1.1)

where Δα is aRiemann-Liouville-like discrete fractional difference, f : [0,+∞) × R → R is
continuous with respect to t and x,Na = {a, a + 1, a + 2, . . .}.

Fractional differential equations have received increasing attention during recent years
since these equations have been proved to be valuable tools in the modeling of many
phenomena in various fields of science and engineering. Most of the present works were
focused on fractional differential equations, see [1–12] and the references therein. However,
very little progress has been made to develop the theory of the analogous fractional finite
difference equation [13–19].

Due to the lack of geometry interpretation of the fractional derivatives, it is difficult to
find a valid tool to analyze the stability of fractional difference equations. In the case that it
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is difficult to employ Liapunov’s direct method, fixed point theorems are usually considered
in stability [20–25]. Motivated by this idea, in this paper, we discuss asymptotic stability of
nonlinear fractional difference equations by using Krasnoselskii’s fixed point theorem and
discrete Arzela-Ascoli’s theorem. Different from our previous work [18], in this paper, the
sufficient conditions of attractivity are irrelevant to the initial value x0.

2. Preliminaries

In this section, we introduce preliminary facts of discrete fractional calculus. For more details,
see [14].

Definition 2.1 (see [14]). Let ν > 0. The ν-th fractional sum x is defined by

Δ−νf(t) =
1

Γ(ν)

t−ν∑

s=a
(t − s − 1)(ν−1)f(s), (2.1)

where f is defined for s = amod (1) and Δ−νf is defined for t = (a + ν)mod (1), and t(ν) =
Γ(t+1)/Γ(t−ν+1). The fractional sumΔ−ν maps functions defined onNa to functions defined
on Na+ν.

Definition 2.2 (see [14]). Let μ > 0 and m − 1 < μ < m, where m denotes a positive integer,
m = �μ�, �·� ceiling of number. Set ν = m − μ. The μ-th fractional difference is defined as

Δμf(t) = Δm−νf(t) = Δm(Δ−νf(t)
)
. (2.2)

Theorem 2.3 (see [15]). Let f be a real-value function defined onNa and μ, ν > 0, then the following
equalities hold:

(i) Δ−ν[Δ−μf(t)] = Δ−(μ+ν)f(t) = Δ−μ[Δ−νf(t)];

(ii) Δ−νΔf(t) = ΔΔ−νf(t) − (t − a)(ν−1)

Γ(ν)
f(a).

Lemma 2.4 (see [15]). Let μ/= 1 and assume μ + ν + 1 is not a nonpositive integer, then

Δ−νt(μ) =
Γ
(
μ + 1

)

Γ
(
μ + ν + 1

) t(μ+ν). (2.3)

Lemma 2.5 (see [15]). Assume that the following factorial functions are well defined:

(i) If 0 < α < 1, then t(αγ) ≥ (t(γ))α;

(ii) t(β+γ) = (t − γ)(β)t(γ).

Lemma 2.6 (see [13]). Let μ > 0 be noninteger,m = �μ�, �·�, ν = m − μ, thus one has

t−μ∑

s=a+ν
(t − s − 1)(μ−1) =

(t − a − ν)(μ)

μ
. (2.4)
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Lemma 2.7. The equivalent fractional Taylor’s difference formula of (1.1) is

x(t) =
x0

Γ(α)
t(α−1) +

1
Γ(α)

t−α∑

s=0
(t − s − 1)(α−1)f(s + α, x(s + α)), t ∈ Nα. (2.5)

Proof. Apply the Δ−α operator to each side of the first formula of (1.1) to obtain

Δ−αΔαx(t) = Δ−αf(t + α, x(t + α)), t ∈ Nα. (2.6)

Apply Theorem 2.3 to the left-hand side of (2.6) to obtain

Δ−αΔαx(t) = Δ−αΔΔ−(1−α)x(t) = ΔΔ−αΔ−(1−α)x(t) − t(α−1)

Γ(α)
x(α − 1)

= x(t) − x0

Γ(α)
t(α−1).

(2.7)

So, applying Definition 2.1 to the right-hand side of (2.6), for t ∈ Nα we obtain (2.5).
The recursive iteration to this Taylor’s difference formula implies that (2.5) represents the
unique solution of the IVP (1.1). This completes the proof.

Lemma 2.8 (see [4, (1.5.15)]). The quotient expansion of two gamma functions at infinityis

Γ(z + a)
Γ(z + b)

= za−b
[
1 +O

(
1
z

)]
,

(∣∣arg(z + a)
∣∣ < π, |z| −→ ∞)

. (2.8)

Corollary 2.9. One has

t(−β) > (t + α)(−β) for α, β, t > 0. (2.9)

Proof. According to Lemma 2.8,

t(−β)

(t + α)(−β)
=

Γ(t + 1)
Γ
(
t + β + 1

) · Γ
(
t + α + β + 1

)

Γ(t + α + 1)

=
Γ(t + 1)

Γ(t + α + 1)
· Γ

(
t + α + β + 1

)

Γ
(
t + β + 1

)

= t−α
[
1 +O

(
1
t

)]
· (t + β

)α
[
1 +O

(
1

t + β

)]

=
(
1 +

β

t

)α[
1 +O

(
1
t

)][
1 +O

(
1

t + β

)]

> 1.

(2.10)

Then, t(−β) > (t + α)(−β) for α, β, t > 0. This completes the proof.
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Definition 2.10. The solution x = ϕ(t) of the IVP (1.1) is said to be

(i) stable if for any ε > 0 and t0 ∈ R+, there exists a δ = δ(t0, ε) > 0 such that

∣∣x(t, x0, t0) − ϕ(t)
∣∣ < ε (2.11)

for |x0 − ϕ(t0)| ≤ δ(t0, ε) and all t ≥ t0;

(ii) attractive if there exists η(t0) > 0 such that ‖x0‖ ≤ η implies

lim
t→∞

x(t, x0, t0) = 0; (2.12)

(iii) asymptotically stable if it is stable and attractive.

The space l∞n0
is the set of real sequences defined on the set of positive integers where

any individual sequence is bounded with respect to the usual supremum norm. It is well
known that under the supremum norm l∞n0

is a Banach space [26].

Definition 2.11 (see [27]). A set Ω of sequences in l∞n0
is uniformly Cauchy (or equi-Cauchy),

if for every ε > 0, there exists an integer N such that |x(i) − x(j)| < ε, whenever i, j > N for
any x = {x(n)} in Ω.

Theorem 2.12 (see [27, (discrete Arzela-Ascoli’s theorem)]). A bounded, uniformly Cauchy
subset Ω of l∞n0

is relatively compact.

Theorem 2.13 (see [20, (Krasnoselskii’s fixed point theorem)]). Let S be a nonempty, closed,
convex, and bounded subset of the Banach space X and let A : X → X and B : S → X be two
operators such that

(a) A is a contraction with constant L < 1,

(b) B is continuous, BS resides in a compact subset of X,

(c) [x = Ax + By, y ∈ S] ⇒ x ∈ S.
Then the operator equation Ax + Bx = x has a solution in S.

3. Main Results

Let l∞α be the set ofall real sequences x = {x(t)}∞t=α with norm ‖x‖ = supt∈Nα
|x(t)|, then l∞α is a

Banach space.
Define the operator

Px(t) =
x0

Γ(α)
t(α−1) +

1
Γ(α)

t−α∑

s=0
(t − s − 1)(α−1)f(s + α, x(s + α)),

Ax(t) =
x0

Γ(α)
t(α−1),

Bx(t) =
1

Γ(α)

t−α∑

s=0
(t − s − 1)(α−1)f(s + α, x(s + α)), t ∈ Nα.

(3.1)
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Obviously, Px = Ax + Bx, the operator A is a contraction with the constant 0, which implies
that condition (a) of Theorem 2.13 holds, and x(t) is a solution of (1.1) if it is a fixed point of
the operator P .

Lemma 3.1. Assume that the following condition is satisfied:
(H1) there exist constants β1 ∈ (α, 1) and L1 ≥ 0 such that

∣∣f(t, x(t))
∣∣ ≤ L1t

(−β1) for t ∈ Nα. (3.2)

Then the operator B is continuous and BS1 is a compact subset of R for t ∈ Nα+n1 , where

S1 =
{
x(t) : |x(t)| ≤ t(−γ1) for t ∈ Nα+n1

}
, (3.3)

γ1 = (−1/2)(α − β1), and n1 ∈ N satisfies that

|x0|
Γ(α)

(
α + n1 + γ1

)((1/2)(α+β1)−1) +
L1Γ

(
1 − β1

)

Γ
(
1 + α − β1

)
(
α + n1 + γ1

)(−γ1) ≤ 1. (3.4)

Proof. For t ∈ Nα, apply Lemma 2.8 and γ1 > 0,

t(−γ1) =
Γ(t + 1)

Γ
(
t + γ1 + 1

) = t−γ1
[
1 +O

(
1
t

)]
, (3.5)

and we have that t(−γ1) → 0 as t → ∞, then there exists a n1 ∈ N such that inequality (3.4)
holds, which implies that the set S1 exists.

We firstly show that B maps S1 in S1.
It is easy to know that S1 is a closed, bounded, and convex subset of R.
Apply condition (H1), Lemma 2.5, Corollary 2.9 and (3.4), for t ∈ Nα+n1 , we have

|Bx(t)| ≤ 1
Γ(α)

t−α∑

s=0
(t − s − 1)(α−1)

∣∣f(s + α, x(s + α))
∣∣

≤ 1
Γ(α)

t−α∑

s=0
(t − s − 1)(α−1)L1(s + α)(−β1)

= L1Δ−α(t + α)(−β1)

=
L1Γ

(
1 − β1

)

Γ
(
1 + α − β1

) (t + α)(α−β1)

<
L1Γ

(
1 − β1

)

Γ
(
1 + α − β1

) t(α−β1)

=
L1Γ

(
1 − β1

)

Γ
(
1 + α − β1

)
(
t + γ1

)(−γ1)t(−γ1)
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≤ L1Γ
(
1 − β1

)

Γ
(
1 + α − β1

)
(
α + n1 + γ1

)(−γ1)t(−γ1)

≤ t(−γ1),

(3.6)

which implies that BS1 ⊂ S1 for t ∈ Nα+n1 .
Nextly, we show that B is continuous on S1.
Let ε > 0 be given then there exist T1 ∈ N and T1 ≥ n1 such that t ∈ Nα+T1 implies that

L1Γ
(
1 − β1

)

Γ
(
1 + α − β1

) t(α−β1) <
ε

2
. (3.7)

Let {xn} be a sequence such that xn → x. For t ∈ {α + n1, α + n1 + 1, . . . , α + T1 − 1},
applying the continuity of f and Lemma 2.6, we have

|Bxn(t) − Bx(t)| ≤ 1
Γ(α)

t−α∑

s=0
(t − s − 1)(α−1)

∣∣f(s + α, xn(s + α)) − f(s + α, x(s + α))
∣∣

≤ max
s∈{0,1,...,T1−1}

∣∣f(s + α, xn(s + α)) − f(s + α, x(s + α))
∣∣

× 1
Γ(α)

t−α∑

s=0
(t − s − 1)(α−1)

=
t(α)

Γ(α + 1)
max

s∈{0,1,...,T1−1}

∣∣f(s + α, xn(s + α)) − f(s + α, x(s + α))
∣∣

≤ (α + T1 − 1)(α)

Γ(α + 1)
max

s∈{0,1,...,T1−1}

∣∣f(s + α, xn(s + α)) − f(s + α, x(s + α))
∣∣

−→ 0 as n −→ ∞.

(3.8)

For t ∈ Nα+T1 ,

|Bxn(t) − Bx(t)| ≤ 1
Γ(α)

t−α∑

s=0
(t − s − 1)(α−1)

[∣∣f(s + α, xn(s + α))
∣∣ +

∣∣f(s + α, x(s + α))
∣∣]

≤ 2L1

Γ(α)

t−α∑

s=0
(t − s − 1)(α−1)(s + α)(−β1)

= 2L1Δ−α(t + α)(−β1)

=
2L1Γ

(
1 − β1

)

Γ
(
1 + α − β1

) (t + α)(α−β1)

<
2L1Γ

(
1 − β1

)

Γ
(
1 + α − β1

) t(α−β1)

< ε.

(3.9)
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Thus, for all t ∈ Nα+n1 , we have

|Bxn(t) − Bx(t)| −→ 0 as n → ∞. (3.10)

which implies that B is continuous.
Lastly, we show that BS1 is relatively compact.
Let t1, t2 ∈ Nα+T1 and t2 > t1, thus we have

|Bx(t2) − Bx(t1)| =
∣∣∣∣∣

1
Γ(α)

t2−α∑

s=0
(t2 − s − 1)(α−1)f(s + α, x(s + α))

− 1
Γ(α)

t1−α∑

s=0
(t1 − s − 1)(α−1)f(s + α, x(s + α))

∣∣∣∣∣

≤ 1
Γ(α)

t2−α∑

s=0
(t2 − s − 1)(α−1)

∣∣f(s + α, x(s + α))
∣∣

+
1

Γ(α)

t1−α∑

s=0
(t1 − s − 1)(α−1)

∣∣f(s + α, x(s + α))
∣∣

≤ L1Γ
(
1 − β1

)

Γ
(
1 + α − β1

) (t2 + α)(α−β1) +
L1Γ

(
1 − β1

)

Γ
(
1 + α − β1

) (t1 + α)(α−β1)

<
L1Γ

(
1 − β1

)

Γ
(
1 + α − β1

) t2(α−β1) +
L1Γ

(
1 − β1

)

Γ
(
1 + α − β1

) t1(α−β1)

< ε.

(3.11)

Thus, {Bx : x ∈ S1} is a bounded and uniformly Cauchy subset by Definition 2.11, and BS1

is relatively compact by means of Theorem 2.12. This completes the proof.

Lemma 3.2. Assume that condition (H1) holds, then a solution of (1.1) is in S1 for t ∈ Nα+n1 .

Proof. Notice if that x(t) is a fixed point of P , then it is a solution of (1.1). To prove this, it
remains to show that, for fixed y ∈ S1, x = Ax + By ⇒ x ∈ S1 holds.

If x = Ax + By, applying condition (H1) and (3.4), for t ∈ Nα+n1 , we have

|x(t)| ≤ |Ax(t)| + ∣∣By(t)
∣∣

≤ |x0|
Γ(α)

t(α−1) +
1

Γ(α)

t−α∑

s=0
(t − s − 1)(α−1)

∣∣f
(
s + α, y(s + α)

)∣∣

≤ |x0|
Γ(α)

t(α−1) +
L1Γ

(
1 − β1

)

Γ
(
1 + α − β1

) (t + α)(α−β1)

<
|x0|
Γ(α)

t(α−1) +
L1Γ

(
1 − β1

)

Γ
(
1 + α − β1

) t(α−β1)
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=

[
|x0|
Γ(α)

(
t + γ1

)((1/2)(α+β1)−1) +
L1Γ

(
1 − β1

)

Γ
(
1 + α − β1

)
(
t + γ1

)(−γ1)
]
t(−γ1)

≤
[
|x0|
Γ(α)

(
α + n1 + γ1

)((1/2)(α+β1)−1) +
L1Γ

(
1 − β1

)

Γ
(
1 + α − β1

)
(
α + n1 + γ1

)(−γ1 )

]
t(−γ1)

≤ t(−γ1).

(3.12)

Thus, x(t) ∈ S1 for t ∈ Nα+n1 . According to Theorem 2.13 and Lemma 3.1, there exists a x ∈ S1

such that x = Ax+Bx, that is, P has a fixed point in S1 which is a solution of (1.1) for t ∈ Nα+n1 .
This completes the proof.

Theorem 3.3. Assume that condition (H1) holds, then the solutions of (1.1) is attractive.

Proof. By Lemma 3.2, the solutions of (1.1) exist and are in S1. All functions x(t) in S1 tend to
0 as t → ∞. Then the solutions of (1.1) tend to zero as t → ∞. This completes the proof.

Theorem 3.4. Assume that the following condition is satisfied:
(H2) there exist constants β2 ∈ (α, 1) and L2 ≥ 0 such that

∣∣f(t, x(t)) − f
(
t, y(t)

)∣∣ ≤ L2t
(−β2)∥∥x − y

∥∥ for t ∈ Nα. (3.13)

Then the solutions of (1.1) are stable provided that

c :=
L2Γ(1 + α)Γ

(
1 − β2

)

Γ
(
1 + α − β2

)
Γ
(
1 + β2

) < 1. (3.14)

Proof. Let x(t) be a solution of (1.1), and let x̃(t) be a solution of (1.1) satisfying the initial
value condition x̃(0) = x̃0. For t ∈ Nα, applying condition (H2), we have

|x(t) − x̃(t)| ≤ t(α−1)

Γ(α)
|x0 − x̃0| + 1

Γ(α)

t−α∑

s=0
(t − s − 1)(α−1)

× ∣∣f(s + α, x(s + α)) − f(s + α, x̃(s + α))
∣∣

≤ t(α−1)

Γ(α)
|x0 − x̃0| + L2

Γ(α)

t−α∑

s=0
(t − s − 1)(α−1)(s + α)(−β2)‖x − x̃‖

=
t(α−1)

Γ(α)
|x0 − x̃0| + L2Δ−α(t + α)(−β2)‖x − x̃‖

=
t(α−1)

Γ(α)
|x0 − x̃0| +

L2Γ
(
1 − β2

)

Γ
(
1 + α − β2

) (t + α)(α−β2)‖x − x̃‖

≤ α(α−1)

Γ(α)
|x0 − x̃0| +

L2Γ
(
1 − β2

)

Γ
(
1 + α − β2

)α(α−β2)‖x − x̃‖
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= α|x0 − x̃0| +
L2Γ(1 + α)Γ

(
1 − β2

)

Γ
(
1 + α − β2

)
Γ
(
1 + β2

)‖x − x̃‖

= α|x0 − x̃0| + c‖x − x̃‖,
(3.15)

which implies that

‖x − x̃‖ ≤ α

1 − c
|x0 − x̃0|. (3.16)

For any given ε > 0, let δ = ((1 − c)/α)ε, |x0 − x̃0| < δ follows that ‖x − x̃‖ < ε, which
yields that the solutions of (1.1) are stable. This completes the proof.

Theorem 3.5. Assume that conditions (H1) and (H2) hold, then the solutions of (1.1) are
asymptotically stable provided that (3.14) holds.

Theorem 3.5 is the simple consequence of Theorems 3.3 and 3.4.

Theorem 3.6. Assume that the following condition is satisfied:
(H3) there exist constants β3 ∈ (α, (1/2)(1 + α)), γ2 = (1/2)(1 − α), and L3 ≥ 0 such that

∣∣f(t, x(t))
∣∣ ≤ L3

(
t + γ2

)(−β3)|x(t)| for t ∈ Nα. (3.17)

Then the solutions of (1.1) is attractive.

Proof. Set

S2 =
{
x(t) : |x(t)| ≤ t(−γ2) for t ∈ Nα+n2

}
, (3.18)

where n2 ∈ N satisfies that

|x0|
Γ(α)

(
α + n2 + γ2

)(−γ2) +
L3Γ

(
1 − β3 − γ2

)

Γ
(
1 + α − β3 − γ2

)
(
α + n2 + γ2

)(α−β3) ≤ 1. (3.19)

We first prove condition (c) of Theorem 2.13, that is, for fixed y ∈ S2 and for all x ∈ R,
x = Ax + By ⇒ x ∈ S2 holds.
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If x = Ax + By, applying condition (H3) and (3.19), for t ∈ Nα+n2 , we have

|x(t)| ≤ |Ax(t)| + ∣∣By(t)
∣∣

≤ |x0|
Γ(α)

t(α−1) +
1

Γ(α)

t−α∑

s=0
(t − s − 1)(α−1)

∣∣f
(
s + α, y(s + α)

)∣∣

≤ |x0|
Γ(α)

t(α−1) +
1

Γ(α)

t−α∑

s=0
(t − s − 1)(α−1)L3

(
s + α + γ2

)(−β3)∣∣y(s + α)
∣∣

≤ |x0|
Γ(α)

t(α−1) +
L3

Γ(α)

t−α∑

s=0
(t − s − 1)(α−1)

(
s + α + γ2

)(−β3)(s + α)(−γ2)

≤ |x0|
Γ(α)

t(α−1) +
L3

Γ(α)

t−α∑

s=0
(t − s − 1)(α−1)(s + α)(−β3−γ2)

≤ |x0|
Γ(α)

t(α−1) +
L3Γ

(
1 − β3 − γ2

)

Γ
(
1 + α − β3 − γ2

) (t + α)(α−β3−γ2)

<
|x0|
Γ(α)

t(α−1) +
L3Γ

(
1 − β3 − γ2

)

Γ
(
1 + α − β3 − γ2

) t(α−β3−γ2)

=

[
|x0|
Γ(α)

(
t + γ2

)(−γ2) +
L3Γ

(
1 − β3 − γ2

)

Γ
(
1 + α − β3 − γ2

)
(
t + γ2

)(α−β3)
]
t(−γ2)

≤
[
|x0|
Γ(α)

(
α + n2 + γ2

)(−γ2) +
L3Γ

(
1 − β3 − γ2

)

Γ
(
1 + α − β3 − γ2

)
(
α + n2 + γ2

)(α−β3)
]
t(−γ2)

≤ t(−γ2).

(3.20)

Thus, condition (c) of Theorem 2.13 holds.
The proof of condition (b) of Theorem 2.13 is similar to that of Lemma 3.1, and we

omit it. Therefore, P has a fixed point in S2 by using Theorem 2.13, that is, the IVP (1.1)
has a solution in S2. Moreover, all functions in S2 tend to 0 as t → ∞, then the solution of
(1.1) tends to zero as t → ∞, which shows that the zero solution of (1.1) is attractive. This
completes the proof.

Theorem 3.7. Assume that conditions (H2) and (H3) hold, then the solutions of (1.1) are
asymptotically stable provided that (3.14) holds.

Theorem 3.8. Assume that the following condition is satisfied:
(H4) there exist constants η ∈ (0, 1), β4 ∈ (α, (2 + αη)/(2 + η)), and L4 ≥ 0 such that

∣∣f(t, x(t))
∣∣ ≤ L4(t + 1)(−β4)|x(t)|η for t ∈ Nα. (3.21)

Then the solutions of (1.1) is attractive.

Proof. Set

S3 =
{
x(t) : |x(t)| ≤ t(−γ3) for t ∈ Nα+n3

}
, (3.22)
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where γ3 = (1/2)(β4 − α), and n3 ∈ N satisfies that

|x0|
Γ(α)

(
α + n3 + γ3

)(α−1+γ3) +
L4Γ

(
1 − β4 − γ3η

)

Γ
(
1 + α − β4 − γ3η

)
(
α + n3 + γ3

)−γ3 ≤ 1. (3.23)

Here we only prove that condition (c) of Theorem 2.13 holds, and the remaining part
of the proof is similar to that of Theorem 3.6.

Since η ∈ (0, 1), β4 ∈ (α, (2 + αη)/(2 + η)), and γ3 = (1/2)(β4 − α), then γ3, γ3η, α + γ3 ∈
(0, 1), β4 + γ3η ∈ (α, 1).

If x = Ax +By, applying condition (H4), Lemma 2.5 and (3.23), for t ∈ Nα+n3 , we have

|x(t)| ≤ |Ax(t)| + ∣∣By(t)
∣∣ ≤ |x0|

Γ(α)
t(α−1) +

1
Γ(α)

t−α∑

s=0
(t − s − 1)(α−1)

∣∣f
(
s + α, y(s + α)

)∣∣

≤ |x0|
Γ(α)

t(α−1) +
1

Γ(α)

t−α∑

s=0
(t − s − 1)(α−1)L4(s + α + 1)(−β4)

∣∣y(s + α)
∣∣η

≤ |x0|
Γ(α)

t(α−1) +
L4

Γ(α)

t−α∑

s=0
(t − s − 1)(α−1)

(
s + α + γ3η

)(−β4)[(s + α)(−γ3)
]η

≤ |x0|
Γ(α)

t(α−1) +
L4

Γ(α)

t−α∑

s=0
(t − s − 1)(α−1)

(
s + α + γ3η

)(−β4)(s + α)(−γ3η)

=
|x0|
Γ(α)

t(α−1) +
L4

Γ(α)

t−α∑

s=0
(t − s − 1)(α−1)(s + α)(−β4−γ3η)

≤ |x0|
Γ(α)

t(α−1) +
L4Γ

(
1 − β4 − γ3η

)

Γ
(
1 + α − β4 − γ3η

)(t + α)(α−β4−γ3η)

<
|x0|
Γ(α)

t(α−1) +
L4Γ

(
1 − β4 − γ3η

)

Γ
(
1 + α − β4 − γ3η

) t(α−β4−γ3η)

≤ |x0|
Γ(α)

t(α−1) +
L4Γ

(
1 − β4 − γ3η

)

Γ
(
1 + α − β4 − γ3η

) t(α−β4)

=

[
|x0|
Γ(α)

(
t + γ3

)(α−1+γ3) +
L4Γ

(
1 − β4 − γ3η

)

Γ
(
1 + α − β4 − γ3η

)
(
t + γ3

)(−γ3)
]
t(−γ3)

≤
[ |x0|
Γ(α)

(
α + n3 + γ3

)(α−1+γ3)

+
L4Γ

(
1 − β4 − γ3η

)

Γ
(
1 + α − β4 − γ3η

)
(
α + n3 + γ3

)(−γ3)
]
t(−γ3)

≤ t(−γ3).
(3.24)

Thus, condition (c) of Theorem 2.13 holds. This completes the proof.
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4. Examples

Example 4.1. Consider

Δ0.5x(t) = 0.2(t + 0.5)(−0.75) sin(x(t + 0.5)), t ∈ N0,
Δ−0.5x(t)|t=0 = x0,

(4.1)

where f(t, x(t)) = 0.2t(−0.75) sin(x(t)), t ∈ N0.5.
Since

∣∣f(t, x(t))
∣∣ =

∣∣∣0.2t(−0.75) sin(x(t))
∣∣∣ ≤ 0.2t(−0.75), (4.2)

this implies that condition (H1) holds.
In addition,

∣∣f(t, x(t)) − f
(
t, y(t)

)∣∣ ≤ 0.2t(−0.75)
∥∥x − y

∥∥. (4.3)

Thus, condition (H2) is satisfied.
Moreover, from L2 = 0.2, α = 0.5, and β2 = 0.75, we have

c =
L2Γ(1 + α)Γ

(
1 − β2

)

Γ
(
1 + α − β2

)
Γ
(
1 + β2

) =
0.2Γ(1.5)Γ(0.25)
Γ(1.25)Γ(1.75)

≈ 0.7716 < 1, (4.4)

which implies that inequality (3.14) holds.
Thus the solutions of (4.1) are asymptotically stable by Theorem 3.5.

Example 4.2. Consider

Δ0.5x(t) = 0.2(t + 1.5)(−0.6)x(t + 0.5), t ∈ N0,
Δ−0.5x(t)|t=0 = x0,

(4.5)

where f(t, x(t)) = 0.2(t + 1)(−0.6)x(t), t ∈ N0.5.
Since β3 = 0.6, α = 0.5, we have that β3 ∈ (α, (1/2)(1 + α)), γ2 = 0.25 and

∣∣f(t, x(t))
∣∣ =

∣∣∣0.2(t + 1)(−0.6)x(t)
∣∣∣ ≤ 0.2(t + 0.25)(−0.6)|x(t)|, (4.6)

which implies that condition (H3) is satisfied.
Meanwhile,

∣∣f(t, x(t)) − f
(
t, y(t)

)∣∣ ≤ 0.2(t + 1)(−0.6)
∥∥x − y

∥∥ ≤ 0.2t(−0.6)
∥∥x − y

∥∥, (4.7)

which implies that condition (H2) is satisfied.
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From L2 = 0.2, α = 0.5, and β2 = 0.6, we have

c =
L2Γ(1 + α)Γ

(
1 − β2

)

Γ
(
1 + α − β2

)
Γ
(
1 + β2

) =
0.2Γ(1.5)Γ(0.4)
Γ(0.9)Γ(1.6)

≈ 0.4120 < 1, (4.8)

which implies that inequality (3.14) holds.
Thus the solutions of (4.5) are asymptotically stable by Theorem 3.7.

Example 4.3. Consider

Δ0.5x(t) = (t + 1.5)(−0.6)x1/3(t + 0.5), t ∈ N0,
Δ−0.5x(t)|t=0 = x0,

(4.9)

where f(t, x(t)) = (t + 1)(−0.6)x1/3(t), t ∈ N0.5.
Since α = 0.5, β4 = 0.6, η = 1/3, we have that η ∈ (0, 1), β4 ∈ (α, (2 + αη)/(2 + η)) and

∣∣f(t, x(t))
∣∣ ≤ (t + 1)(−0.6)|x(t)|1/3, (4.10)

then condition (H4) is satisfied.
The solutions of (4.9) are attractive by Theorem 3.8.
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