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The multiple-set split feasibility problem requires finding a point closest to a family of closed
convex sets in one space such that its image under a linear transformation will be closest to another
family of closed convex sets in the image space. It can be amodel for many inverse problemswhere
constraints are imposed on the solutions in the domain of a linear operator as well as in the opera-
tor’s range. It generalizes the convex feasibility problem as well as the two-set split feasibility
problem. In this paper, we will review and report some recent results on iterative approaches to
the multiple-set split feasibility problem.

1. Introduction

1.1. The Multiple-Set Split Feasibility Problem Model

The intensity-modulated radiation therapy (IMRT) has received a great deal of attention
recently; for related works, please refer to [1–29]. In intensity modulated radiation therapy,
beamlets of radiation with different intensities are transmitted into the body of the patient.
Each voxel within the patient will then absorb a certain dose of radiation from each beamlet.
The goal of IMRT is to direct a sufficient dosage to those regions requiring the radiation, those
that are designated planned target volumes (PTVs), while limiting the dosage received by
the other regions, the so-called organs at risk (OAR). The forward problem is to calculate the
radiation dose absorbed in the irradiated tissue based on a given distribution of the beamlet
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intensities. The inverse problem is to find a distribution of beamlet intensities, the radiation
intensity map, which will result in a clinically acceptable dose distribution. One important
constraint is that the radiation intensity map must be implementable; that is, it is physically
possible to produce such an intensity map, given the machine’s design. There will be limits
on the change in intensity between two adjacent beamlets, for example.

The equivalent uniform dose (EUD) for tumors is the biologically equivalent dose
which, if given uniformly, will lead to the same cell kill within the tumor volume as the actual
nonuniform dose. Constraints on the EUD received by each voxel of the body are described in
dose space, the space of vectors whose entries are the doses received at each voxel. Con-
straints on the deliverable radiation intensities of the beamlets are best described in intensity
space, the space of vectors whose entries are the intensity levels associated with each of the
beamlets. The constraints in dose space will be upper bounds on the dosage received by the
OAR and lower bounds on the dosage received by the PTV. The constraints in intensity space
are limits on the complexity of the intensitymap and on the delivery time, and, obviously, that
the intensities be nonnegative. Because the constraints operate in two different domains, it is
convenient to formulate the problem using these two domains. This leads to a split feasibility
problem.

The split feasibility problem (SFP) is to find an x in a given closed convex subset C of
RJ such that Ax is in a given closed convex subset Q of RI , where A is a given real I by J

matrix. Because the constraints are best described in terms of several sets in dose space and
several sets in intensity space, the SFP model needs to be expanded into the multiple-set SFP.
It is not uncommon to find that, once the various constraints have been specified, there is no
intensity map that satisfies them all. In such cases, it is desirable to find an intensity map that
comes as close as possible to satisfying all the constraints. One way to do this, as we will see,
is to minimize a proximity function.

For i = 1, . . . , I and j = 1, . . . , J , let bi ≥ 0 be the dose absorbed by the ith voxel of the
patient’s body, xj ≥ 0 the intensity of the jth beamlet of radiation, and Aij ≥ 0 the dose
absorbed at the ith voxel due to a unit intensity of radiation at the jth beamlet. The nonne-
gative matrix A with entries Aij is the dose influence matrix. Let us assume that we have M
constraints in the dose space and N constraints in the intensity space. Let Hm be the set of
dose vectors that fulfill the mth dose constraint, and let Xn be the set of beamlet intensity
vectors that fulfill the nth intensity constraint.

In intensity space, we have the obvious constraints that xj ≥ 0. In addition, there are
implementation constraints; the available treatment machine will impose its own require-
ments, such as a limit on the difference in intensities between adjacent beamlets. In dosage
space, there will be a lower bound on the dosage delivered to those regions designated as
planned target volumes (PTV) and an upper bound on the dosage delivered to those regions
designated as organs at risk (OAR).

Suppose that St is either a PTV or an OAR, and suppose that St contains Nt voxels.
For each dosage vector b = (b1, . . . , bI)

T , define the equivalent uniform dosage function (EUD
function) et(b) by

et(b) =

(
1
Nt

∑
i∈St

(bi)
α

)1/α

, (1.1)
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where 0 < α < 1 if St is a PTV, and α > 1 if St is an OAR. The function et(b) is convex, for b
nonnegative, when St is an OAR and −et(b) is convex, when St is a PTV. The constraints in
dosage space take the form

et(b) ≤ at, (1.2)

when St is an OAR, and

−et(b) ≤ at, (1.3)

when St is a PTV. Therefore, we require that b = Ax lie within the intersection of these convex
sets. In a summary, we have formulated the constraints in the radiation intensity space RJ

and in the dose space RI , respectively, and the two spaces are related by the dose influence
matrix A; that is, this problem referred as the multiple-set split feasibility problem (MSSFP)
is formulated as follows.

Find an x ∈
N⋂
i=1

Xi such that Ax ∈
M⋂
j=1

Hj, (1.4)

which was first investigated by Censor et al. [5]. There are a great deal of literature on the
MSSFP; see [5, 7, 8, 18, 19, 22, 23]. In the sequel, there will be involved optimization and
variational inequality techniques. For related references, please see [30–42].

1.2. Fixed-Point Method

Next, we focus on the multiple-set split feasibility problem (MSSFP) which is to find a point
x∗ such that

x∗ ∈ C =
N⋂
i=1

Ci, Ax∗ ∈ Q =
M⋂
j=1

Qj, (1.5)

where N,M ≥ 1 are integers, the Ci(i = 1, 2, . . . ,N) are closed convex subsets of H1, the
Qj(j = 1, 2, . . . ,M) are closed convex subsets of H2, and A : H1 → H2 is a bounded linear
operator. Assume thatMSSFP is consistent; that is, it is solvable, and S denotes its solution set.
The case where N = M = 1, called split feasibility problem (SFP), was introduced by Censor
and Elfving [43], modeling phase retrieval and other image restoration problems, and further
studied by many researchers; see, for instance, [2–4, 6, 9–12, 17, 19–21].

We use Γ to denote the solution set of the SFP. Let γ > 0 and assume that x∗ ∈ Γ. Thus,
Ax∗ ∈ Q1 which implies the equation (I − PQ1)Ax∗ = 0 which in turn implies the equation
γA∗(I − PQ1)Ax∗ = 0, hence the fixed point equation (I − γA∗(I − PQ1)A)x∗ = x∗. Requiring
that x∗ ∈ C1, we consider the fixed-point equation

PC1

(
I − γA∗(I − PQ1

)
A
)
x∗ = x∗. (1.6)

We will see that solutions of the fixed point equation (1.6) are exactly solutions of the SFP.
The following proposition is due to Byrne [4] and Xu [2].
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Proposition 1.1. Given x∗ ∈ H1. Then x∗ solves the SFP if and only if x∗ solves the fixed point (1.6).

This proposition reminds us that (MSSFP) (1.5) is equivalent to a common fixed-point
problem of finitely many nonexpansive mappings, as we show below.

Decompose MSSFP into N subproblems (1 ≤ i ≤ N):

x∗
i ∈ Ci, Ax∗

i ∈ Q :=
M⋂
j=1

Qj. (1.7)

For each 1 ≤ i ≤ N, we define a mapping Ti by

Tix = PCi

(
I − γi∇f

)
x = PCi

⎛
⎝I − γi

M∑
j=1

βjA
∗
(
I − PQj

)
A

⎞
⎠x, (1.8)

where f is defined by

f(x) =
1
2

M∑
j=1

βj‖Ax − PQjAx‖2, (1.9)

with βj > 0 for all 1 ≤ j ≤ M. Note that the gradient of ∇f is

∇f(x) =
M∑
j=1

βjA
∗
(
I − PQj

)
Ax, (1.10)

which is L-Lipschitz continuous with constant

L =
M∑
j=1

βj‖A‖2. (1.11)

It is known that if 0 < γi ≤ 2/L, Ti is nonexpansive. Therefore fixed-point algorithms for non-
expansive mappings can be applied to (MSSFP) (1.5).

1.3. Optimization Method

Note that x∗ solves the MSSFP implies that x∗ satisfies two properties:

(i) the distance from x∗ to each Ci is zero,

(ii) the distance from Ax∗ to each Qj is also zero.

This motivates us to consider the proximity function

g(x) =
1
2

N∑
i=1

αi‖x − PCix‖2 +
1
2

M∑
j=1

βj‖Ax − PQjAx‖2, (1.12)
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where {αi} and {βj} are positive real numbers, and PCi and PQj are the metric projections onto
Ci and Qj , respectively.

Proposition 1.2. x∗ is a solution of MSSFP (1.5) if and only if g(x∗) = 0.

Since g(x) ≥ 0 for all x ∈ H1, a solution of MSSFP (1.5) is a minimizer of g over any
closed convex subset, with minimum value of zero. Note that this proximity function is con-
vex and differentiable with gradient

∇g(x) =
N∑
i=1

αi(I − PCi)x +
M∑
j=1

βjA
∗
(
I − PQj

)
Ax, (1.13)

where A∗ is the adjoint of A. Since the gradient ∇g(x) is L′-Lipschitz continuous with con-
stant

L′ =
N∑
i=1

αi +
M∑
j=1

βj‖A‖2, (1.14)

we can use the gradient-projection method to solve the minimization problem

min
x∈Ω

g(x), (1.15)

whereΩ is a closed convex subset ofH1 whose intersection with the solution set of MSSFP is
nonempty, and get a solution of the so-called constrained multiple-set split feasibility prob-
lem (CMSSFP)

x∗ ∈ Ω such that x∗ solves (1.5). (1.16)

In this paper, we will review and report the recent progresses on the fixed-point and opti-
mization methods for solving the MSSFP.

2. Some Concepts and Tools

Assume H is a Hilbert space and C is a nonempty closed convex subset of H. The (nearest
point or metric) projection, denoted PC, from H onto C assigns for each x ∈ H the unique
point PCx ∈ C in such a way that

‖x − PCx‖ = inf
{∥∥x − y

∥∥ : y ∈ C
}
. (2.1)

Proposition 2.1. Basic properties of projections are

(i) 〈x − PCx, y − PCx〉 ≤ 0 for all x ∈ H and y ∈ C;
(ii) ‖x − PCx‖2 ≤ ‖x − y‖2 − ‖y − PCx‖2 for all x ∈ H and y ∈ C;
(iii) 〈x − y, PCx − PCy〉 ≥ ‖PCx − PCy‖2 for all x, y ∈ H, and equality holds if and only if

x − y = PCx − PCy. In particular, PC is nonexpansive; that is,∥∥PCx − PCy
∥∥ ≤ ∥∥x − y

∥∥, (2.2)

for all x, y ∈ H;
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(iv) if C is a closed subspace of H, then PC is the orthogonal projection from H onto C:

x − PCx ⊥ C, or
〈
x − PCx, y

〉
= 0 ∀x ∈ H, y ∈ C. (2.3)

Definition 2.2. The operator

Qλ = (1 − λ)I + λPC (2.4)

is called a relaxed projection, where λ ∈ (0, 2) and I is the identity operator onH.
A mapping R : H → H is said to be an averaged mapping if R can be written as an

average of the identity I and a nonexpansive mapping T :

R = (1 − α)I + αT, (2.5)

where α is a number in (0, 1) and T : H → H is nonexpansive.

Proposition 2.1(iii) is equivalent to saying that the operator S = 2PC − I is nonex-
pansive. Indeed, we have

‖Sx − Sy‖2 = ‖2(PCx − PCy
) − (x − y

)‖2
= 4‖PCx − PCy‖2 − 4

〈
PCx − PCy, x − y

〉
+ ‖x − y‖2

≤ ‖x − y‖2.

(2.6)

Consequently, a projection can be written as the mean average of a nonexpansive mapping
and the identity:

PC =
I + S

2
. (2.7)

Thus projections are averaged maps with α = 1/2. Also relaxed projections are averaged.

Proposition 2.3. Let T : H → H be a nonexpansive mapping and R = (1 − α)I + αT an averaged
map for some α ∈ (0, 1). Assume T has a bounded orbit. Then, one has the following.

(1) R is asymptotically regular; that is,

lim
n→∞

∥∥∥Rn+1x − Rnx
∥∥∥ = 0, (2.8)

for all x ∈ H.

(2) For any x ∈ H, the sequence {Rnx} converges weakly to a fixed point of T .
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Definition 2.4. Let A be an operator with domain D(A) and range R(A) inH.

(i) A is monotone if for all x, y ∈ D(A),

〈
Ax −Ay, x − y

〉 ≥ 0. (2.9)

(ii) Given a number ν > 0. A is said to be ν-inverse strongly monotone (ν-ism) (or
cocoercive) if

〈
Ax −Ay, x − y

〉 ≥ ν‖Ax −Ay‖2, x, y ∈ H. (2.10)

It is easily seen that a projection PC is a 1-ism.

Proposition 2.5. Given T : H → H, let V = I −T be the complement of T . Given also S : H → H,
then one has the following.

(i) T is nonexpansive if and only if V is 1/2-ism.

(ii) If S is ν-ism, then, for γ > 0, γS is ν/γ-ism.

(iii) S is averaged if and only if the complement I − S is ν-ism for some ν > 1/2.

The next proposition includes the basic properties of averaged mappings.

Proposition 2.6. Given operators S, T, V : H → H, then one has the following.

(i) If S = (1 − α)T + αV for some α ∈ (0, 1) and if T is averaged and V is nonexpansive, then
S is averaged.

(ii) S is firmly nonexpansive if and only if the complement I − S is firmly nonexpansive. If S is
firmly nonexpansive, then S is averaged.

(iii) If S = (1 − α)T + αV for some α ∈ (0, 1), T is firmly nonexpansive and V is nonexpansive,
then S is averaged.

(iv) If S and T are both averaged, then the product (composite) ST is averaged.

(v) If S and T are both averaged and if S and T have a common fixed point, then

Fix(S)
⋂

Fix(T) = Fix(ST). (2.11)

Proposition 2.7. Consider the variational inequality problem (VI).

Find a point x ∈ C such that 〈Ax∗, x − x∗〉 ≥ 0, ∀x ∈ C, (2.12)

where C is a closed convex subset of a Hilbert space H and A is a monotone operator on H. Assume
that VI (2.12) has a solution andA is ν-ism. Then for 0 < γ < 2ν, the sequence {xn} generated by the
algorithm

xn+1 = PC

(
xn − γAxn

)
, n ≥ 0, (2.13)

converges weakly to a solution of the VI (2.12).
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An immediate consequence of Proposition 2.7 is the convergence of the gradient-
projection algorithm.

Proposition 2.8. Let f : H → R be a continuously differentiable function such that the gradient
∇f is Lipschitz continuous:

∥∥∇f(x) − ∇f
(
y
)∥∥ ≤ L

∥∥x − y
∥∥, x, y ∈ H. (2.14)

Assume that the minimization problem

min
x∈C

f(x) (2.15)

is consistent, where C is a closed convex subset of H. Then, for 0 < γ < 2/L, the sequence {xn} gen-
erated by the gradient-projection algorithm

xn+1 = PC

(
xn − γ∇f(xn)

)
(2.16)

converges weakly to a solution of (2.15).

3. Iterative Methods

In this section, we will review and report the iterative methods for solving MSSFP (1.5) in the
literature.

It is not hard to see that the solution set Si of the subproblem (1.7) coincides with
Fix(Ti), and the solution set S of MSSFP (1.5) coincides with the common fixed-point set of
the mappings Ti. Further, we have (see [9, 18])

S =
N⋂
i=1

Fix(Ti) = Fix(TN . . . T2T1). (3.1)

By using the fact (3.1), we obtain the corresponding algorithms and the convergence theo-
rems for the MSSFP.

Algorithm 3.1. The Picard iterations are

xn+1 = TN . . . T1xn

= PCN

⎛
⎝I − γ

M∑
j=1

βjA
∗
(
I − PQj

)
A

⎞
⎠ . . . PC1

⎛
⎝I − γ

M∑
j=1

βjA
∗
(
I − PQj

)
A

⎞
⎠xn, n ≥ 0.

(3.2)

Theorem 3.2 (see [8]). Assume that the MSSFP (1.5) is consistent. Let {xn} be the sequence gen-
erated by the Algorithm 3.1, where 0 < γ < 2/L with L given by (1.11). Then {xn} converges weakly
to a solution of the MSSFP (1.5).
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Algorithm 3.3. Parallel iterations are

xn+1 =
N∑
i=1

λiTi

=
N∑
i=1

λiPCi

⎛
⎝I − γ

M∑
j=1

βjA
∗
(
I − PQj

)
A

⎞
⎠xn, n ≥ 0,

(3.3)

where λi > 0 for all i such that
∑N

i=1 λi = 1, and 0 < γ < 2/L with L given by (1.11).

Theorem 3.4 (see [8]). Assume that the MSSFP (1.5) is consistent. Then the sequence {xn} gen-
erated by the Algorithm 3.3 converges weakly to a solution of the MSSFP (1.5).

Algorithm 3.5. Cyclic iterations are

xn+1 = T[n+1]xn

= PC[n+1]

⎛
⎝I − γ

M∑
j=1

βjA
∗
(
I − PQj

)
A

⎞
⎠xn, n ≥ 0,

(3.4)

where T[n] = Tn modN with the mod function taking values in {1, 2, . . . ,N}.

Theorem 3.6 (see [8]). Assume that the MSSFP (1.5) is consistent. Let {xn} be the sequence gen-
erated by the Algorithm 3.5, where 0 < γ < 2/L with L given by (1.11). Then {xn} converges weakly
to a solution of the MSSFP (1.5).

Note that the MSSFP (1.5) can be viewed as a special case of the convex feasibility
problem of finding x∗ such that

x∗ ∈
p⋂
i=1

Ci. (3.5)

In fact, (1.5) can be rewritten as

x∗ ∈
N+M⋂
i=1

Ci, (3.6)

where CN+i := {x ∈ H1 : A−1x ∈ Qj}, 1 ≤ j ≤ M.
However, the methodologies for studying the MSSFP (1.5) are actually different from

those for the convex feasibility problem in order to avoid usage of the inverse A−1. In other
words, the methods for solving the convex feasibility problem may not apply to solve the
MSSFP (1.5) straightforwardly without involving the inverseA−1. The CQ algorithm of Byrne
[1] is such an example where only the operator A (not the inverse A−1) is relevant.
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Since every closed convex subset of a Hilbert space is the fixed point set of its asso-
ciating projection, the convex feasibility problem becomes a special case of the common fixed-
point problem of finding a point x∗ with the property

x∗ ∈
M⋂
i=1

Fix(Ti). (3.7)

Similarly, the MSSFP (1.5) becomes a special case of the split common fixed-point problem
[19] of finding a point x∗ with the property

x∗ ∈
N⋂
i=1

Fix(Ui), Ax∗ ∈
M⋂
j=1

Fix
(
Tj
)
, (3.8)

where Ui : H1 → H1(i = 1, 2, . . . ,N) and Tj : H2 → H2(j = 1, 2, . . . ,M) are nonlinear opera-
tors. By using these facts, recently, Wang and Xu [17] presented another cyclic iteration as
follows.

Algorithm 3.7 (cyclic iterations). Take an initial guess x0 ∈ H1, choose γ ∈ (0, 2/L) and define
a sequence {xn} by the iterative procedure:

xn+1 = PC[n]

(
xn + γA∗(PQ[n] − I

)
Axn

)
, n ≥ 0. (3.9)

Theorem 3.8 (see [17]). The sequence {xn}, generated by Algorithm 3.7, converges weakly to a solu-
tion of MSSFP (1.5) whenever its solution set is nonempty.

Since MSSFP (1.5) is equivalent to the minimization problem (1.15), we have the fol-
lowing gradient-projection algorithm.

Algorithm 3.9. Gradient-projection algorithmis

xn+1 = PΩ
(
xn − γ∇g(xn)

)

= PΩ

⎛
⎝xn − γ

⎛
⎝ N∑

i=1

αi(I − PCi)xn +
M∑
j=1

βjA
∗
(
I − PQj

)
Axn

⎞
⎠
⎞
⎠, n ≥ 0.

(3.10)

Censor et al. [5] proved in finite-dimensional Hilbert spaces that Algorithm 3.9 con-
verges to a solution of the MSSFP (1.5) in the consistent case. Below is a version of this con-
vergence in infinite-dimensional Hilbert spaces.

Theorem 3.10 (see [8]). Assume that 0 < γ < 2/L′, where L′ is given by (1.14). The sequence {xn}
generated by the Algorithm 3.9 weakly converges to a point z which is a solution of the MSSFP (1.5)
in the consistent case and a minimizer of the function p over Ω in the inconsistent case.

Consequently, Lopez et al. [18] considered a variant version of Algorithm 3.9 to solve
(1.16).
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Algorithm 3.11. Gradient-projection algorithm is

xn+1 = PΩ
(
xn − γn∇g(xn)

)

= PΩ

⎛
⎝xn − γn

⎛
⎝ N∑

i=1

αi(I − PCi)xn +
M∑
j=1

βjA
∗
(
I − PQj

)
Axn

⎞
⎠
⎞
⎠, n ≥ 0.

(3.11)

Theorem 3.12 (see [18]). Assume that 0 < lim infn→∞γn ≤ lim supn→∞γn < 2/L′, where L′ is
given by (1.14). The sequence {xn} generated by the Algorithm 3.11 weakly converges to a solution of
(1.16).

Remark 3.13. It is obvious that Theorem 3.12 contains Theorem 3.10 as a special case.

Perturbation Techniques

Consider the consistent (1.16) and denote by S′ its nonempty solution set. As pointed in the
previous, the projection PC, where C is a closed convex subset of H, may bring difficulties in
computing it, unless C has a simple form (e.g., a closed ball or a half-space). Therefore some
perturbed methods in order to avoid this inconvenience are presented.

We can use subdifferentials when {Ci}, {Qj}, andΩ are level sets of convex functionals.
Consider

Ci = {x ∈ H1 : ci(x) ≤ 0}, Qj =
{
y ∈ H2 : qj

(
y
) ≤ 0

}
,

Ω = {x ∈ H1 : ω(x) ≤ 0},
(3.12)

where ci, ω : H1 → R and qj : H2 → R are convex functionals. We iteratively define a se-
quence {xn} as follows.

Algorithm 3.14. The initial x0 ∈ H1 is arbitrary; once xn has been defined, we define the
(n + 1)th iterate xn+1 by

xn+1 = PΩn

⎛
⎝xn − γn

⎛
⎝ N∑

i=1

αi

(
I − PCn

i

)
xn +

M∑
j=1

βjA
∗
(
I − PQn

j

)
Axn

⎞
⎠
⎞
⎠, n ≥ 0, (3.13)

where

Ωn = {x ∈ H1 : ω(xn) + 〈ξn, x − xn〉 ≤ 0}, (ξn ∈ ∂ω(xn)),

Cn
i =
{
x ∈ H1 : ci(xn) +

〈
ξni , x − xn

〉 ≤ 0
}
,
(
ξni ∈ ∂ci(xn)

)
,

Qn
j =
{
y ∈ H2 : qj(Axn) +

〈
η′
jy −Axn

〉
≤ 0
}
,
(
ηn
j ∈ ∂qj(Axn)

)
.

(3.14)
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Theorem 3.15 (see [18]). Assume that each of the functions {ci}Ni=1, ω, and {qj}Mj=1 satisfies the
property: it is bounded on every bounded subset of H1 and H2, respectively. (Note that this condition
is automatically satisfied in a finite-dimensional Hilbert space.) Then the sequence {xn} generated by
Algorithm 3.14 converges weakly to a solution of (1.16), provided that the sequence {γn} satisfies

0 < lim inf
n→∞

γn ≤ lim sup
n→∞

γn <
2
L′ , (3.15)

where the constant L′ is given by (1.14).

Now consider general perturbation techniques in the direction of the approaches
studied in [20–22, 44]. These techniques consist on taking approximate sets which involve
the ρ-distance between two closed convex sets A and B of a Hilbert space:

dρ(A,B) = sup
{‖PAx − PBx‖ : x ∈ H1, ‖x‖ ≤ ρ

}
. (3.16)

Let {Ωn}, {Cn
i }, and {Qn

j } be closed convex sets which are viewed as perturbations for the
closed convex sets Ω, {Ci}, and {Qj}, respectively. Define function gn by

gn(x) =
1
2

N∑
i=1

αi‖x − PCn
i
x‖2 + 1

2

M∑
j=1

βj‖Ax − PQn
j
Ax‖2. (3.17)

The gradient ∇gn of gn is

∇gn(x) =
N∑
i=1

αi

(
I − PCn

i

)
x +

M∑
j=1

βjA
∗
(
I − PQn

j

)
Ax. (3.18)

It is clear that ∇gn is Lipschitz continuous with the Lipschitz constant L′ given by (1.14).

Algorithm 3.16. Let an initial guess x0 ∈ H1 be given, and let {xn} be generated by the Kras-
nosel’skii-Mann iterative algorithm:

xn+1 = (1 − tn)xn + tnPΩn

(
I − γ∇gn

)
xn

= (1 − tn)xn + tnPΩn

⎛
⎝xn − γ

⎛
⎝ N∑

i=1

αi

(
I − PCn

i

)
xn +

M∑
j=1

βjA
∗
(
I − PQn

j

)
Axn

⎞
⎠
⎞
⎠, n ≥ 0.

(3.19)

In [8], Xu proved the following result.
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Theorem 3.17 (see [8]). Assume that the following conditions are satisfied.

(i) 0 < γ < 2/L′.

(ii)
∑∞

n=1 tn(1 − tn) = ∞.

(iii) For each ρ > 0, 1 ≤ i ≤ N, and 1 ≤ j ≤ M, there hold
∑∞

n=1 tndρ(Ωn,Ω) < ∞,∑∞
n=0 tndρ(Cn

i , Ci) < ∞, and
∑∞

n=0 tndρ(Qn
j ,Qj) < ∞.

Then the sequence {xn} generated by Algorithm 3.16 converges weakly to a solution of MSSFP (1.5).

Lopez et al. [18] further obtained a general result by relaxing condition (ii).

Theorem 3.18 (see [18]). Assume that the following conditions are satisfied.

(i) 0 < γ < 2/L′.

(ii) tn ∈ [0, 4/(2 + γL′)] for all n (note that tn may be larger than one since 0 < γ < 2/L′) and

∞∑
n=0

tn

(
4

2 + γL′ − tn

)
= ∞. (3.20)

(iii) For each ρ > 0, 1 ≤ i ≤ N, and 1 ≤ j ≤ M, there hold
∑∞

n=1 tndρ(Ωn,Ω) < ∞,∑∞
n=0 tndρ(Cn

i , Ci) < ∞, and
∑∞

n=0 tndρ(Qn
j ,Qj) < ∞.

Then the sequence {xn} generated by Algorithm 3.16 converges weakly to a solution of (1.16).

Corollary 3.19. Assume that the following conditions are satisfied.

(i) 0 < γ < 2/L′.

(ii) tn ∈ [0, 4/(2 + γL′)] for all n (note that tn may be larger than one since 0 < γ < 2/L′) and

∞∑
n=0

tn

(
4

2 + γL′ − tn

)
= ∞. (3.21)

Then the sequence {xn} generated by

xn+1 = (1 − tn)xn + tnPΩ

⎛
⎝xn − γ

⎛
⎝ N∑

i=1

αi(I − PCi)xn +
M∑
j=1

βjA
∗
(
I − PQj

)
Axn

⎞
⎠
⎞
⎠, n ≥ 0,

(3.22)

converges weakly to a solution of the MSSFP (1.5).

Note that all above algorithms only have weak convergence. Next, we will consider
some algorithms with strong convergence.
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Algorithm 3.20. The Halpern iterations are

xn+1 = αnu + (1 − αn)Tnxn

= αnu + (1 − αn)PC[n+1]

⎛
⎝I − γ

M∑
j=1

βjA
∗
(
I − PQj

)
A

⎞
⎠xn, n ≥ 0.

(3.23)

Theorem 3.21. Assume that the MSSFP (1.5) is consistent, 0 < γ < 2/Lwith L given by (1.11), and
{αn} satisfies the conditions (for instance, αn = 1/n for all n ≥ 1)

(C1) limn→∞αn = 0,

(C2)
∑∞

n=0 αn = ∞,

(C3)
∑∞

n=0 |αn+1 − αn| < ∞ or limn→∞(αn+1/αn) = 1.

Then the sequence {xn} generated by the Algorithm 3.20 converges strongly to a solution of
the MSSFP (1.5) that is closest to u from the solution set of the MSSFP (1.5).

Next, we consider a perturbation algorithm which has strong convergence.

Algorithm 3.22. Given an initial guess x0 ∈ H1, let {xn} be generated by the perturbed iterative
algorithm

xn+1 = γnu +
(
1 − γn

)
PΩn

⎛
⎝xn − γ

⎛
⎝ N∑

i=1

αi

(
I − PCn

i

)
xn +

M∑
j=1

βjA
∗
(
I − PQn

j

)
Axn

⎞
⎠
⎞
⎠, n ≥ 0.

(3.24)

Theorem 3.23 (see [18]). Assume that the following conditions are satisfied.

(i) 0 < γ < 2/L′.

(ii) limn→∞tn = 0 and
∑∞

n=0 tn = ∞.

(iii) For each ρ > 0, 1 ≤ i ≤ N, and 1 ≤ j ≤ M, there hold
∑∞

n=1 tndρ(Ωn,Ω) < ∞,∑∞
n=0 tndρ(Cn

i , Ci) < ∞, and
∑∞

n=0 tndρ(Qn
j ,Qj) < ∞.

Then the sequence {xn} generated by Algorithm 3.22 converges in norm to the solution of
(1.16) which is nearest to u.

Corollary 3.24. Assume that the following conditions are satisfied.

(i) 0 < γ < 2/L′.

(ii) limn→∞tn = 0 and
∑∞

n=0 tn = ∞.

Then the sequence {xn} generated by

xn+1 = tnu + tnPΩ

⎛
⎝xn − γ

⎛
⎝ N∑

i=1

αi(I − PCi)xn +
M∑
j=1

βjA
∗
(
I − PQj

)
Axn

⎞
⎠
⎞
⎠, n ≥ 0, (3.25)

converges in norm to a solution of the MSSFP (1.5).
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Regularized Methods

Consider the following regularization:

gα(x) := g(x) +
1
2
α‖x‖2

=
1
2

N∑
i=1

αi‖x − PCix‖2 +
1
2

M∑
j=1

βj‖Ax − PQjAx‖2 + 1
2
α‖x‖2,

(3.26)

where α > 0 is the regularization parameter. We can compute the gradient ∇gα of gα as

∇gα =
N∑
i=1

αi(I − PCi) +
M∑
j=1

βjA
∗
(
I − PQj

)
A + αI. (3.27)

It is easily see that ∇gα is Lα-Lipschitz continuous with constant

Lα =
N∑
i=1

αi +
M∑
j=1

βj‖A‖2 + α. (3.28)

It is known that ∇gα is strongly monotone.
Consider the following regularized minimization problem

min
x∈Ω

gα(x), (3.29)

which has a unique solution denoted by xα.

Theorem 3.25. The strong lim
α→ 0

xα exists and equals x̃, the minimum-norm solution of (1.16).

Algorithm 3.26. Given an initial point x0 ∈ Ω. Define a sequence {xn} by the iterative algo-
rithm

xn+1 = PΩ
(
I − γn∇gαn

)
xn

= PΩ

⎛
⎝(I − αnγn

)
xn − γn

N∑
i=1

αi(I − PCi)xn − γn
M∑
j=1

βjA
∗
(
I − PQj

)
Axn

⎞
⎠, n ≥ 0.

(3.30)

Theorem 3.27 (see [18]). Assume the sequences {αn} and {γn} satisfy the conditions:
(i) 0 < γn < αn/L

2
αn

for all (large enough) n;

(ii) αn → 0;

(iii)
∑∞

n=1 αnγn = ∞;

(iv) (|γn − γn−1| + |αnγn − αn−1γn−1|)/(αnγn)
2 → 0.

Then the sequence {xn} generated by Algorithm 3.26 strongly converges to the minimum norm
solution of (1.16).
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Self-Adaptive Methods

Consider the following constrained minimization problem:

min
{
g(x), x ∈ Ω

}
, (3.31)

where g(x) is defined as in (1.12) and Ω ⊂ RN is the same auxiliary simple nonempty closed
convex set as in (1.16). This optimization problem is proposed by Censor et al. [5] for solving
the constrained MSSFP (1.5) in the finite-dimensional Hilbert spaces. We know that a point
x∗ ∈ Ω is a stationary point of problem (3.31) if it satisfies

〈∇g(x∗), x − x∗〉 ≥ 0, ∀x ∈ Ω. (3.32)

Thus, from Proposition 2.8, we can use a gradient projection algorithm below to solve the
MSSFP which was developed by Censor et al. ([5, 24]):

xn+1 = PΩ
(
xn − γ∇g(xn)

)
, (3.33)

where

γ ∈
(
0,

2
L

)
. (3.34)

Note that the above method of Censor et al. is the application of the projection method
of Goldstein [45] and Levitin and Polyak [46] to the variational inequality problem (3.32),
which is among the simplest numerical methods for solving variational inequality problems.
Nevertheless, the efficiency of this projection method depends greatly on the choice of the
parameter γ . If one chooses a small s to ensure that it satisfies the condition (3.34) such that it
guarantees the convergence of the iterative sequence, the recursion leads to slow speed of
convergence. On the other hand, if one chooses a large step size to improve the speed of con-
vergence, the generated sequence may not converge. In real applications for solving varia-
tional inequality problems, the Lipschitz constant may be difficult to estimate, even if the
underlying mapping is linear, the case such as the MSSFP.

To overcome the difficulty in estimating the Lipschitz constant, He et al. [47] de-
veloped a self-adaptive method for solving variational inequality problems, where the con-
stant step size γ in the original Goldstein-Levitin-Polyak method is replaced by a sequence
of parameters {γn} and {γn} is selected self-adaptively. The numerical results reported in He
et al. [47] have shown that the self-adaptive strategy is valid and robust for solving varia-
tional inequality problems. The efficiency of their modified algorithm is not affected by the
initial choice of the parameter; that is, for any given initial choice γ0, the algorithm can adjust
it and finally find a “suitable” one. Thus, there is no need to pay much attention to the choice
of the step size as that of the original Goldstein-Levitin-Polyakmethod.Moreover, the compu-
tational burden at each iteration is not much larger than that of the original Goldstein-Levitin-
Polyak method. Later, their method is extended to a more flexible self-adaptive rule by Han
and Sun [25].

Motivated by the self-adaptive strategy, Zhang et al. [23] proposed the following
method for solving theMSSFP by using variable step sizes, instead of the fixed step sizes as in
Censor et al. [5, 24].
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Algorithm 3.28. (S1) Given a nonnegative sequence τn with
∑∞

n=0 τn < ∞, δ ∈ (0, 1), μ ∈ (0, 1),
ρ ∈ (0, 1), ε > 0, β0 > 0, and arbitrary initial point x0, set γ0 = β0 and n = 0.

(S2) Find the smallest nonnegative integer ln such that βn+1 = μlkγk and

xn+1 = PΩ
(
xn − βn+1∇g(xn)

)
, (3.35)

which satisfies

βn+1‖∇g(xn) − ∇g(xn+1)‖2 ≤ (2 − δ)
〈
xn − xn+1,∇g(xn) − ∇g(xn+1)

〉
. (3.36)

(S3) If

βn+1‖∇g(xn) − ∇g(xn+1)‖2 ≤ ρ
〈
xn − xn+1,∇g(xn) − ∇g(xn+1)

〉
, (3.37)

then set γn+1 = (1 + τn+1)βn+1; otherwise, set γn+1 = βn+1.

(S4) If ‖e(xn, βn)‖ ≤ ε, stop; otherwise, set n := n + 1 and go to (S2).

Theorem 3.29 (see [23]). The proposed Algorithm 3.28 is globally convergent.

Remark 3.30. This new method is a modification of the projection method proposed by
Goldstein [45] and Levitin and Polyak [46], where the constant step size β in their original
method is replaced by an automatically selected one, βk, per iteration. This is very important,
since it helps us avoid the difficult task of selecting a “suitable” step size.

The following self-adaptive projection method was introduced by Zhao and Yang [7],
which was adopted by using the Armijo-like searches to solve the MSSFP.

Algorithm 3.31. Given constants β > 0, σ ∈ (0, 1), γ ∈ (0, 1), let x0 be arbitrary. For n = 0, 1, . . .,
calculate

xn+1 = PΩ
(
xn − τn∇g(xn)

)
, (3.38)

where τn = βγln and ln is the smallest nonnegative integer l such that

g
(
PΩ

(
xn − βγl∇g(xn)

))
≤ g(xn) − σ

〈
∇g(xn), xn − PΩ

(
xn − βγl∇g(xn)

)〉
. (3.39)

Algorithm 3.31 need not to estimate the Lipschitz constant of ∇g or compute the larg-
est eigenvalue of the matrix ATA, and the step-size τn is chosen so that the objective function
g(x) has a sufficient decrease. It is in fact a special case of the standard gradient projection
method with the Armijo-like search for solving the constrained optimization problem (3.31).

The following convergence result for the gradient projection method with the Armijo-
like searches solving the generalized convex optimization problem (3.31) ensures the con-
vergence of Algorithm 3.31.
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Theorem 3.32. Let g ∈ C1
Ω be pseudoconvex and {xn} be an infinite sequence generated by the grad-

ient projection method with Armijo-like searches. Then, the following conclusions hold:

(1) limn→∞g(xn) = inf{g(x), x ∈ Ω};
(2) Ω∗, which denotes the set of the optimal solutions to (3.31), is nonempty if and only if there

exists at least one limit point of {xn}. In this case, {xn} converges to a solution of (3.31).

However, we find that, in each iteration step of Algorithm 3.31, it costs a large amount
of work to compute the orthogonal projections PCi and PQj . In what follows, we consider the
case that the projections are not easily calculated, and we consider a relaxed self-adaptive
projection method for solving the MSSFP. In detail, the MSSFP and the convex sets Ci andQj

in this part should satisfy the following assumptions.

(1) The solution set of the constrained MSSFP is nonempty.

(2) The sets Ci, i = 1, 2, . . . , t, are given by

Ci =
{
x ∈ RN | ci(x) ≤ 0

}
, (3.40)

where ci : RN → R are convex functions. The sets Qj , j = 1, 2, . . . , r are given by

Qj =
{
y ∈ RM | qj

(
y
) ≤ 0

}
, (3.41)

where qj : RM → R are convex functions.

(3) For any x ∈ RN , at least one subgradient ξ ∈ ∂ci(x) can be calculated, where ∂ci(x)
is a generalized gradient, called subdifferential of ci(x) at x, and it is defined as
follows:

∂ci(x) =
{
ξi ∈ RN | ci(z) ≥ ci(x) + 〈ξi, z − x〉 ∀z ∈ RN

}
. (3.42)

For any y ∈ RM, at least one subgradient ηj ∈ ∂qj(y) can be calculated, where ∂qj(y) is a
generalized gradient, called subdifferential of qj(y) at y and is defined as follows:

∂qj
(
y
)
=
{
ηj ∈ RM | qj(u) ≥ qj

(
y
)
+
〈
ηj , u − y

〉 ∀u ∈ RM
}
. (3.43)

In the kth iteration, let

Cn
i =
{
x ∈ RN | ci(xn) +

〈
ξni , x − xn

〉 ≤ 0
}
, (3.44)

where ξni is an element in ∂ci(xn):

Qn
j =
{
y ∈ RM | qj(Axn) +

〈
ηn
j , y −Axn

〉
≤ 0
}
, (3.45)

where ηn
j is an element in ∂qj(Axn).
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Define

gn(x) :=
1
2

t∑
i=1

αi‖x − PCn
i
(x)‖2 + 1

2

r∑
j=1

βj‖Ax − PQn
j
(Ax)‖2. (3.46)

Obviously,

∇gn(x) =
t∑

i=1

αi

(
I − PCn

i

)
x +

r∑
j=1

βjA
T
(
Ax − PQn

j
(Ax)

)
. (3.47)

Algorithm 3.33. Given γ > 0, ρ ∈ (0, 1), μ ∈ (0, 1) let x0 be arbitrary. For n = 0, 1, 2, . . ., compute

xn = PΩ
(
xn − τn∇gn(xn)

)
, (3.48)

where τn = γρln and ln is the smallest nonnegative integer l such that

∥∥∇gn(xn) − ∇gn(xn)
∥∥ ≤ μ

‖xn − xn‖
τn

. (3.49)

Set

xn+1 = PΩ
(
xn − τn∇gn(xn)

)
. (3.50)

Theorem 3.34 (see [7]). The sequence {xn} generated by Algorithm 3.33 converges to a solution of
the MSSFP.
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