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Pulsatile flow of blood in constricted narrow arteries under periodic body acceleration is analyzed,
modeling blood as non-Newtonian fluid models with yield stress such as (i) Herschel-Bulkley
fluid model and (ii) Casson fluid model. The expressions for various flow quantities obtained by
Sankar and Ismail (2010) for Herschel-Bulkley fluid model and Nagarani and Sarojamma (2008),
in an improved form, for Casson fluid model are used to compute the data for comparing these
fluid models. It is found that the plug core radius and wall shear stress are lower for H-B fluid
model than those of the Casson fluid model. It is also noted that the plug flow velocity and flow
rate are considerably higher for H-B fluid than those of the Casson fluid model. The estimates of
the mean velocity and mean flow rate are considerably higher for H-B fluid model than those of
the Casson fluid model.

1. Introduction

Atherosclerosis is an arterial disease in large and medium size blood vessels which involve
in the complex interactions between the artery wall and blood flow and is caused by
intravascular plaques leading to malfunctions of the cardiovascular system [1]. The intimal
thickening of an artery is the initial process in the development of atherosclerosis and one
of the most wide spread diseases in humans [2]. In atherosclerotic arteries, the lumen is
typically narrowed and the wall is stiffened by the buildup of plaque with a lipid core and
a fibromuscular cap, and the narrowing of lumen of the artery by the deposit of fats, lipids,
cholesterol, and so forth is medically termed as stenosis formation [3]. Different shapes of
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stenoses are formed in arteries like axisymmetric, asymmetric, overlapping, and multiple
and even sometimes it may be arbitrary in shape [4–7]. Once stenosis develops in an artery,
its most serious consequences are the increased resistance and the associated reduction of
blood flow to the vascular bed supplied by the artery [8, 9]. Thus, the presence of a stenosis
leads to the serious circulatory disorder. Hence, it is very useful to mathematically analyze
the blood flow in stenosed arteries.

In many situations of our day to day life, we are exposed to body accelerations or
vibrations, like swinging of kids in a cradle, vibration therapy applied to a patient with heart
disease, travel of passengers in road vehicles, ships and flights, sudden movement of body
in sports activities, and so forth [10, 11]. Sometime, our whole body may be subjected to
vibrations, like a passenger sitting in a bus/train, and so forth, while in some other occasions,
specific part of our body might be subjected to vibrations, for example, in the operation of
jack hammer or lathe machine, driver of a car, and so forth [12–14]. Prolonged exposure of
our body to high level unintended external body accelerations causes serious health hazards
due to the abnormal blood circulation [15–17]. Some of the symptoms which result from
prolonged exposure of body acceleration are headache, abdominal pain, increase in pulse
rate, venous pooling of blood in the extremities, loss of vision, hemorrhage in the face, neck,
eye-sockets, lungs, and brain [18–20]. Thus, an adequate knowledge in this field is essential to
the diagnosis and therapeutic treatment of some health problems, like vision loss, joint pain,
and vascular disorder, and so forth, and also in the design of protective pads and machines.
Hence, it is important to mathematically analyze and also to quantify the effects of periodic
body accelerations in arteries of different diameters.

Due to the rheological importance of the body accelerations and the arterial stenosis,
several theoretical studies were performed to understand their effects on the physiologically
important flow quantities and also their consequences [15–20]. Blood shows anomalous
viscous properties. Blood, when it flows through larger diameter arteries at high shear rates, it
shows Newtonian character; whereas, when it flows in narrow diameter arteries at low shear
rates, it exhibits remarkable non-Newtonian behavior [21, 22]. Many studies pertaining to
blood flow analysis treated it as Newtonian fluid [4, 15, 23]. Several researchers used non-
Newtonian fluids models for mathematical analysis of blood flow through narrow arteries
with different shapes of stenosis under periodic body accelerations [24–27]. Casson and
Herschel-Bulkley (H-B) fluid models are some of the non-Newtonian fluid models with yield
stress and are widely used in the theoretical analysis of blood flow in narrow arteries [28, 29].
The advantages of using H-B fluid model rather than Casson fluid model for modeling of
blood flow in narrow arteries are mentioned below.

Chaturani and Samy [8] emphasized the use of H-B fluid model for blood flow
modeling with the argument that when blood flows in arteries of diameter 0.095mm,
it behaves like H-B fluid rather than other non-Newtonian fluids. Tu and Deville [21]
pronounced that blood obeys Casson fluid’s constitutive equation only at moderate shear
rates, whereas H-B fluid model can be used still at low shear rates and represents
fairly closely what is occurring in blood. Iida [30] reports “the velocity profiles of blood
when it flows in the arterioles having diameter less than 0.1mm are generally explained
fairly by Casson and H-B fluid models. However, the velocity profiles of blood flow in
the arterioles whose diameters are less than 0.065mm do not conform to the Casson
fluid model, but, can still be explained by H-B fluid model.” Moreover, Casson fluid’s
constitutive equation has only one parameter, namely, the yield stress, whereas the H-B
fluid’s constitutive equation has one more parameter, namely, the power law index “n” and
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thus one can obtain more detailed information about blood flow characteristics by using
the H-B fluid model rather than Casson fluid model [31]. Hence, it is appropriate to treat
blood as H-B fluid model rather than Casson fluid model when it flows through narrow
arteries.

Sankar and Ismail [32] investigated the effects of periodic body accelerations in blood
flow through narrow arteries with axisymmetric stenosis, treating blood as H-B fluid model.
Nagarani and Sarojamma [33] mathematically analyzed the pulsatile flow of Casson fluid
for blood flow through stenosed narrow arteries under body acceleration. The pulsatile flow
of H-B fluid model and Casson fluid model for blood flow through narrow arteries with
asymmetric stenosis under periodic body acceleration has not been studied so far, to the
knowledge of the authors. Hence, in the present study, a comparative study is performed
for the pulsatile flow H-B and Casson fluid models for blood flow in narrow arteries with
asymmetric shapes of stenoses under periodic body acceleration. The expressions obtained in
Sankar and Ismail [32] for shear stress, velocity distribution, wall shear stress, and flow rate
are used to compute data for the present comparative study. The aforesaid flow quantities
obtained by Nagarani and Sarojamma [33] for Casson fluid model in the corrected form are
used in this study to compute data for performing the present comparative study. The layout
of the paper is as follows.

Section 2 mathematically formulates the H-B and Casson fluid models for blood flow
and applies the perturbation method of solution. In Section 3, the results of H-B fluid model
and Casson fluid model for blood flow in axisymmetric and asymmetrically stenosed narrow
arteries are compared. Some possible clinical applications to the present study are also given
in Section 3. The main results are summarized in the concluding Section 4.

2. Mathematical Formulation

Consider an axially symmetric, laminar, pulsatile, and fully developed flow of blood
(assumed to be incompressible) in the axial (z) direction through a circular narrow artery
with constriction. The constriction in the artery is assumed as due to the formation of
stenosis in the lumen of the artery and is considered as mild. In this study, we consider
the shape of the stenosis as asymmetric. The geometry of segment of a narrow artery with
asymmetric shape of mild stenosis is shown in Figure 1(a). For different values of the stenosis
shape parameter m, the asymmetric shapes of the stenoses are sketched in Figure 1(b). In
Figure 1(b), one can notice the axisymmetric shape of stenosis when the stenosis shape
parameter m = 2. The segment of the artery under study is considered to be long enough
so that the entrance, end, and special wall effects can be neglected. Due to the presence of
the stenosis in the lumen of the segment of the artery, it is appropriate to treat the segment
of the stenosed artery under study as rigid walled. Assume that there is periodical body
acceleration in the region of blood flow and blood is modeled as non-Newtonian fluid
model with yield stress. In this study, we use two different non-Newtonian fluid models
with yield stress for blood flow simulations such as (i) Herschel-Bulkley (H-B) fluid and (ii)
Casson fluid. Note that for particular values of the parameters, H-B fluid model’s constitutive
equation reduces to the constitutive equations of Newtonian fluid, power law fluid, and
Bingham fluid. Also it is to be noted that Casson fluid model’s constitutive equation reduces
to the constitutive equation of Newtonian fluid when the yield stress parameter becomes
zero. The cylindrical polar coordinate system (r, ψ, z) has been used to analyze the blood
flow.
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Figure 1: Pictorial description of segment of the artery with asymmetric stenosis.

2.1. Herschel-Bulkley Fluid Model

2.1.1. Governing Equations and Boundary Conditions

It has been reported that the radial velocity is negligibly small and can be neglected for a
low Reynolds number flow in a narrow artery with mild stenosis. The momentum equations
governing the blood flow in the axial and radial directions simplify, respectively, to [32]

ρH
∂uH

∂t
= −∂p

∂z
− 1
r

∂

∂r
(rτH) + F

(
t
)
,

(2.1)

0 =
∂p

∂r
, (2.2)



Journal of Applied Mathematics 5

where ρH , uH are the density and axial component of the velocity of the H-B fluid,
respectively; p is the pressure; t is the time; τH = |τrz| = −τrz is the shear stress of the H-
B fluid; F(t) is the term which represents the effect of body acceleration and is given by

F
(
t
)
= a0 cos

(
ωbt + φ

)
, (2.3)

where a0 is the amplitude of the body acceleration, ωb = 2πfb, fb is the frequency in Hz and
is assumed to be small so that the wave effect can be neglected [14], φ is the lead angle of F(t)
with respect to the heart action. Since, the blood flow is assumed as pulsatile, it is appropriate
to assume the pressure gradient as a periodic function as given below [25]:

−∂p
∂z

(
z, t

)
= A0 +A1 cos

(
ωpt

)
, (2.4)

where A0 is the steady component of the pressure gradient, A1 is the amplitude of the
pulsatile component of the pressure gradient, and ωp = 2πfp, fp is the pulse frequency in
Hz [23]. The constitutive equation of the H-B fluid (which represents blood) is given by

τH = μ1/n
H

(−∂uH
∂r

)1/n

+ τy if τH ≥ τy,
∂uH
∂r

= 0 if τH ≤ τy,
(2.5)

where, τy is the yield stress of the H-B fluid and μH is the coefficient of viscosity of H-B
fluid with dimension (ML−1T−2)nT . The geometry of the asymmetric shape of stenosis in the
arterial segment is mathematically represented by the following equation [34]:

R(z)

R0

=

⎧
⎨
⎩
1 −G

[
L
m−1
0

(
z − d

)
−
(
z − d

)m]
if d ≤ z ≤ d + L0,

1 otherwise,
(2.6)

where G = (δ/R0L0)m(m/m−1); δ denotes the maximum height of the stenosis at z = d +
(L0/m

(m/m−1)) such that δ/R0 � 1; L0 is the length of the stenosis; d denotes its location; R(z)
is the radius of the artery in the stenosed region; R0 is the radius of the normal artery. It is to
be noted that (2.6) also represents the geometry of segment of the artery with axisymmetric
stenosis when the stenosis shape parameter m = 2. We make use of the following boundary
conditions to solve the system of momentum and constitutive equations for the unknown
velocity and shear stress:

τH is finite at r = 0,

uH = 0 at r = R(z).
(2.7)
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2.1.2. Nondimensionalization

Let us introduce the following nondimensional variables:

z =
z

R0

, R(z) =
R(z)

R0

, r =
r

R0

, t = tω, ω =
ωb

ωp
, δ =

δ

R0

, uH =
uH(

A0R0
2
/4μ0

) ,

τH =
τH(

A0R0/2
) , θ =

2τy

A0R0

, α2H =
R0

2
ωρH
μ0

, e =
A1

A0

, B =
a0

A0

,

(2.8)

where μ0 = μH(2/R0A0)
n−1

having dimension as that of Newtonian fluid’s viscosity
[22, 34]; αH is the generalizedWormersly frequency parameter or pulsatile Reynolds number,
and when n = 1, it reduces to the Newtonian fluid’s pulsatile Reynolds number. Using
nondimensional variables defined in (2.8), the momentum and constitutive equations (2.1)
and (2.5) can be simplified to the following equations:

α2H
∂uH
∂t

= 4(1 + e cos t) + 4B cos
(
ωt + φ

) − 2
r

∂

∂r
(rτH), (2.9)

τH =
(
−1
2
∂uH
∂r

)1/n

+ θ if τH ≥ θ, (2.10)

∂uH
∂r

= 0 if τH ≤ θ. (2.11)

The geometry of the asymmetric shape of the stenosis in the arterial segment in the nondi-
mensional form reduces to the following equation:

R(z) =

{
1 −G[Lm−1

0 (z − d) − (z − d)m] if d ≤ z ≤ d + L0,

1 otherwise,
(2.12)

where G = (δ/R0L0)m(m/m−1). The boundary conditions in the nondimensional form are

τH is finite at r = 0,

uH = 0 at r = R.
(2.13)

The volume flow rate in the nondimensional is given by

Q(z, t) = 4
∫R(z)

0
uH(z, r, t)r dr, (2.14)

where Q(z, t) = Q(z, t)/[πR
4
0A0/8μ0], Q is the volumetric flow rate.
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2.1.3. Perturbation Method of Solution

Since, (2.9) and (2.10) form the system of nonlinear partial differential equations, it is not
possible to get an exact solution to them. Thus, perturbation method is used to solve this
system of nonlinear partial differential equations. Since, the present study deals with slow
flow of blood (low Reynolds number flow)where the effect of pulsatile Reynolds number αH
is negligibly small and also it occurs naturally in the nondimensional form of the momentum
equation, it is more appropriate to expand the unknowns uH and τH in (2.9) and (2.10) in the
perturbation series about α2H . Let us expand the velocity uH in the perturbation series about
the square of the pulsatile Reynolds number α2H as below (where α2H � 1):

uH(r, z, t) = uH0(r, z, t) + α2HuH1(r, z, t) + · · · . (2.15)

Similarly, one can expand the shear stress τH(r, z, t), the plug core radius Rp(z, t), the plug
core velocity up(z, t), and the plug core shear stress τp(z, t) in terms of α2H . Substituting the
perturbation series expansions of uH and τH in (2.9) and then equating the constant term and
α2H term, we get

∂

∂r
(rτH0) = 2r

[
(1 + e cos t) + B cos

(
ωt + φ

)]
,

∂uH0

∂t
= −2

r

∂

∂r
(rτH1).

(2.16)

Using the binomial series approximation in (2.10) (assuming (θ/τ)2 � 1) and then applying
the perturbation series expansions of uH and τH in the resulting equation and then equating
the constant term and α2H term, one can obtain

−∂uH0

∂r
= 2τn−1H0 [τH0 − nθ],

−∂uH1

∂r
= 2nτn−2H0 τH1[τH0 − (n − 1)θ].

(2.17)

Applying the perturbation series expansions of uH and τH in the boundary conditions (2.13),
we obtain

τH0, τH1 are finite at r = 0,

uH0 = 0, uH1 = 0 at r = 0.
(2.18)
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Solving (2.16)–(2.17) with the help of the boundary conditions (2.18) for the unknowns
τP0, τP1, τH0, τH1, uP0, uP1, uH0, and uH1, one can get the following expressions (detail of
obtaining these expressions is given in [32]):

τP0 = g(t)R0p,

τH0 = g(t)r,

uH0 = 2
[
g(t)R

]n
R

[
1

(n + 1)

{
1 −

( r
R

)n+1}
−
(
q2

R

){
1 −

( r
R

)n}]
,

u0p = 2
[
g(t)R

]n
R

⎡
⎣ 1
(n + 1)

⎧
⎨
⎩1 −

(
q2

R

)n+1
⎫
⎬
⎭ −

(
q2

R

){
1 −

(
q2

R

)n}⎤
⎦,

τP1 = −[g(t)R]nDR2

⎡
⎣ n

2(n + 1)

(
q2

R

)
− (n − 1)

2

(
q2

R

)2

− n

2(n + 1)

(
q2

R

)n+2
⎤
⎦,

τH1 = −[g(z)R]nDR2

⎡
⎣ n

(n + 1)(n + 3)

{(
n + 3
2

)( r
R

)
−
( r
R

)n+2}

− (n − 1)
(n + 2)

(
q2

R

){(
n + 2
2

)( r
R

)
−
( r
R

)n+1}

− 3
(
n2 + 2n − 2

)

2(n + 2)(n + 3)

(
q2

R

)n+3(
R

r

)⎤
⎦,

uH1 = −2n[g(t)R]2n−1DR3

⎡
⎣ n

2(n + 1)2(n + 3)

{
(n + 2) − (n + 3)

[ r
R

]n+1
+
[ r
R

]2n+2}

+
(n − 1)

2(n + 1)(n + 2)(n + 3)(2n + 1)

[
q2

R

]

×
{
(n + 2)(n + 3)(2n + 1)

[( r
R

)n
+
( r
R

)n+1]

− 2
[(

2n3 + 9n2 + 11n + 3
)
+
(
2n2 + 6n + 3

)[ r
R

]2n+1]}

+
(n − 1)2

2n(n + 2)

(
q2

R

)2{
(n + 1) − (n + 2)

[ r
R

]n
+
[ r
R

]2n}
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+
3
(
n2 + 2n − 2

)

2(n − 1)(n + 2)(n + 3)

(
q2

R

)n+3{( r
R

)n−1
− 1

}

+
3
(
n2 + 2n − 2

)
(n − 1)

2(n − 2)(n + 2)(n + 3)

(
q2

R

)n+4{
1 −

[ r
R

]n−2}
⎤
⎦,

uP1 = −2n[g(t)R]2n−1DR3

⎡
⎣ n

2(n + 1)2(n + 3)

⎧
⎨
⎩(n + 2) − (n + 3)

[
q2

R

]n+1
+

[
q2

R

]2n+2
⎫
⎬
⎭

+
(n − 1)

2(n + 1)(n + 2)(n + 3)(2n + 1)

[
q2

R

]

×
⎧
⎨
⎩(n + 2)(n + 3)(2n + 1)

⎡
⎣
(
q2

R

)n

+

(
q2

R

)n+1
⎤
⎦

− 2

⎡
⎣
(
2n3 + 9n2 + 11n + 3

)
+
(
2n2 + 6n + 3

)[q2
R

]2n+1
⎤
⎦
⎫
⎬
⎭

+
(n − 1)2

2n(n + 2)

(
q2

R

)2
⎧
⎨
⎩(n + 1) − (n + 2)

[
q2

R

]n
+

[
q2

R

]2n
⎫
⎬
⎭

+
3
(
n2 + 2n − 2

)

2(n − 1)(n + 2)(n + 3)

(
q2

R

)n+3
⎧
⎨
⎩

(
q2

R

)n−1
− 1

⎫
⎬
⎭

+
3
(
n2 + 2n − 2

)
(n − 1)

2(n − 2)(n + 2)(n + 3)

(
q2

R

)n+4
⎧
⎨
⎩1 −

[
q2

R

]n−2⎫⎬
⎭

⎤
⎦,

(2.19)

where q2 = (θ/g(t)), r|τ0p=θ = R0p = θ/g(t) = q2, g(t) = (1 + e cos t) + B cos(ωt + φ), and D =
(1/g)(dg/dt). The wall shear stress τw is a physiologically important flow quantity which
plays an important role in determining the aggregate sites of platelets [3]. The expression for
wall shear stress τw is given by [32]

τw =
(
τH0 + α2HτH1

)
r=R

=
[
g(t)R

]

×
⎡
⎣1 −

(
g(t)R

)n−1
α2R2B

2(n + 2)(n + 3)

×
⎧
⎨
⎩n(n + 2) − (n − 1)n(n + 3)

(
q2

R

)
− 3

(
n2 + 2n − 2

)(q2

R

)n+3
⎫
⎬
⎭

⎤
⎦.

(2.20)
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The expression for volumetric flow rate Q(z, t) is obtained as below (see [32] for details):

Q(z, t) = 4

[(∫R0p

0
ru0pdr +

∫R

R0p

ru0dr

)
+ α2

(∫R0p

0
ru1pdr +

∫R

R0p

ru1dr

)]

=
4
[
g(t)R

] n
R3

(n + 2)(n + 3)

⎡
⎣
⎧
⎨
⎩(n + 2) − n(n + 3)

(
q2

R

)
+
(
n2 + 2n − 2

)(q2

R

)n+3
⎫
⎬
⎭

− α2[g(t)R] n−1
(
nDR2

4

)

×
⎧
⎨
⎩n − 2n(n − 1)

(
4n2 + 12n + 5

)

(2n + 1)(2n + 3)

(
q2

R

)

+
n(n − 1)2(n + 3)

(n + 1)

(
q2

R

)2

+

(
n3 − 2n2 − 11n + 6

)

(n + 1)

(
q2

R

)n+3

− (n − 1)
(
n3 − 2n2 − 11n + 6

)

n

(
q2

R

)n+4

−
(
4n5 + 14n4 − 8n3 − 45n2 − 3n + 18

)

n(n + 1)(2n + 3)

(
q2

R

)2n+4
⎫
⎬
⎭

⎤
⎦.

(2.21)

The expression for the plug core radius is obtained as below [32]:

Rp = q2 + α2
[
g(t)R

]n−1
(

nDR3

2(n + 1)

)⎡
⎣
(
q2

R

)
−
(
n2 − 1
n

)(
q2

R

)2

−
(
q2

R

)n+2
⎤
⎦. (2.22)

The longitudinal impedance to flow in the artery is defined as

Λ =
P(t)
Q(z, t)

, (2.23)

where

P(t) = 4[1 + e cos(t)] (2.24)

is the pressure gradient in the nondimensional form.
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2.2. Casson Fluid Model

2.2.1. Governing Equations and Boundary Conditions

The momentum equations governing the blood flow in the axial and radial directions
simplify, respectively, to [33]

ρC
∂uC

∂t
= −∂p

∂z
− 1
r

∂

∂r
(rτC) + F

(
t
)
, (2.25)

0 =
∂p

∂r
, (2.26)

where uC and ρC are the axial component of the velocity and density of Casson fluid; p is the
pressure; t is the time; τC = |τrz| = −τrz is the shear stress of Casson fluid. Equations (2.3)
and (2.4)which define mathematically the body acceleration term F(t) and pressure gradient
−(∂p/∂z) are assumed in this subsection. Similarly, (2.6) which mathematically describes
the geometry of the axisymmetric shape of stenosis and asymmetric shape of stenosis in
the segment of the stenosed artery is also assumed in this subsection (the details of these
assumptions can be found in Section 2.1.1) The constitutive equation of the Casson fluid
model (which models blood) is defined as below:

√
τC =

√
μC

(−∂uC
∂r

)
+
√
τy if τC ≥ τy, (2.27)

∂uC
∂r

= 0 if τC ≤ τy, (2.28)

where τy is the yield stress of Casson fluid and μC is the coefficient of viscosity of Casson
fluid with dimensionML−1T−1. The appropriate boundary conditions to solve the system of
momentum and constitutive equations (2.25), (2.27), and (2.28) for the unknown velocity and
shear stress are

τC is finite at r = 0,

uC = 0 at r = R(z).
(2.29)



12 Journal of Applied Mathematics

2.2.2. Nondimensionalization

Similar to (2.8), let us introduce the following nondimensional variables for the Casson fluid
flow modeling as follows:

z =
z

R0

, R(z) =
R(z)

R0

, r =
r

R0

, t = tω, ω =
ωb

ωp
, δ =

δ

R0

, uC =
uC(

A0R
2
0/4μC

) ,

τC =
τC(

A0R0/2
) , θ =

2τy

A0R0

, α2C =
R

2
0ωρC
μC

, e =
A1

A0

, B =
a0

A0

,

(2.30)

where αC is the Wormersly frequency parameter or pulsatile Reynolds number of Casson
fluid model. Use of the above nondimensional variables reduces the momentum and
constitutive equations (2.25), (2.27), and (2.28), respectively, to the following equations:

α2C
∂uC
∂t

= 4(1 + e cos t) + 4B cos
(
ωt + φ

) − 2
r

∂

∂r
(rτC), (2.31)

√
τC =

√
−1
2
∂uC
∂r

+
√
θ if τC ≥ θ, (2.32)

∂uC
∂r

= 0 if τC ≤ θ. (2.33)

Equation (2.12) which mathematically defines the nondimensional form of the geometry of
the asymmetric shapes of stenosis in the arterial segment is assumed in this sub-section. The
boundary conditions in the nondimensional form are

τC is finite at r = 0,

uC = 0 at r = R.
(2.34)

The volume flow rate in the nondimensional is given by

Q = 4
∫R(z)

0
uC(z, r, t)r dr, (2.35)

where Q = Q/[πR
4
0A0/8μC], Q is the volumetric flow rate.
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2.2.3. Perturbation Method of Solution

As described in Section 2.1.3, perturbation method is applied to solve the system of nonlinear
partial differential equations (2.31) and (2.32). Let us expand the velocity uC in the perturba-
tion series about the square of the pulsatile Reynolds number α2C as below (where α2C � 1):

uC(r, z, t) = uC0(r, z, t) + α2CuC1(r, z, t) + · · · . (2.36)

Similarly, one can expand the shear stress τC(r, z, t), the plug core radius Rp(z, t), the plug
core velocity up(z, t), and the plug core shear stress τp(z, t) in terms of α2C. Substituting the
perturbation series expansions of uCand τC in (2.31) and then equating the constant term and
α2C term, one can obtain

∂

∂r
(rτC0) = 2r

[
(1 + e cos t) + B cos

(
ωt + φ

)]
,

∂uC0
∂t

= −2
r

∂

∂r
(rτC1).

(2.37)

Applying the perturbation series expansions of uC and τC in (2.32) and then equating the
constant term and α2C term, we get

−∂uC0
∂r

= 2

⎡
⎣τC0 − 2

√(
θ

τC0

)
+ θ

⎤
⎦,

−∂uC1
∂r

= 2τC1

⎡
⎣1 −

√(
θ

τC0

)⎤
⎦.

(2.38)

Applying the perturbation series expansions of uC and τC in the boundary conditions (2.34)
and then equating the constant terms and α2C terms, one can get

τC0, τC1 are finite at r = 0,

uC0 = 0, uC1 = 0 at r = 0.
(2.39)

Solving (2.37)–(2.38) with the help of the boundary conditions (2.39) for the unknowns
τP0, τP1, τC0, τC1, uP0, uP1, uC0, and uC1, one can get the following expressions as in [33],
but in a corrected form ((2.40)–(2.50)):

τP0 = g(t)R0p, (2.40)

τC0 = g(t)r, (2.41)
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uC0 = g(t)R2

[{
1 −

( r
R

)2
}
− 8
3

(
q√
R

){
1 −

( r
R

)3/2
}
+
2q2

R

{
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( r
R

)}]
, (2.42)

uP0 = g(t)R2

⎡
⎣1 − 8

3

(
q√
R

)
+ 2

(
q2
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)
− 1
3

(
q2
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)2
⎤
⎦, (2.43)

τP1 = −g(t)DR
5

12

(
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(2.45)

uC1 = −g(t)DR4
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uP1 = −g(t)DR4

⎡
⎣− 7

48
+
15
98

√√√√
(
q2

R

)
− 20
63

(
q2

R

)
+

5
12

(
q2

R

)2

− 4
9

(
q2

R

)5/2

− 439
7056

(
q2

R

)4

+
1
14

(
q2

R

)9/2

− 1
28

(
q2

R

)4

log

(
q2

R

)⎤
⎦,

(2.47)
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where q2 = (θ/g(t)), r|τ0p=θ = R0p = θ/g(t) = q2, g(t) = (1 + e cos t) + B cos(ωt + φ), and
D = (1/g)(dg/dt). Using (2.41) and (2.45), the expression for wall shear stress τw is obtained
as below:

τw =
(
τC0 + α2CτC1

)
r=R

= g(t)R

⎡
⎣1 − α2CR

2D

8

⎧
⎨
⎩1 − 8

7

(
q√
R

)
+
1
7

(
q2

R

)4
⎫
⎬
⎭

⎤
⎦. (2.48)

The expression for volumetric flow rate Q(z, t) is obtained as below:

Q(z, t) = 4

[(∫R0P

0
ru0pdr +
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(2.49)

The expression for the plug core radius is obtained as below [33]:

Rp = q2 −
Dα2CR

3

4

⎡
⎣
(
q2

R

)
− 4
3

(
q2

R

)3/2

+
1
3

(
q2

R

)3
⎤
⎦. (2.50)

The longitudinal impedance to flow in the artery is defined as

Λ =
P(t)
Q(z, t)

. (2.51)

3. Numerical Simulation of the Results

The main objective of the present mathematical analysis is to compare the H-B and Casson
fluid models for blood flow in constricted arteries and spell out the advantageous of using
H-B fluid model rather than Casson fluid for the mathematical modeling of blood flow
in a narrow artery with asymmetric stenosis. It is also aimed to bring out the effect of
body acceleration, stenosis shape parameter, yield stress, and pressure gradient on the
physiologically important flow quantities such as plug core radius, plug flow velocity,
velocity distribution, flow rate, wall shear stress, and longitudinal impedance to flow. The
different parameters used in this analysis and their range of values are given below [32–35].
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Figure 2: Variation of plug core radius with axial distance for H-B and Casson fluid models with different
values of yield stress θ and with δ = 0.15, αH = αC = 0.2, B = 2, e = φ = 0.7, and t = 45◦.

Yield stress θ: 0–0.3; power law index n: 0.95–1.05; pressure gradient e: 0-1; body
acceleration B: 0–2; frequency parameter ω: 0-1; pulsatile Reynolds numbers αH and αC: 0.2–
0.7; lead angle φ: 0.2–0.5; asymmetry parameter m: 2–7; stenosis depth δ: 0–0.2.

3.1. Plug Core Radius

The variation of the plug core with axial distance in axisymmetric stenosed artery (m = 2) for
different values of the yield stress of H-B and Casson fluid models with δ = 0.15, B = 2, αH =
αC = 0.2, e = φ = 0.7 and t = 45◦ is shown in Figure 2. It is observed that the plug core radius
decreases slowly when the axial variable z increases from 0 to 4 and then it increases when
z increases further from 4 to 8. The plug core radius is minimum at the centre of the stenosis
(z = 4), since the stenosis is axisymmetric. The plug core radius of the H-B fluid model is
slightly lower than that of the Casson fluid model. One can note that the plug core radius
increases very significantly when the yield stress of the flowing blood increases. Figure 3
sketches the variation of plug core radius with pressure gradient ratio in asymmetrically
stenosed artery (m = 4) for H-B and Casson fluid models and for different values of the
body acceleration parameter with θ = δ = 0.1, t = 60◦, φ = 0.7, m = 4, and z = 4. It is noticed
that the plug core radius decreases rapidly with the increase of the pressure gradient ratio e
from 0 to 0.5 and then it decreases slowly with the increase of the pressure gradient ratio e
from 0.5 to 1. It is seen that plug core radius increases significantly with the increase of the
body acceleration parameter B. Figures 2 and 3 bring out the influence of the non-Newtonian
behavior of blood and the effects of body acceleration and pressure gradient on the plug core
radius when blood flows in asymmetrically stenosed artery.
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Figure 4:Variation of plug flow velocity with yield stress for H-B and Casson fluidmodels and for different
values of stenosis shape parametermwith e = 0.5, φ = 0.2, t = 60◦, z = 4, ω = 0.5, B = 1, and δ = 0.1.

3.2. Plug Flow Velocity

Figure 4 shows the variation of the plug flow velocity with yield stress for H-B and Casson
fluid models and for different values of the stenosis shape parameter with e = 0.5, φ = 0.2,
z = 4, t = 60◦, ω = 0.5, B = 1, and δ = 0.1. It is noted that for H-B fluid model, the plug flow
velocity decreases very slowly with the increase of the yield stress, whereas, in the case of
Casson fluid model, it decreases rapidly when the yield stress θ increases from 0 to 0.05 and
then it decreases slowly with the increase of the yield stress from 0.05 to 0.3. It is seen that
the plug flow velocity is considerably higher for H-B fluid model than that of the Casson
fluid model. One can easily observe that the plug flow velocity decreases significantly with
the increase of the stenosis shape parameterm. The variation of plug flow velocity with axial
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Figure 5: Variation of plug flow velocity with axial distance for H-B and Casson fluids and for different
values of B and e with δ = θ = 0.1, m = 4, t = 60◦, φ = 0.2, and ω = 0.5.

distance for H-B and Casson fluid models and for different values of the body acceleration B
and pressure gradient ratio ewith δ = θ = 0.1,m = 4, t = 60◦, φ = 0.2, and ω = 0.5 is depicted in
Figure 5. It is seen that the plug flow velocity skews more to the right-hand side in the axial
direction which is attributed by the skewness of the stenosis. It is clear that the plug flow
velocity increases considerably with the increase of the body acceleration parameter B and
pressure gradient ratio e. Figures 4 and 5 show the non-Newtonian character of blood and
effects of body acceleration, pressure gradient, and asymmetry of the stenosis on the plug
flow velocity of blood when it flows through a constricted artery.

3.3. Velocity Distribution

Figure 6 sketches the velocity distribution for H-B and Casson fluid models and for different
values of yield stress θ, stenosis depth δ with m = 2, e = 0.2, αH = αC = 0.5, φ = 0.2, ω = 1,
t = 60◦, and B = 1. It is observed that the velocity of H-B fluid model is considerably higher
than that of Casson fluid model. It is also found that the velocity of the blood flow decreases
with the increase of the yield stress θ and stenosis depth δ. But the decrease in the velocity
is considerable when the stenosis depth δ increases, whereas it decreases significantly with
the increase of the yield stress. It is of interest to note that the velocity distribution of H-B
fluid with δ = 0.2 and θ = 0.05 and B = 0 is in good agreement with the corresponding plot in
Figure 6 of Sankar and Lee [34]. It is also to be noted that the velocity distribution of Casson
fluid with δ = 0.2, θ = 0.01, and B = 0 is in good agreement with the corresponding plot in
Figure 6 of Siddiqui et al. [35].

3.4. Flow Rate

The variation of flow rate with pressure gradient ratio for H-B and Casson fluid models and
for different values of the power law index n, body acceleration parameter B, and stenosis
shape parameter m with θ = δ = 0.1, αH = αC = φ = 0.2, z = 4, t = 60◦, and ω = 1 is shown
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in Figure 7. It is seen that the flow rate increases with the pressure gradient ratio e. But
the increase in the flow rate is linear for H-B fluid model and almost constant for Casson
fluid model. For a given set of values of the parameters, the flow rate for H-B fluid model
is considerably higher than that of the Casson fluid model. It is also clear that for a given
set of values of n and m, the flow rate increases considerably with the increase of the body
acceleration parameter B. One can observe that for fixed values of n and B, the flow rate
decreases significantly with the increase of the stenosis shape parameterm. When the power
law index n increases from 0.95 to 1.05 and all the other parameters were held constant, the
flow rate decreases slightly when the range of the pressure gradient ratio e is 0–0.5 and this
behavior is reversed when the range of the pressure gradient ratio e is 0.5 to 1. Figure 7 brings
out the effects of body acceleration and stenosis shape on the flow rate of blood when it flows
through narrow artery with mild stenosis.

3.5. Wall Shear Stress

Figure 8 shows the variation of wall shear stress with frequency ratio for H-B and Casson
fluid models and for different values of the φ (lead angle), αH (pulsatile Reynolds number
for H-B fluid model), and αC (pulsatile Reynolds number of Casson fluid model) with m =
2, θ = δ = 0.1, e = 0.5, B = 1, z = 4, and t = 60◦. It is seen that the wall shear stress decreases
slightly nonlinearly with frequency ratio for lower values of the pulsatile Reynolds numbers
αH and αC and lead angle φ, and it decreases linearly with frequency ratio for higher values
of the pulsatile Reynolds numbers αH and αC and lead angle φ. It is found that for a given set
of values of the parameters, the wall shear stress is marginally lower for H-B fluid model than
that of the Casson fluid model. Also, one can note that for fixed value of the lead angle φ, the
wall shear stress decreases significantly with the increase of the pulsatile Reynolds numbers
αH and αC. It is also observed that the wall shear stress decreases marginally with the increase
of the lead angle φwhen all the other parameters were kept as invariables. Figure 8 spells out
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the effects of pulsatility and non-Newtonian character of blood on the wall shear stress when
it flows in a narrow artery with mild stenosis.

3.6. Longitudinal Impedance to Flow

The variation of the longitudinal impedance to flowwith axial distance for different values of
the stenosis shape parameter m and body acceleration parameter B with θ = δ = 0.1, t = 60◦,
αH = αC = φ = 0.2, e = 0.5, and ω = 1 is depicted in Figures 9(a) (for H-B fluid model) and 9(b)
(Casson fluid model). It is noticed that the longitudinal impedance to flow increases with
the increase of the axial variable z from 0 to the point where the stenosis depth is maximum
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Figure 9: Variation of longitudinal impedance to flow with axial distance for H-B and Casson fluid models
and for different values ofm and B with θ = δ = 0.1, t = 60◦, αH = αC = φ = 0.2, e = 0.5, and ω = 1.

and then it decreases as the axial variable z increases further from that point to 8. One can
see the significant increase in the longitudinal impedance to flow when the stenosis shape
parameter m increases and marginal increase in the longitudinal impedance to flow when
the body acceleration parameter B increases. It is also clear that for the same set of values
of the parameters, the longitudinal impedance to flow is significantly lower for H-B fluid
model than that of the Casson fluid model. Figures 9(a) and 9(b) bring out the effects of body
acceleration and asymmetry of the stenosis shape on the longitudinal impedance to blood
flow.

The increase in the longitudinal impedance to blood flow due to the asymmetry shape
of the stenosis is defined as the ratio between the longitudinal impedance to flow of a fluid
model for a given set of values of the parameters in an artery with asymmetric stenosis
and the longitudinal impedance of the same fluid model and for the same set of values
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Table 1: Estimates of the increase in the longitudinal impedance to flow due to the increase in the stenosis
shape parameter and body acceleration with δ = θ = 0.1, e = 0.5, ω = 1, αH = αC = φ = 0.2, z = 4, and t = 60◦.

m H-B fluid model Casson fluid model
B = 0 B = 1 B = 2 B = 0 B = 1 B = 2

3 1.5759 1.5698 1.5657 1.6401 1.6282 1.6202
4 2.4616 2.4419 2.4289 2.6690 2.6289 2.6022
5 3.8118 3.7642 3.7331 4.3105 4.2098 4.1433
6 5.9191 5.8153 5.7484 6.9964 6.7688 6.6201
7 9.3531 9.1338 8.9944 11.6016 11.1022 10.7803

Table 2: Physiological data for different arteries.

S. no. Artery Radius (×10−2 m) A0 (×10Kgm−2 s−1) A1 (×10Kgm−2 s−1)
1 Aorta 1.0 7.3 1.46
2 Femoral 0.5 32.0 6.4
3 Carotid 0.4 50.0 10.0
4 Coronary 0.15 698.65 139.74
5 Arteriole 0.008 2000.0 400

of the parameters in that artery with axisymmetric stenosis. The estimates of the increase
in the longitudinal impedance to flow are computed in Table 1 for different values of the
stenosis shape parameter m and body acceleration parameter B with δ = θ = 0.1, e = 0.5,
ω = 1, z = 4, αH = αC = φ = 0.2, and t = 60◦. It is observed that the estimates of the
increase in the longitudinal impedance to flow increase considerably when the stenosis shape
parameter m increases and they decrease slightly when the body acceleration parameter B
increases. Hence, the longitudinal impedance to flow is significantly higher in the arteries
with asymmetric shape of the stenosis compared to that in the arteries with axisymmetric
stenosis. It is also noted that the presence of the body acceleration decreases the longitudinal
impedance to blood flow considerably.

3.7. Some Possible Clinical Applications

To discuss some possible clinical applications of the present study, the data (for different types
of arteries, their corresponding radii, steady and pulsatile pressure gradient values) reported
by Chaturani andWassf Issac [23] are given in Table 2 and are used in this applications part of
our study. For these clinical data (given in Table 2), the estimates of the mean velocity of H-B
and Casson fluid models for different values of the stenosis shape parameterm and different
values of the body acceleration parameter B with θ = δ = 0.1, t = 60◦, ω = 1, z = 4, φ = 0.2, αH
= αC = 0.2, and e = 0.2 are computed in Table 3. It is recorded that the estimates of the mean
velocity increase significantly with the increase of the artery radius, except in arterioles. It is
also found that the estimates of the mean velocity of H-B fluid model are marginally higher
than those of the Casson fluid model. It is noted that the mean velocity increases considerably
with the increase of the body acceleration parameter B and the reverse behavior is found
when the stenosis shape parameterm increases.

For the clinical data given in Table 2, the estimates of the mean flow rate of H-B
and Casson fluid models are computed in Table 4 for different values of the stenosis shape
parameter m and different values of the body acceleration parameter B with θ = δ = 0.1, ω
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Table 3: Estimates of mean velocity of H-B and Casson fluid models for different values of m and B in
arteries with different radii with θ = δ = 0.1, t = 60◦, ω = 1, z = 4, e = 0.2, and αH = αC = φ = 0.2.

S. no. Artery type
H-B fluid model (×10−2 m s−1) Casson fluid model (×10−2 m s−1)

m = 2 m = 4 m = 2 m = 4

B = 0 B = 1 B = 0 B = 1 B = 0 B = 1 B = 0 B = 1

1 Aorta 40.28 46.25 36.35 41.82 37.46 42.89 33.18 37.88
2 Femoral 46.78 52.38 40.22 45.41 42.55 49.67 37.69 42.47
3 Carotid 46.78 52.38 40.22 45.41 42.55 49.67 37.69 42.47
4 Coronary 93.85 97.55 89.45 93.48 89.24 94.38 86.12 90.59
5 Arteriole 0.62 0.75 0.55 0.68 0.57 0.69 0.51 0.63

Table 4: Estimates of mean flow rate of H-B and Casson fluid models for different values of m and B in
arteries with different radii with θ = δ = 0.1, t = 60◦, ω = 1, z = 4, e = 0.2, and αH = αC = φ = 0.2.

S. no. Artery type
H-B fluid model (×10−2 m s−1) Casson fluid model (×10−2 m s−1)
m = 2 m = 4 m = 2 m = 4

B = 0 B = 1 B = 0 B = 1 B = 0 B = 1 B = 0 B = 1
1 Aorta 65.43 72.54 61.42 68.72 61.49 66.58 55.24 62.66
2 Femoral 14.87 20.38 12.66 17.41 11.57 16.93 10.41 15.28
3 Carotid 9.56 13.15 8.43 11.85 7.94 11.27 6.25 9.49
4 Coronary 3.12 3.55 2.85 3.25 2.75 3.15 2.37 2.84
5 Arteriole 70.8E−6 82.5E−6 67.3E−6 74.6E−6 65.8E−6 75.61 61.8E−6 69.7E−6

= 1, t = 60◦, z = 4, φ = 0.2, αH = αC = 0.2, and e = 0.2. It is observed that the estimates of
the mean flow rate decrease very significantly with the increase of the artery radius. It is also
found that the estimates of the mean flow rate of H-B fluid model are considerably higher
than those of the Casson fluid model. It is noted that the estimates of the mean flow rate
increase significantly with the increase of the body acceleration parameter B and the reverse
behavior is recorded when the stenosis shape parameterm increases.

4. Conclusions

The present mathematical analysis brings out various interesting rheological properties of
blood when it flows through narrow stenosed arteries with body acceleration, treating it as
different non-Newtonian fluid models with yield stress such as (i) Herschel-Bulkley fluid
model and (ii) Casson fluid model. By the use of appropriate mathematical expression for
the geometry of segment of the stenosed artery, both axisymmetric and asymmetric shapes of
stenoses are considered to study the effects of stenosis shape and size on the physiologically
important quantities. Some major findings of this mathematical analysis are summarized
below.

(i) The plug core radius, wall shear stress, and longitudinal impedance to flow are
marginally lower for H-B fluid model than those of the Casson fluid model.

(ii) The plug flow velocity, velocity distribution, and flow rate are considerably higher
for H-B fluid model than those of the Casson fluid model.
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(iii) The plug core radius and longitudinal impedance to flow increase significantly with
the increase of the stenosis shape parameter, and the reverse behavior is observed
for plug flow velocity, velocity distribution, and flow rate.

(iv) The estimates of the mean velocity and mean flow rate are considerably higher for
H-B fluid model than those of the Casson fluid model.

(v) The estimates of the mean velocity and mean flow rate increase considerably with
the increase of the body acceleration, and this behavior is reversed when the
stenosis shape parameter increases.

Based on these results, one can note that there is substantial difference between the
flow quantities of H-B fluidmodel and Casson fluidmodel, and thus it is expected that the use
of H-B fluid model for blood flow in diseased artery may provide better results which may
be useful to physicians in predicting the effects of body accelerations and different shapes
and sizes of stenosis in the artery on the physiologically important flow quantities. Also,
it is hoped that this study may provide some useful information to surgeons to take some
crucial decisions regarding the treatment of patients, whether the cardiovascular disease can
be treated with medicines or should the patient undergo a surgery. Hence, it is concluded
that the present study can be treated as an improvement in the mathematical modeling
of blood flow in narrow arteries with mild stenosis under the influence of periodic body
accelerations.

Nomenclature

r: Radial distance
r: Dimensionless radial distance
z: Axial distance
z: Dimensionless axial distance
n: Power law index
p: Pressure
p: Dimensionless pressure
P : Dimensionless pressure gradient
Q: Flow rate
Q: Dimensionless flow rate
R0: Radius of the normal artery
R(z): Radius of the artery in the stenosed region
R(z): Dimensionless radius of the artery in the stenosed region
F(t): Body acceleration function
a0: Amplitude of the body acceleration
RP : Plug core radius
RP : Dimensionless plug core radius
uH : Axial velocity of Herschel-Bulkley fluid
uH : Dimensionless axial velocity of Herschel-Bulkley fluid
uC: Axial velocity of Casson fluid
uC: Dimensionless axial velocity of Casson fluid
A0: Steady component of the pressure gradient
A1: Amplitude of the pulsatile component of the pressure gradient
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L: Length of the normal artery
L0: Length of the stenosis
m: Stenosis shape parameter
L0: Dimensionless length of the stenosis
d: Location of the stenosis
d: Dimensionless location of the stenosis
t: Time
t: Dimensionless time.

Greek Letters

Λ: Dimensionless longitudinal impedance to flow
φ: Azimuthal angle
γ̇ : Shear rate
τy: Yield stress
θ: Dimensionless yield stress
τH : Shear stress of the Herschel-Bulkley fluid
τH : Dimensionless shear stress of Herschel-Bulkley fluid
τC: Shear stress for Casson fluid
τC: Dimensionless shear stress of Casson fluid
τw: Dimensionless wall shear stress
ρH : Density of Herschel-Bulkley fluid
ρC: Density of Casson fluid
μH : Viscosity of Herschel-Bulkley fluid
μC: Viscosity of the Casson fluid
αH : Pulsatile Reynolds number of Herschel-Bulkley fluid
αC: Pulsatile Reynolds number of Casson fluid
δ: Depth of the stenosis
δ: Dimensionless depth of the stenosis
ω: Angular frequency of the blood flow
φ: Lead angle.

Subscripts

w: Wall shear stress (used for τ)
H: Herschel-Bulkley fluid (used for u, u, τ, τ)
C: Newtonian fluid (used for u, u, τ, τ).
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