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The flow of a viscous incompressible fluid between two parallel plates due to the normal motion
of the plates for two cases, the two-dimensional flow case and the axisymmetric flow case, is
investigated. The governing nonlinear equations and their associated boundary conditions are
transformed into a highly non-linear ordinary differential equation. The series solution of the
problem is obtained by utilizing the homotopy perturbation method (HPM). Graphical results
are presented to investigate the influence of the squeeze number on the velocity, skin friction, and
pressure gradient. The validity of our solutions is verified by the numerical results obtained by
shooting method, coupled with Runge-Kutta scheme.

1. Introduction

Most of the scientific problems and phenomena are modeled by nonlinear ordinary or partial
differential equations. In recent years, many powerful methods have been developed to
construct explicit analytical solution of nonlinear differential equations. Among them, two
analytical methods have drawn special attention, namely, the homotopy perturbationmethod
(HPM) [1, 2] and homotopy analysis method (HAM) [3–6]. The essential idea in these
methods is to introduce a homotopy parameter, say p, which takes the value from 0 to 1.
For p = 0, the system of equations takes a simplified form which readily admits a particularly
simple solution. When p is gradually increased to 1, the system goes through a sequence
of deformations, the solution of each of which is close to that at the previous stage of
deformation. Eventually at p = 1, the system takes the original forms of equation, and the
final stage of deformation gives the desired solution.

We know that all perturbationmethods require small parameter in nonlinear equation,
and the approximate solutions of equation containing this parameter are expressed as series
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expansions in the small parameter. Selection of small parameter requires a special skill. A
proper choice of small parameter gives acceptable results, while an improper choice may
result in incorrect solutions. The homotopy perturbation method, which is a coupling of
the traditional perturbation method and homotopy in topology, does not require a small
parameter in equation modeling phenomena. In recent years, the HPM has been successfully
employed to solve many types of linear and nonlinear problems such as the quadratic
Riccati differential equation [7], the axisymmetric flow over a stretching sheet [8], the
fractional Fokker-Planck equations [9], the magnetohydrodynamic flow over a nonlinear
stretching sheet [10], the thin film flow of a fourth grade fluid down a vertical cylinder
[11], the fractional diffusion equation with absorbent term and external force [12], Burgers
equation with finite transport memory [13], the system of Fredholm integral equations
[14], the generalized Burger and Burger-Fisher equations [15], the wave and nonlinear
diffusion equations [16], the flow through slowly expanding or contracting porous walls
[17], the torsional flow of third-grade fluid [18], Emden-Fowler equations [19], and the long
porous slider [20]. All of these successful applications verified the validity, effectiveness, and
flexibility of the HPM.

The problem of unsteady squeezing of a viscous incompressible fluid between two
parallel plates in motion normal to their own surfaces independent of each other and
arbitrary with respect to time is a fundamental type of unsteady flowwhich is met frequently
in many hydrodynamical machines and apparatus. Some practical examples of squeezing
flow include polymer processing, compression, and injection molding. In addition, the
lubrication system can also be modeled by squeezing flows. Stefan [21] published a classical
paper on squeezing flow by using lubrication approximation. In 1886, Reynolds [22] obtained
a solution for elliptic plates, and Archibald [23] studied this problem for rectangular plates.
The theoretical and experimental studies of squeezing flows have been conducted by many
researchers [24–35]. Earlier studies of squeezing flow are based on Reynolds equation. The
inadequacy of Reynolds equation in the analysis of porous thrust bearings and squeeze
films involving high velocity has been demonstrated by Jackson [34], Ishizawa [35], and
others. The general study of the problemwith full Navier-Stokes equations involves extensive
numerical study requiring more computer time and larger memory. However, many of the
important features of this problem can be grasped by prescribing the relative velocity of the
plates suitably. If the relative normal velocity is proportional to (1−αt)1/2, where t is the time
and α a constant of dimension [T−1] which characterizes unsteadiness, then the unsteady
Navier-Stokes equations admit similarity solution.

With the above discussion in mind, the purpose of the present paper is to examine
analytically the problem of unsteady flows due to normally expanding or contracting
parallel plates. The governing equations here are highly nonlinear coupled differential
equations, which are solved by using the homotopy perturbation method. In this way, the
paper has been organized as follows. In Section 2, the problem statement and mathematical
formulation are presented. In Section 3, we extend the application of the HPM to construct
the approximate solution for the governing equations. Section 4 contains the results and
discussion. The conclusions are summarized in Section 5.

2. Flow Development and Mathematical Formulation

Let the position of the two plates be at z = ±�(1 − αt)1/2, where � is the position at time
t = 0 as shown in Figure 1. We assume that the length 1 (in the two-dimensional case) or the
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Figure 1: Schematic diagram of the problem.

diameter D (in the axisymmetric case) are much larger than the gap width 2z at any time
such that the end effects can be neglected. When α is positive, the two plates are squeezed
until they touch at t = 1/α. When α is negative, the two plates are separated. Let u, v, and
w be the velocity components in the x, y, and z directions, respectively. For two-dimensional
flow, Wang introduced the following transforms [36]:

u =
αx

[2(1 − αt)]
f ′(η

)
,

w =
−α�

[
2(1 − αt)1/2

]f
(
η
)
,

(2.1)

where

η =
z

[
�(1 − αt)1/2

] . (2.2)

Substituting (2.1) into the unsteady two-dimensional Navier-Stokes equations yields non-
linear ordinary differential equation in form:

f ′′′′ + S
{− ηf ′′′ − 3f ′′ − f ′f ′′ + ff ′′′} = 0, (2.3)

where S = α�2/2ν (squeeze number) is the nondimensional parameter. The flow is
characterized by this parameter. The boundary conditions are such that on the plates the
lateral velocities are zero and the normal velocity is equal to the velocity of the plate, that is,

f(0) = 0, f ′′(0) = 0,

f(1) = 1, f ′(1) = 0.
(2.4)
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Similarly, the Wang’s transforms [36] for axisymmetric flow are

u =
αx

[4(1 − αt)]
f ′(η

)
,

v =
αy

[4(1 − αt)]
f ′(η

)
,

w =
−α�

[
2(1 − αt)1/2

]f
(
η
)
.

(2.5)

Using transforms (2.5), unsteady axisymmetric Navier-Stokes equations reduce to

f ′′′′ + S
{− ηf ′′′ − 3f ′′ + ff ′′′} = 0, (2.6)

subject to the boundary conditions (2.4).
Consequently, we should solve the nonlinear ordinary differential equation

f ′′′′ + S
{−ηf ′′′ − 3f ′′ − βf ′f ′′ + ff ′′′} = 0, (2.7)

where

β =

{
0, Axisymmetric,
1, Two-dimensional,

(2.8)

and subject to boundary conditions (2.4).

3. Solution by Homotopy Perturbation Method

3.1. Basic Idea

Now, for convenience, consider the following general nonlinear differential equation

A(u) − f(r) = 0, r ∈ Ω, (3.1)

with boundary conditions

B

(
u,

∂u

∂n

)
= 0, r ∈ Γ, (3.2)

where A is a general differential operator, B is a boundary operator, f(r) is a known analytic
function, and Γ is the boundary of the domain Ω.

The operator A can, generally speaking, be divided into two parts L and N, where L
is linear and N is nonlinear; therefore (3.1) can be written as

L(u) +N(u) − f(r) = 0. (3.3)
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By using homotopy technique, one can construct a homotopy v(r, p) : Ω × [0, 1] → R which
satisfies homotopy equation:

H
(
v, p

)
=
(
1 − p

)
[L(v) − L(u0)] + p

[
A(v) − f(r)

]
= 0, (3.4)

or

H
(
v, p

)
= L(v) − L(u0) + pL(u0) + p

[
N(v) − f(r)

]
= 0, (3.5)

where P ∈ [0, 1] is an embedding parameter and u0 is the initial approximation of (3.1)which
satisfies the boundary conditions. Clearly, we have

H(v, 0) = L(v) − L(u0) = 0,

H(v, 1) = A(v) − f(r) = 0.
(3.6)

The changing process of p from zero to unity is just that of v(r, p) changing from u0(r) to
u(r). This is called deformation, and, also, L(v)−L(u0) andA(v)− f(r) are called homotopic
in topology. If the embedding parameter p(0 ≤ p ≤ 1) is considered as a small parameter,
applying the classical perturbation technique, we can naturally assume that the solution of
(3.4) and (3.5) can be given as a power series in p, that is,

v = v0 + pv1 + p2v2 + · · · , (3.7)

and setting p = 1 results in the approximate solution of (3.8) as

u = lim
p→ 1

v = v0 + v1 + v2 + · · · . (3.8)

The convergence of series (3.8) has been proved by He in his paper [37]. It is worth to
note that themajor advantage of He’s homotopy perturbationmethod is that the perturbation
equation can be freely constructed in many ways (therefore is problem dependent) by
homotopy in topology and the initial approximation can also be freely selected. Moreover, the
construction of the homotopy for the perturb problem plays very important role for obtaining
desired accuracy.

3.2. Guidelines for Choosing Homotopy Equation

In a homotopy equation, what we are mainly concerned about are the auxiliary linear
operator L and the initial approximation u0. Once one chooses these parts, the homotopy
equation is completely determined, because the remaining part is actually the original
equation (see (3.12)), and we have less freedom to change it. Here we discuss some general
rules that should be noted in choosing L and u0.

3.2.1. Discussion on Auxiliary Linear Operator L

According to the steps of the homotopy perturbation method, L should be as follows.
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(i) Easy to Handle

We mean that it must be chosen in such a way that one has no difficulty in subsequently
solving systems of resulting equations [38]. It should be noted that this condition does not
restrict L to be linear. In scarce cases, as was done byHe in [37] to solve the Lighthill equation,
a nonlinear choice of L may be more suitable. But, it is strongly recommended for beginners
to take a linear operator as L.

(ii) Closely Related to the Original Equation

Strictly speaking, in constructing L, it is better to use some part of the original equation [39].
We can see the effectiveness of this view in [40]where Chowdhury and Hashim have gained
very good results with technically choosing the L part.

3.2.2. Discussion on Initial Approximation u0

There is no unique universal technique for choosing the initial approximation in iterative
methods, but from previous works done on HPM [41, 42] and our own experiences, we can
conclude the following facts.

(i) It Should Be Obtained from the Original Equation

For example, it can be chosen to be the solution to some part of the original equation, or it
can be chosen from initial/boundary conditions.

(ii) It Should Reduce Complexity of the Resulting Equations

Although this condition only can be checked after solving some of the first few equations of
the resulting system, these are the criteria that have been used by many authors when they
encountered different choices as an initial approximation.

3.3. Application for Unsteady Flows due to Normally Expanding or
Contracting Parallel Plates

To investigate the explicit and totally analytic solutions of present problem by using HPM,
we first define homotopy v(η, p) : Ω × [0, 1] → R for (2.7)which satisfies

(
1 − p

)[
L(v) − L

(
f0
)]

+ p
[
vIV + S

(−ηv′′′ − 3v′′ − βv′v′′ + vv′′′)
]
= 0, (3.9)

where L is linear operators as follows:

L(v) =
d4v

dη4
. (3.10)
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We choose

f0
(
η
)
=

1
2

(
3η − η3

)
, (3.11)

as initial approximation of f(η), which satisfy the boundary conditions (2.4). Assume that
the solution of equation (3.9) has the form

v
(
η
)
= v0

(
η
)
+ pv1

(
η
)
+ p2v2

(
η
)
+ · · · , (3.12)

where vi(η), i = 1, 2, 3, . . . are functions yet to be determined. Substituting (3.12) into (3.9)
and equating the terms with identical powers of p, we have

p0 =⇒v′′′′
0 − f ′′′′

0 = 0,

v0(0) = 0, v′′
0(0) = 0,

v0(1) = 1, v′
0(1) = 0,

p1 =⇒v′′′′
1 + f ′′′′

0 + S
{−ηv′′′

0 − 3v′′
0 − βv′

0v
′′
0 + v0v

′′′
0
}
= 0,

v1(0) = 0, v′′
1(0) = 0,

v1(1) = 0, v′
1(1) = 0,

p2 =⇒v′′′′
2 + S

{−ηv′′′
1 − 3v′′

1 − β
(
v′
1v

′′
0 + v′

0v
′′
1

)
+
(
v1v

′′′
0 + v0v

′′′
1

)}
= 0,

v2(0) = 0, v′′
2(0) = 0,

v2(1) = 0, v′
2(1) = 0,

p3 =⇒v′′′′
3 + S

{−ηv′′′
2 − 3v′′

2 − β
(
v′
2v

′′
0 + v′

1v
′′
1 + v′

0v
′′
2
)
+
(
v2v

′′′
0 + v1v

′′′
1 + v0v

′′′
2
)}

= 0,

v3(0) = 0, v′′
3(0) = 0,

v3(1) = 0, v′
3(1) = 0,

p4 =⇒v′′′′
4 + S

{−ηv′′′
3 − 3v′′

3 − β
(
v′
3v

′′
0 + v′

2v
′′
1 + v′

1v
′′
2 + v′

0v
′′
3
)
+
(
v3v

′′′
0 + v2v

′′′
1 + v1v

′′′
2 + v0v

′′′
3
)}

= 0,

v4(0) = 0, v′′
4(0) = 0,

v4(1) = 0, v′
4(1) = 0,

p5 =⇒v′′′′
5 + S

{ − ηv′′′
4 − 3v′′

4 − β
(
v′
4v

′′
0 + v′

3v
′′
1 + v′

2v
′′
2 + v′

1v
′′
3 + v′

0v
′′
4

)

+
(
v4v

′′′
0 + v3v

′′′
1 + v2v

′′′
2 + v1v

′′′
3 + v0v

′′′
4

)}
= 0,

v5(0) = 0, v′′
5(0) = 0,

v5(1) = 0, v′
5(1) = 0,

p6 =⇒v′′′′
6 + S

{−ηv′′′
5 − 3v′′

5 − β
(
v′
5v

′′
0 + v′

4v
′′
1 + v′

3v
′′
2 + v′

2v
′′
3 + v′

1v
′′
4 + v′

0v
′′
5
)

+
(
v5v

′′′
0 + v4v

′′′
1 + v3v

′′′
2 + v2v

′′′
3 + v1v

′′′
4 + v0v

′′′
5
)}

= 0,

v6(0) = 0, v′′
6(0) = 0,

v6(1) = 0, v′
6(1) = 0.

(3.13)
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Table 1: The analytic results of f(η) at different terms of approximation compared with the numerical
results (RK4) for the axisymmetric case.

S η 3 Terms 5 Terms 7 Terms Numerical (RK4)

–1.5

0.2 0.319474 0.319526 0.319526 0.319526
0.4 0.603652 0.603825 0.603830 0.603830
0.6 0.822574 0.822863 0.822875 0.822876
0.8 0.956580 0.956789 0.956800 0.956801

–0.5

0.2 0.302545 0.302582 0.302582 0.302582
0.4 0.578028 0.578082 0.578082 0.578082
0.6 0.800737 0.800780 0.800780 0.800780
0.8 0.947686 0.947702 0.947702 0.947702

0.5

0.2 0.290353 0.290322 0.290322 0.290322
0.4 0.559299 0.559253 0.559252 0.559252
0.6 0.784341 0.784304 0.784303 0.784303
0.8 0.940717 0.940704 0.940703 0.940703

1.5

0.2 0.281032 0.281010 0.281010 0.281010
0.4 0.544851 0.544780 0.544779 0.544779
0.6 0.771493 0.771374 0.771371 0.771371
0.8 0.935127 0.935038 0.935036 0.935036

Using the Mathematica package, the solutions of system (3.13) may be written as follows:

v0
(
η
)
=

1
2

(
3η − η3

)
,

v1
(
η
)
=

S

560

{(
37 + 15β

)
η − (

73 + 33β
)
η3 +

(
35 + 21β

)
η5 − (−1 + 3β

)
η7
}
,

v2
(
η
)
=

S

15523200

⎧
⎨

⎩

⎛

⎝
1025640 + 415800β − 1025640

−415800β − 153060S − 126789Sβ
−25875Sβ2

⎞

⎠η

−
⎛

⎝
2023560 + 914760β − 2023560

−914760β − 349010S − 325392Sβ
−73998Sβ2

⎞

⎠η3

+

⎛

⎝
970200 + 582120β − 970200

−582120β − 227304S − 281358Sβ
−79002Sβ2

⎞

⎠η5

−
⎛

⎝
−27720 + 83160β + 27720

−83160β − 20196S − 92268Sβ
−40392Sβ2

⎞

⎠η7

+

⎛

⎝
−10780S
−8085Sβ
−10395Sβ2

⎞

⎠η9 −
⎛

⎝
−378S

+1428Sβ
−882Sβ2

⎞

⎠η11

⎫
⎬

⎭
,

...

(3.14)
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Table 2: The analytic results of f(η) at different terms of approximation compared with the numerical
results (RK4) for the two-dimensional case.

S η 3 Terms 5 Terms 7 Terms Numerical (RK4)

–1.5

0.2 0.332883 0.333591 0.333617 0.333618
0.4 0.623190 0.624315 0.624358 0.624358
0.6 0.838219 0.839284 0.839324 0.839325
0.8 0.962441 0.962961 0.962983 0.962984

–0.5

0.2 0.305436 0.305543 0.305545 0.305545
0.4 0.582314 0.582468 0.582470 0.582470
0.6 0.804271 0.804390 0.804392 0.804392
0.8 0.949065 0.949107 0.949108 0.949108

0.5

0.2 0.288347 0.288261 0.288260 0.288260
0.4 0.556268 0.556145 0.556143 0.556143
0.6 0.781768 0.781670 0.781671 0.781671
0.8 0.939674 0.939641 0.939640 0.939640

1.5

0.2 0.276526 0.276433 0.276432 0.276432
0.4 0.537929 0.537754 0.537752 0.537752
0.6 0.765463 0.765252 0.765249 0.765249
0.8 0.932607 0.932474 0.932471 0.932471

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

β = 1
S = 0
S = 1
S = 3

S = 6
S = 10
S = 15

η

Figure 2: The influence of positive S on f ′(η) for the two-dimensional case.

Other terms are too long for presentation. According to the HPM, we can conclude that

f
(
η
)
= lim

p→ 1
v
(
η
)
= v0

(
η
)
+ v1

(
η
)
+ v2

(
η
)
+ v3

(
η
)
+ v4

(
η
)
+ v5

(
η
)
+ v6

(
η
)
. (3.15)
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Figure 3: The influence of negative S on f ′(η) for the axisymmetric case.

0 2 4 6 8 10

s

−3

−4

−5

−6

β = 0
β = 1

Figure 4: The skin friction (f ′′(1)) for the axisymmetric and two-dimensional cases.

4. Results and Discussion

The fourth-order ordinary differential equation (3.2), with the boundary conditions (3.3), is
solved numerically using shooting method, coupled with Runge-Kutta scheme. Our main
concern is the various values of f(η) and f ′(η). These quantities describe the flow behaviour.
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Figure 5: The pressure gradient (f ′′′(1)) for the axisymmetric and two-dimensional cases.

For several values of S, the function f(η) obtained by the different order of approximation
for the axisymmetric and two-dimensional cases are compared with the numerical results in
Tables 1 and 2, respectively. We can see a very good agreement between the purely analytic
results of the HAM and numerical results. The variation of f ′(η) with the change in the
positive values of S for the two-dimensional case is plotted in Figure 2. Figure 3 shows the
influence of negative S on f ′(η) for the axisymmetric case. Note that for the large negative
values of S, the results of similarity analysis are not reliable. f ′′(1) gives skin friction, and
f ′′′(1) represents pressure gradient. f ′′(1) and f ′′′(1) as functions of S are illustrated in Figures
4 and 5, respectively.

5. Conclusions

In this paper, the unsteady axisymmetric and two-dimensional squeezing flows between
two parallel plates are studied using the homotopy perturbation method (HPM). Graphical
results and tables are presented to investigate the influence of the squeeze number on
the velocity, skin friction, and pressure gradient. Here, the results are compared with the
numerical solution obtained using shooting method, coupled with Runge-Kutta scheme. The
obtained solutions, in comparison with the numerical solutions, demonstrate remarkable
accuracy. This method provides an analytical approximate solution without any assumption
of linearization. This character is very important for equations with strong nonlinearities
which could be extremely sensitive to small changes in parameters. In this regard the
homotopy perturbation method is found to be a very useful analytic technique to get highly
accurate and purely analytic solution to such kind of nonlinear problems.
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