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The unsteady unidirectional flow of an incompressible fourth grade fluid bounded by a suddenly
moved rigid plate is studied. The governing nonlinear higher order partial differential equation for
this flow in a semiinfinite domain is modelled. Translational symmetries in variables t and y are
employed to construct two different classes of closed-form travelling wave solutions of the model
equation. A conditional symmetry solution of the model equation is also obtained. The physical
behavior and the properties of various interesting flow parameters on the structure of the velocity
are presented and discussed. In particular, the significance of the rheological effects are mentioned.

1. Introduction

There has been substantial progress in the study of the behavior and properties of viscoelastic
fluids over the past couple of years. This progress is due to the fact that these viscoelastic
materials are involved in many manufacturing processes in today’s industry. Modelling
viscoelastic flows is important for understanding and predicting the behavior of processes
and thus for designing optimal flow configurations and for selecting operating conditions.
Most of the viscoelastic fluids in industry do not adhere to the commonly accepted
assumption of a linear relationship between the stress and the rate of strain and thus are
characterized as non-Newtonian fluids. As a result of their complex physical structure and
diversity in nature, these materials cannot have a single constitutive relation which describes
all the properties of viscoelastic fluids. The flow properties of viscoelastic (non-Newtonian)
fluids are quite different from those of viscous and Newtonian fluids. Therefore, in practical
applications, one cannot replace the behavior of non-Newtonian fluidswithNewtonian fluids
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and it is very important to analyze the flow behavior of non-Newtonian fluids in order to
obtain a thorough understanding and to improve the utilization in various manufactures.

The most interesting and important task that we need to address when dealing
with the flow problems of non-Newtonian fluids is that the governing equations of these
models are of higher order and much more complicated as compared with Navier-Stokes
equations. Such fluids have been modelled by constitutive equations which vary greatly in
complexity. The resulting nonlinear equations are not easy to solve analytically. However,
various researchers [1–11] in the field have recently engaged themselves in finding analytical
solutions for such flow problems.

To date, very little attention has been given on the flows of fourth grade fluids [12, 13].
This model is the most generalized model among the differential type fluids. The fourth
grade fluid model is known to capture most of the non-Newtonian flow properties at one
time. This model is known to have interesting non-Newtonian flow properties such as shear
thinning and shear thickening that many other non-Newtonian models do not exhibit. This
model is also capable of predicting the normal stress effects that lead to phenomena like
“die-swell” and “rod-climbing” [14]. With these facts in mind, we have considered a fourth
grade fluid model in this study. In general, the governing equations for the flow problems
of fourth grade fluids are up to fifth-order nonlinear equations. Literature survey shows that
very limited studies are reported and these investigations further narrow down when we
speak about closed-form solutions of these problems. However, there are few investigations
available in the literature in which researchers have utilized various approaches to construct
solutions of fourth grade fluid flow problems. For example, [15] Wang and Wu have tackled
the problem for the unsteady flow of fourth grade fluid due to an oscillating plate using
numerical methods. Recently, Siddiqui et al. [16] have obtained an optimal homotopy type
solution for the thin film flow of a fourth grade fluid down a vertical cylinder by using
the homotopy perturbation method (HPM). Hayat et al. [17–20] studied the fourth grade
fluid problems in different types of flow situations by using the homotopy analysis method
(HAM). The steady flow of a fourth grade fluid past a porous plate was treated by Marinca
et al. [21] with the help of the optimal homotopy asymptotic method (OHAM). Despite all
of these works in recent years, the exact closed-form solutions for the problems dealing with
the flow of fourth grade fluids are still rare in the literature.

Lie’s theory of differential equations (see [22, 23]) was inaugurated and utilized in
the solution of differential equations by the Norwegian mathematician Marius Sophus Lie
in the 1870s. The main motive of the Lie symmetry analysis formulated by Lie is to find
one or several parameters local continuous transformation groups leaving the equations
invariant. Thus, the symmetry method for differential equations provide a rigorous way
to classify them according to their invariance properties. This allows us to obtain group
invariant and partially invariant solutions of differential equations in a tractable manner.
The Lie symmetry approach has thus become of great importance in the theory and
applications of differential equations and widely applied by several authors to solve difficult
nonlinear problems particularly dealing with the flows of non-Newtonian fluids [24–28].
The conditional symmetry approach or what is called the nonclassical symmetry approach,
which is an extension of the Lie approach, was originated in the work of Bluman and Cole
[29]. There are equations arising in applications that do not admit Lie point symmetries
but have conditional symmetries. Thus, this method is also powerful in obtaining exact
solutions of such problems. In recent years, interest in the conditional symmetry approach
has intensified. This method has been used successfully to obtain new exact solutions for a
number of interesting nonlinear PDEs [30–32].
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Motivated by the above-mentioned analysis, the aim of the present work is to venture
further in the regime of fourth grade fluid. We investigate the time-dependent flow of an
incompressible fourth grade fluid over a flat rigid plate. The motion is caused due to the
motion of the plate in its own plane (xz-plane) with an arbitrary velocity V (t). Reductions
and exact solutions of the governing nonlinear PDE for the unidirectional flow of a fourth
grade fluid are established using the classical and the conditional symmetry approaches.
Finally, the influence of physically applicable parameters of the flow model are studied
through several graphs and appropriate conclusions are drawn.

2. Fundamental Equations

The basic equations governing the time-dependent flow of an incompressible fluid are the
continuity equation and the momentum equation, namely,

divV = 0, ρ
dV
dt

= divT, (2.1)

where V is the velocity vector, ρ the density of the fluid, d/dt the material time derivative,
and T the Cauchy stress tensor. For a fourth grade fluid, the Cauchy stress tensor satisfies the
constitutive equations [17, 18]

T = −pI +
n∑

j=1

Sj with n = 4, (2.2)

where p is the pressure, I the identity tensor, and Sj the extra stress tensor

S1 = μA1,

S2 = α1A2 + α2A2
1,

S3 = β1A3 + β2(A1A2 +A2A1) + β3
(
trA2

1

)
A1,

S4 = γ1A4 + γ2(A3A1 +A1A3) + γ3A2
2 + γ4

(
A2A2

1 +A2
1A2

)

+ γ5(trA2)A2 + γ6(trA2)A2
1 +
[
γ7 trA3 + γ8 tr(A2A1)

]
A1.

(2.3)

Here μ is the dynamic viscosity, αi (i = 1, 2), βi (i = 1, 2, 3), and γi (i = 1, 2, . . . , 8) are material
constants. The Kinematical tensors A1 to A4 are the Rivlin-Ericksen tensors defined by

A1 =
(
gradV

)
+
(
gradV

)T
, (2.4)

An =
dAn−1
dt

+An−1
(
gradV

)
+
(
gradV

)TAn−1; (n > 1), (2.5)

in which grad is the gradient operator.
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3. Flow Development

Let an infinite rigid plate occupy the plane y = 0 and a fourth grade fluid the half-space y > 0.
The x-axis and y-axis are chosen parallel and perpendicular to the plate. For t > 0, the plate
moves in its own plane with arbitrary velocity V (t). By taking the velocity field (u(y, t), 0, 0),
the conservation of mass equation is identically satisfied. The governing PDE in u is obtained
by substituting (2.2)–(2.5) into (2.1) and rearranging. We deduce the following governing
equation in the absence of the modified pressure gradient:

ρ
∂u

∂t
= μ

∂2u

∂y2
+ α1

∂3u

∂y2∂t
+ β1

∂4u

∂y2∂t2
+ 6
(
β2 + β3

)(∂u
∂y

)2 ∂2u

∂y2

+ γ1
∂5u

∂y2∂t3
+
(
6γ2 + 2γ3 + 2γ4 + 2γ5 + 6γ7 + 2γ8

) ∂

∂y

[(
∂u

∂y

)2 ∂2u

∂y∂t

]
.

(3.1)

The above equation is subject to the following boundary and initial conditions:

u(0, t) = U0V (t), t > 0, (3.2)

u(∞, t) = 0, t > 0, (3.3)

u
(
y, 0
)
= I
(
y
)
, y > 0, (3.4)

∂u
(
y, 0
)

∂t
= J
(
y
)
, y > 0, (3.5)

∂2u
(
y, 0
)

∂t2
= K
(
y
)
, y > 0, (3.6)

where U0 is the reference velocity and V (t), I(y), J(y), K(y) are the unspecified functions.
The first boundary condition (3.2) is the no-slip condition and the second boundary condition
(3.3) says that the main stream velocity is zero. This is not a restrictive assumption since we
can always measure velocity relative to the main stream. The initial condition (3.4) indicates
that initially the fluid is moving with some nonuniform velocity I(y). The remaining two
initial conditions are the extra two conditions imposed to make the problem well posed.

We define the dimensionless parameters as

u =
u

U0
, y =

U0y

ν
, t =

U2
0t

ν
, α =

α1U
2
0

ρν2
, β1 =

β1U
4
0

ρν3
, β =

6
(
β2 + β3

)
U4

0

ρν3
,

γ1 =
γ1U

6
0

ρν4
, γ =

(
3γ2 + γ3 + γ4 + γ5 + 3γ7 + γ8

)U6
0

ρν4
.

(3.7)
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Under these transformations, the governing (3.1) and the corresponding initial and the
boundary conditions (3.2)–(3.6) take the form

∂u

∂t
=

∂2u

∂y2
+ α

∂3u

∂y2∂t
+ β1

∂4u

∂y2∂t2
+ β

(
∂u

∂y

)2 ∂2u

∂y2
+ γ1

∂5u

∂y2∂t3
+ 2γ

∂

∂y

[(
∂u

∂y

)2 ∂2u

∂y∂t

]
, (3.8)

u(0, t) = V (t), t > 0,

u(∞, t) = 0, t > 0,

u
(
y, 0
)
= f
(
y
)
, y > 0,

∂u
(
y, 0
)

∂t
= g
(
y
)
, y > 0,

∂2u
(
y, 0
)

∂t2
= h
(
y
)
, y > 0,

(3.9)

where f(y) = I(y)/U0, g(y) = J(y)/U0 and h(y) = K(y)/U0. The functions V (t), f(y), g(y),
and h(y) are as yet arbitrary. These functions are constrained in the next sectionwhenwe seek
closed-form solutions using the symmetry technique. For simplicity, we have neglected the
bars in all the nondimensional quantities. We consider classical and conditional symmetries
of (3.8). Equation (3.8) only admits translational symmetries in variables t, y, and u; thus, the
travelling wave solutions are investigated in Section 4. In Section 5, we provide a conditional
symmetry solution as well.

4. Travelling Wave Solutions

Travelling wave solutions are special kinds of group invariant solutions which are invariant
under a linear combination of time-translation and space-translation symmetry generators. It
can easily be seen that (3.8) admits Lie’s point symmetry generators, ∂/∂t (time-translation)
and ∂/∂y (space-translation in y), so that we can construct travelling wave solutions for the
model equation.

4.1. Backward Wave-Front Type Travelling Wave Solutions

Let X1 and X2 be time-translation and space-translation symmetry generators, respectively.
Then the solution corresponding to the generator

X = X1 − cX2, (c > 0) (4.1)

would represent backward wave-front type travelling wave solutions. In this case, the waves
are propagating towards the plate. The Lagrangian system corresponding to (4.1) is

dy

−c =
dt

1
=

du

0
. (4.2)
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Solving (4.2), invariant solutions are given by

u
(
y, t
)
= F(ξ) with ξ = y + ct. (4.3)

Making use of (4.3) in (3.8) results in a fifth-order ordinary differential for F(ξ)

c
dF

dξ
=

d2F

dξ2
+ αc

d3F

dξ3
+ β1c

2d
4F

dξ4
+ β

(
dF

dξ

)2d2F

dξ2
+ γ1c

3d
5F

dξ5
+ 2γ

d

dξ

[
c

(
dF

dξ

)2d2F

dξ2

]
. (4.4)

Thus, the PDE (3.8) became an ODE (4.4) along certain curves in the y− t plane. These curves
are called characteristic curves or just the characteristics. In order to solve (4.4) for F(ξ), we
assume a solution of the form

F(ξ) = A exp(Bξ), (4.5)

where A and B are the constants to be determined. Inserting (4.5) in (4.4) we obtain

(
−cB + B2 + cαB3 + β1c

2B4 + γc3B5
)
+ e2Bξ

(
βA2B4 + 6cγA2B5

)
= 0. (4.6)

Separating (4.6) in powers of e0 and e2Bξ, we find

e0 : −cB + B2 + cαB3 + β1c
2B4 + γc3B5 = 0, (4.7)

e2Bξ : βA2B4 + 6cγA2B5 = 0. (4.8)

From (4.8), we deduce

B =
−β
6cγ

. (4.9)

Using the value of B in (4.7), we obtain

β

6γ
+

β2

(
6cγ
)2 − β3αc

(
6cγ
)3 +

β1β
4c2

(
6cγ
)4 − γβ5c3

(
6cγ
)5 = 0. (4.10)

Thus, the exact solution for F(ξ) (provided the condition (4.10) holds) can be written as

F(ξ) = A exp
[−βξ
6cγ

]
. (4.11)

So the exact solution u(y, t) which satisfies the condition (4.10) is

u
(
y, t
)
= exp

[
−β(y + ct

)

6cγ

]
with c > 0. (4.12)
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Figure 1: Backward wave-front type travelling wave solution (4.12) varying t when γ = 0.5, β = 2, and
c = 1 are fixed.

The solution (4.12) satisfies the initial and boundary conditions (3.9) for the particular values
of the unspecified functions V (t), f(y), g(y), and h(y). Using (4.12) in (3.9) results in

u(0, t) = V (t) = exp
(−βct

6cγ

)
, (4.13a)

u
(
y, 0
)
= f
(
y
)
= exp

(−βy
6cγ

)
, (4.13b)

∂u
(
y, 0
)

∂t
= g
(
y
)
=

−β
6γ

exp
(−βy

6cγ

)
, (4.13c)

∂2u
(
y, 0
)

∂t2
= h
(
y
)
=

β2

(
6γ
)2 exp

(−βy
6cγ

)
. (4.13d)

Here V (t), f(y), g(y), and h(y) depend on the physical parameters of the flow. The solution
(4.12) is plotted in Figures 1–4 for different values of the emerging parameters.

4.2. Forward Wave-Front Type Travelling Wave Solutions

We look for invariant solutions under the operator X1 + cX2 (with c > 0) which represent
forward wave-front type travelling wave solutions with constant wave speed c. In this case,
the waves are propagating away from the plate. These are solutions of the form

u
(
y, t
)
= G
(
η
)

with η = y − ct. (4.14)
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Figure 2: Backward wave-front type travelling wave solution (4.12) varying c when γ = 0.6, β = 4, and
t = π/2 are fixed.

Using (4.14) in (3.8) results in a fifth-order ordinary differential equation for G(η),

−cdG
dη

=
d2G

dη2
− αc

d3G

dη3
+ β1c

2d
4G

dη4
+ β

(
dG

dη

)2d2G

dη2
− γ1c

3d
5G

dη5
− 2γ

d

dη

[
c

(
dG

dη

)2d2G

dη2

]
.

(4.15)

Following the same methodology adopted for the backward wave-front type travelling wave
solutions, the above equation admits exact solutions of the form

G
(
η
)
= A exp

[
βη

6cγ

]
, (4.16)

provided

β

6γ
+

β2

(
6cγ
)2 − β3αc

(
6cγ
)3 +

β1β
4c2

(
6cγ
)4 − γβ5c3

(
6cγ
)5 = 0. (4.17)

Thus, (3.8) subject to (4.17) admits the exact solution

u
(
y, t
)
= exp

[
β
(
y − ct

)

6cγ

]
with c > 0. (4.18)
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Figure 3: Backward wave-front type travelling wave solution (4.12) varying β when γ = 0.2, c = 1, and
t = π/2 are fixed.

Note that the solution (4.18) does not satisfy the second boundary condition at infinity but
satisfies the rest of the boundary conditions for the particular values of the functions V (t),
f(y), g(y), and h(y). Using (4.18) in (3.9) gives

u(0, t) = V (t) = exp
(−βct

6cγ

)
, (4.19a)

u
(
y, 0
)
= f
(
y
)
= exp

(
βy

6cγ

)
, (4.19b)

∂u
(
y, 0
)

∂t
= g
(
y
)
=

−β
6γ

exp
(

βy

6cγ

)
, (4.19c)

∂2u
(
y, 0
)

∂t2
= h
(
y
)
=

β2

(
6γ
)2 exp

(
βy

6cγ

)
. (4.19d)

5. Conditional Symmetry Solution

We consider the PDE (3.8) with the invariant surface condition

ut = λu, (5.1)
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Figure 4: Backward wave-front type travelling wave solution (4.12) varying γ when β = 3, c = 1, and
t = π/2 are fixed.

where λ is a constant to be found. This corresponds to the operator

X =
∂

∂t
+ λu

∂

∂u
. (5.2)

The invariant solution corresponding to (5.2) is

u
(
y, t
)
= exp(λt)F

(
y
)
, (5.3)

where F(y) is an undetermined function of y.
Substituting (5.3) in (3.8) leads to a linear second-order ordinary differential equation

in F(y), given by

d2F

dy2
−
(

λ

1 + αλ + β1λ2 + γ1λ3

)
F = 0. (5.4)

and the relation

β + 6γλ = 0. (5.5)

From (5.5), we deduce

λ = − β

6γ
. (5.6)
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Using the value of λ in (5.4), we get

d2F

dy2
−
⎧
⎨

⎩

(−β/6γ)
(
1 − α
(
β/6γ

)
+ β1
(
β/6γ

)2 − γ1
(
β/6γ

)3)

⎫
⎬

⎭F = 0, (5.7)

The reduced ODE (5.7) is solved subject to the boundary conditions

F(0) = 1,

F
(
y
) −→ 0 as y −→ ∞.

(5.8)

Now we solve (5.7) subject to the boundary conditions (5.8) for three different cases.

Case 1 ([(−β/6γ)/(1 − α(β/6γ) + β1(β/6γ)
2 − γ1(β/6γ)

3)] = 0). We have

d2F

dy2
= 0. (5.9)

Solution of (5.9) subject to the boundary conditions (5.8) is

F
(
y
)
= constant

(
say C

)
. (5.10)

In this case, the solution for u(y, t) is

u(t) = C exp
(
− β

6γ
t

)
. (5.11)

Thus, a time-dependent solution is obtained in this case.

Case 2 ([(−β/6γ)/(1 − α(β/6γ) + β1(β/6γ)
2 − γ1(β/6γ)

3)] < 0). In this case, the solution for
F(y) is written as

F
(
y
)
= a cos

⎡

⎣

√√√√
( (−β/6γ)

1 − α
(
β/6γ

)
+ β1
(
β/6γ

)2 − γ1
(
β/6γ

)3

)
y

⎤

⎦

+ b sin

⎡

⎣

√√√√
( (−β/6γ)

1 − α
(
β/6γ

)
+ β1
(
β/6γ

)2 − γ1
(
β/6γ

)3

)
y

⎤

⎦.

(5.12)

Since F(∞) = 0, an unbounded solution is obtained for F(y). Thus, the solution for u(y, t)
does not exist in this case.
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Case 3 ([(−β/6γ)/(1 − α(β/6γ) + β1(β/6γ)
2 − γ1(β/6γ)

3)] > 0). In this case, the solution for
F(y) is given by

F
(
y
)
= a exp

⎡

⎣

⎧
⎨

⎩

√√√√
( (−β/6γ)

1 − α
(
β/6γ

)
+ β1
(
β/6γ

)2 − γ1
(
β/6γ

)3

)⎫⎬

⎭y

⎤

⎦

+ b exp

⎡

⎣−
⎧
⎨

⎩

√√√√
( (−β/6γ)

1 − α
(
β/6γ

)
+ β1
(
β/6γ

)2 − γ1
(
β/6γ

)3

)⎫⎬

⎭y

⎤

⎦,

(5.13)

By applying the boundary conditions (5.8), we have a = 0 (for a bounded solution) and b = 1
(by using first the boundary condition). Thus, the solution for F(y) is

F
(
y
)
= exp

⎡

⎣−
⎧
⎨

⎩

√√√√
( (−β/6γ)

1 − α
(
β/6γ

)
+ β1
(
β/6γ

)2 − γ1
(
β/6γ

)3

)⎫⎬

⎭y

⎤

⎦. (5.14)

Substituting F(y) into (5.3), we obtain the solution for u(y, t) in the form

u
(
y, t
)
= exp

⎡

⎣−
⎧
⎨

⎩

(
β

6γ

)
t +

√√√√
( (−β/6γ)

1 − α
(
β/6γ

)
+ β1
(
β/6γ

)2 − γ1
(
β/6γ

)3

)
y

⎫
⎬

⎭

⎤

⎦. (5.15)

Note that the conditional symmetry solution (5.15) satisfies the initial and the boundary
conditions (3.9)–(21) with

V (t) = exp
[
−
(

β

6γ

)
t

]
,

f
(
y
)
= exp

⎛

⎝−
√√√√
( (−β/6γ)

1 − α
(
β/6γ

)
+ β1
(
β/6γ

)2 − γ1
(
β/6γ

)3

)
y

⎞

⎠,

g
(
y
)
= −
(

β

6γ

)
exp

⎛

⎝−
√√√√
( (−β/6γ)

1 − α
(
β/6γ

)
+ β1
(
β/6γ

)2 − γ1
(
β/6γ

)3

)
y

⎞

⎠,

h
(
y
)
=
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(5.16)

where V (t), f(y), g(y), and h(y) depend on physical parameters of the flow. The graphical
behavior of solution (5.15) is shown in Figure 5.

Remark 5.1. The backward wave-front type travelling wave closed-form solution (4.12)
and the conditional symmetry solution (5.15) best represent the physics of the problem
considered in the sense that these solutions satisfy all the initial and the boundary conditions
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Figure 5: Conditional symmetry solution (5.15) varying t when γ = 0.2, γ1 = 0.1, β = 6, β1 = 0.5, and α = 1
are fixed.

and also show the effects of different emerging parameters of the flow problem given in
Figures 1–5. The forward wave-front type travelling wave solution (4.18) does not satisfy
the second boundary condition at infinity. As a consequence, it does not show the behavior
of the physical model. But this solution does show the shockwave behavior of the flow. To
emphasize, we say that the forward wave-front type travelling wave solution is actually a
shockwave solution with slope approaching infinity along the characteristic η = y − ct, as
shown in Figure 6.

6. Physical Interpretation of the Results

In order to explain and understand the physical structure of the flow problem, various graphs
are plotted in Figures 1–6.

Figure 1 shows the influence of time t on the backward wave-front type travelling
wave solution (4.12). This figure depicts that velocity decreases as time increases. Clearly, the
variation of velocity is observed for 0 � t � 5. For t > 5, the velocity profile remains the same.
In other words, we can say that the steady-state behavior of the velocity is achieved for t > 5.

Figure 2 shows the effects of the wave speed c on the velocity profile. It is clearly
observed that with the increase of wave speed c, the velocity profile is increasing. So in
this way, we can remark that both time t and the wave speed c have opposite effects on
the backward wave-front type travelling wave solution (4.12) of the governing model.

Figures 3 and 4 have been plotted to see the influence of the third grade parameter
β and fourth grade parameter γ on the backward wave-front type travelling wave solution
(4.12) of the flow problem. These figures reveal that both β and γ have an opposite behavior
on the structure of the velocity, that is, with an increase in the third grade parameter β,
the velocity profile decreases showing the shear thickening behavior of the fluid, whereas
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Figure 6: Plot of the forward wave-front type travelling wave solution (4.18) when γ = 0.5, β = 3, c = 1,
and t = π/2 are fixed.

the velocity field increases for increasing values of the fourth grade parameter γ , which shows
the shear thinning behavior of the model. This is in accordance with the fact that a fourth
grade fluid model predicts both shear thickening and the shear thinning properties of the
flow.

In Figure 5, the conditional symmetry solution (5.15) is plotted against the increasing
values of time t. The behavior of time on the conditional symmetry solution is same as
observed previously for the backward wave-front type travelling wave solution. That is, with
the increase in time t, the velocity decreases. However, in this case, the steady-state behavior
of the velocity is achieved quicker as compared to the backward wave-front type travelling
wave solution. The variation of velocity is observed for 0 � t � 0.7. For t > 0.7, and the
steady-state behavior of the velocity is observed.

In Figure 6, the forwardwave-front type travellingwave solution (4.18) is plotted. This
figure describes the shock wave behavior of the flow with slope approaching infinity along
the characteristic. This solution does not show the physics of the model but does predict
the hidden shock wave phenomena in the flow. Some examples of shock waves are moving
shock, detonation wave, detached shock, attached shock, recompression shock, shock in a
pipe flow, shock waves in rapid granular flows, shock waves in astrophysics, and so on.

7. Concluding Remarks

The present work has been undertaken in order to investigate further the regime of a
fourth grade non-Newtonian fluidmodel. Some reductions and exact (closed-form) solutions
for the time-dependent flow of a fourth grade fluid have been established using the
symmetry approach. Travelling wave and conditional symmetry solutions are obtained for
the governing nonlinear PDE. Both forward and the backward wave-front type travelling
wave solutions have been constructed. The better solutions from the physical point of view
of the model considered are the conditional symmetry solution and the backward wave-front
type travelling wave solution. This issue has also been addressed in detail in Remark 5.1.
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Moreover, the work contained herein is theoretical in nature and is a prototype model. The
methods used will be helpful for a wide range of nonlinear problems in fluids given the
paucity of known exact solutions especially in non-Newtonian fluids.
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