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This paper proposes a new efficiency benchmarking methodology that is capable of incorporating probability while still preserving
the advantages of a distribution-free and nonparametric modeling technique. This new technique developed in this paper will be
known as the DEA-Chebyshev model. The foundation of DEA-Chebyshev model is based on the model pioneered by Charnes,
Cooper, and Rhodes in 1978 known as Data Envelopment Analysis (DEA).The combination of normal DEA with DEA-Chebyshev
frontier (DCF) can successfully provide a good framework for evaluation based on quantitative data and qualitative intellectual
management knowledge.The simulated dataset was tested onDEA-Chebyshevmodel. It has been statistically shown that thismodel
is effective in predicting a new frontier, whereby DEA efficient units can be further differentiated and ranked. It is an improvement
over other methods, as it is easily applied, practical, not computationally intensive, and easy to implement.

1. Introduction

There has been a substantial amount of research conducted
in the area of stochastic evaluation of efficiency, such as
the stochastic frontier approach (SFA) [1, 2], stochastic
data envelopment analysis (DEA) [3, 4], chance-constrained
programming (CCP) efficiency evaluation [5–8], and sta-
tistical inference to deal with variations in data. The prob-
lems associated with these methodologies range from the
requirement for specifications of some functional form or
parameterization to the requirement of a substantial amount
of (time series) data. Relying on past and present data alone
to provide a good estimation of the efficient frontier may
not be suitable today due to the rapid evolution of these
“nuisance” parameters. Hence, the inclusion ofmanagement’s
expert opinion cannot be excluded in efficiency analyses.

This paper proposes to develop a new efficiency bench-
marking methodology that is capable of incorporating prob-
ability while still preserving the advantages of a function-free
and nonparametric modeling technique. This new technique

developed in this paper will be known as theDEA-Chebyshev
model.The objectives are to first distinguish amongst top per-
formers and second to define a probable feasible target for the
empirically efficient units (as they are found from the usual
DEA models) with respect to the DEA-Chebyshev frontier
(DCF). This can be achieved by incorporating management’s
expertise (qualitative component) along with the available
data (quantitative component) to infer this new frontier. The
foundation of DEA-Chebyshev model is based on the model
pioneered by Charnes et al. in 1978 [10] known as DEA. It
is deterministic approach, which requires no distributional
assumptions or functional formswith predefined parameters.
The main drawback to deterministic approaches is that they
make no allowance for random variations in the data. The
DEA methodology has been chosen as a foundation for this
research because of the following advantages.

(i) It is nonparametric and does not require a priori
assumption regarding the distribution of data
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(ii) It has the ability to simultaneously handle multiple
inputs and outputs without making prior judgments
of their relative importance (i.e., function-free)

(iii) It can provide a single measurement of performance
based upon multiple inputs and outputs.

DEA ensures that the production units being evaluated
will only be compared with others from the same “cultural”
environment, provided, of course, that they operate under the
same environmental conditions.

The rest of the paper is organized as follows. Section 2
gives a brief literature review. Section 3 describes some
possible causes of data discrepancies that may or may not
be observable and their effects on the variables. Section 4
discusses the assumptions and mathematical formulation of
DEA-Chebyshev model. Section 5 provides the simulation
and comparison with other efficiency evaluation techniques.
Finally, our conclusions are presented in Section 6.

2. Literature Review

This section provides the applicable literature on past and
present researches relating to stochastic models and weight-
restricted models designed for performance measurements.
They show the relevance of well-known methodologies used
for estimating efficiency scores and constructing the approx-
imated frontier in order to account, as well as possible, for
noise which can have diverse effects on efficiency evaluation
of human performance-dependent entities.

2.1. Stochastic Frontier Approach. Aigner et al. [1] and
Meussen and Van Den Broeck [2] independently and simul-
taneously proposed a stochastic frontier model known as
the Stochastic Frontier Approach (SFA) for performance
evaluation. SFA uses econometric methods for estimating the
efficient frontier. The problems associated with SFA are, that
weights (or parameters) have to be predefined to determine
its functional form and this requires parameterization. Sec-
ond, a distributional form must be determined in order to
estimate random errors. Third, inclusion of multiple outputs
is not easy to incorporate into the model. Finally, samples
have to be large enough to be able to infer the distributional
form for random errors.

2.2. Stochastic DEA. Stochastic DEA is a DEA method that
attempts to account for and filter out noise by incorporating
stochastic variations of inputs and outputs while still main-
taining the advantages of DEA [4]. The method relies on the
theory that there will always exist an optimal solution for
industrial efficiency. The variability in outputs is dealt with
using the risk-averse efficiency model by Land et al. [11] with
a risk preference function. Kneip and Simar [3] proposed
a nonparametric estimation of each decision-making unit
(DMU)’s production function using panel data over 𝑇 time
periods. This filters the noise from the outputs. The fitted
values of the outputs along with the inputs are then evaluated
using DEA. In this instance, efficiency is determined by the
distance of the estimated frontier to the observed DMUs.

The drawback of this method is that a reasonable estimate
of efficiency can be obtained only when T and q (number of
DMUs) are sufficiently large.

2.3. Chance-Constrained DEA. Chance-constrained pro-
gramming was first developed by Charnes and Cooper [5]
and Kall [7] as an operational research approach for opti-
mizing under uncertainty when some coefficients are
random variables distributed according to some laws of
probability. The CCP DEA models in the past generally
assumed that variations observed in the outputs follow
a normal distribution. Variations in inputs are assumed
to be the cause of inefficiency [12], while random noise
occurs in outputs. Since the distribution of inefficiency
is uncertain (although, theoretically assumed to be half-
normal or gamma), the chance-constraint formulation is not
applied to input constraints (inputs are held deterministic,
while outputs are stochastic). Olesen and Petersen [9] state
that the hypothesis concerning the amount of noise in
the data cannot be tested. Using panel data, variations in
the data can be dichotomized into noise and inefficiency.
Another variation of CCP DEA was introduced by Cooper
et al. [6] utilizing the “satisficing concepts.” The concept is
used to interpret managerial policies and rules in order to
determine the optimizing and satisficing actions, which are
distinguished from inefficiencies. Optimizing and satisficing
can be regarded as mutually exclusive events. The former
represents physical possibilities or endurance limits and the
latter represents aspirational levels.

All these CCP formulations have considered normal
distributions for the probability of staying within the con-
straints. This method is effective when qualitative data is
not available. However, expert opinion from management
cannot be discounted with regard to data dispersion from the
expected or correct values. Unfortunately, the current CCP
is strictly a quantitative analysis based on empirical data and
whose variations are said to be of a predefined distributional
form.

2.4. Assurance Region and Cone-Ratio Models. In an “unre-
stricted” DEA model, the weights are assigned to each DMU
such that it would appear as favourable as possible, which is
an inherent characteristic of DEA. Hence, there is a concern
when largely different weights may be assigned to the same
inputs and outputs in the LP solutions for different DMUs.
This motivated the development of weight-restricted models
such as the “assurance region” (AR) [13, 14], the “cone-ratio”
(CR) [15], and other variations of these models.

The motivation behind weight-restricted models is to
redefine the DEA frontier so as to make it as practical
as possible; that is, altering the inherent characteristic of
DEA when assigning small/large weights to certain inputs or
outputs is not realistic.On the contrary, the stochastic frontier
models redefine the frontier in the presence of noise or
data disparity. Stochastic approaches are designed to evaluate
DMUs based on the understanding that constraints may,
realistically, not always hold due to noise. Weight restrictions
are also applicable in stochastic approaches.
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Weight restriction models deal directly with the model’s
inconsistencies in a practical sense using qualitative informa-
tion, whereas stochastic models deal with data discrepancies
and inconsistencies using quantitative approaches to infer
to the degree of data disparity. Although the motivations
of these two methods are similar, the underlying objectives
for their developments are not the same. Both are valid
extensions of the normal DEAmodel in attempting to correct
the frontier.

The Assurance Region (AR) model was developed by
Thompson et al. [13] to analyze six sites for the location of a
physics lab. This approach imposes additional constraints in
the DEAmodel with respect to the magnitude of the weights.
The AR is defined to be the subset ofW, the weight space that
denotes the vectors of multipliers consisting of v and u, such
that any region outside the AR does not contain reasonable
input and output multipliers. An additional constraint for the
ratio of input weights [14] can be defined as
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The cone-ratio (CR)methodwas developed byCharnes et
al. [15] which allows for a closed convex cones for the virtual
multipliers. It is a more general approach compared to that of
the AR. In the AR model, there can only be two admissible
nonnegative vectors, one for the lower bound and the other
for the upper bound of the ratio of virtual weights. However,
in the CR case, there can be k admissible nonnegative vectors
for input weights and l admissible nonnegative vectors for
output weights; that is, the feasible region for the weights
is a polyhedral convex cone spanned by k and l admissi-
ble nonnegative direction vectors for inputs and outputs,
respectively,
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respectively.

3. Data Variations

3.1. Two Error Sources of Data Disparity Affecting Productivity
Analysis. Before we begin to make modifications to incor-
porate probability into the basic DEA model, it is crucial
that the types of errors are identified, which are sources of
data disparity. These can be segregated into 2 categories;
systematic and nonsystematic errors. Nonsystematic errors
are typically defined to be statistical noise, which are random
normal𝑁(0, 𝜎

2
) and independent and identically distributed

(i.i.d.).They will eventually average to zero. Systematic errors
are defined to be “the degree to which the measured variable
reflects the underlying phenomenon depend on its bias and
variance relative to the true or more appropriate measure”
[16]. Systematic errors or measurement errors are deemed
to have the most disparaging effects because they introduce
bias into the model. These may be caused by the lack
of information.

The design of the new DEA model is intended to take
into account the possibility of data disparity that affect
productivity analysis while preserving the advantages that
DEA offers in order to estimate the true level of efficiency.
Due to data disparity, normal DEA results may contain two
components of the error term. The first refers to statistical
noise which follows a normal distribution, while the second
refers to the technical inefficiency which is said to follow a
truncated normal or a half-normal distribution. This can be
achieved by relaxing the LP constraints to allow for these
variations which may provide a better approximation of the
level of efficiency.

The following general linear programming model illus-
trates the mathematical form of systematic and nonsystem-
atic errors as defined previously. Variation in the variable (𝑋)
of the objective function will result in different values for the
optimized coefficient (𝛽)

min
𝛽
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𝛽,
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𝛽 ≥ 𝑦,

𝛽 ≥ 0.

(4)

If the variation in 𝑋 is stochastic, then 𝑋 = 𝑥 + 𝜀; 𝜀 ∼
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denotes the variance-covariance matrix for 𝜀 [4].
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Four scenarios are illustrated later which describes sour-
ces of data disparity. The notations are as follows:

𝑥
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: observed input 𝑖 for 𝑖 = 1, . . . , 𝑚 for DMU
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,
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,
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𝑟
.

The following are equations defining the relationship between
the observed and true or expected values for both inputs
and outputs in a productivity analysis such as SFA where
measurement errors and/or random noise and inefficiencies
are a concern in parametric estimations:
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for some output 𝑗 for unit 𝑟 (considered for cases in which
there may be some bias in output levels)
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unrestricted in sign.
The following four scenarios illustrate the impact of

different errors and were constructed using the notations
given previously. These scenarios follow the definition by
Tomlinson [16].

Scenario I. Consider the following:
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With zero bias and variance, observed input value is the true
value ∴ 𝐸(𝑥
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) = 𝜇
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. This implies that the data is

100% accurate. The expected value is exactly the same as the
observed value. In reality, it is rare to have data with such
accuracy.

Scenario II. Consider the following:
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Bias is nonzero with zero variance; hence, errors are system-
atic. 𝐸(𝑥

𝑖𝑟
) is not an unbiased estimator of 𝑥

𝑖𝑟
. In this case,

systematic errors are a problem where inputs are concerned.
When measurement errors exist, the expected value is a
biased estimator of the observed value. This in turn causes

biases in DEA results. Empirical methods, such as DEA,
make no allowance for this error and evaluate DMUs based
strictly on the observed values. However, expectations of
the observed values can be determined qualitatively and be
incorporated into the LP.

Scenario III. Consider the following:
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Expected value of a constant is the constant itself. Variance
of a constant is zero. Hence Var(𝑥
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. Bias is zero but the variance is nonzero. Hence,

variations are due to statistical noise. A DMU that appears
efficient may in fact be utilizing an input-output production
mix that is less than optimal. Its seeming efficiency is caused
by a variation to its favour. Results obtained using empirical
models are prone to inaccuracy of this nature. However, the
expected value will converge over time to the true value in the
absence of bias.

Scenario IV. Consider the following:
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Bias and variances are nonzero. This implies that both
systematic and nonsystematic errors exist in the data. The
variance corresponds to some input 𝑖. The variable, 𝑥

𝑖𝑟
, is

affected by some random amount and some bias 𝑏𝑥
𝑖𝑟
. Hence,

𝐸(𝑥
𝑖𝑟
) is not an unbiased estimator of 𝑥

𝑖𝑟
. This scenario

corresponds to the drawback of empirical frontiers.
The term “measurement error” does not simply imply that

data had beenmisread or collected erroneously. According to
Tomlinson [16], it may also not be constant over time. The
inaccuracy of the data collected may be due to the lack of
implicit information which may or may not be quantifiable
but are deemed to have the most disparaging effects because
they introduce bias into the model.

3.2. Chance-Constraint Programming and DEA. Determinis-
tic methods such as DEA are not designed to handle cases
in which, due to uncertainty, constraints may be violated
although infrequently. Various methods have been employed
to transform the basic DEA approach to include stochastic
components. Two of the more popular methods are chance-
constraint programming (CCP) and stochastic DEA. An
extensive literature survey has revealed that CCP DEA has
always assumed a normal distribution. The objective of this
research is to redefine the probabilities employed in CCP
productivity analysis, which would accommodate problems
emanating from various scenarios where errors are inde-
pendent but convoluted without assuming any distributional
form.The independent and convoluted properties of the error
terms make it difficult to distinguish between them, and
hence, a distribution-free approach will be employed.
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The advantage of using CCP is that it maintains the
nonparametric form of DEA. It allows modeling of multiple
inputs and outputs with ease. There is no ambiguity in
defining a distribution or the interpretation of the results as
had been demonstrated in the Normal-Gamma parametric
SFA model [17]. CCP typically states that constraints do
not need to hold “almost surely” but instead hold with
some probability level. Uncertainty is represented in terms of
outcomes denoted by 𝜔. The elements 𝜔 are used to describe
scenarios or outcomes. All random variables jointly depend
on these outcomes. These outcomes may be combined into
subsets of Ω called events. 𝐴 represents an event and 𝐴

represents the collection of events. Examples of events may
include political situations, trade conditions, which would
allow us to describe the random variables such as costs and
interest rates. Each event is associated with a probability
𝑃(𝐴). The triplet (Ω, 𝐴, 𝑃) is known as a probability space.
This situation is often found in strategic models where the
knowledge of all possible outcomes in the future is acquired
through expert opinions. Hence, in a general form, CCP can
be written as

𝑃 {𝐴
𝑖
𝑥 (𝜔) ≥ ℎ

𝑖
(𝜔)} ≥ 𝛼

𝑖
, (12)

where 0 < 𝛼
𝑖
< 1 and 𝑖 = 1, . . . , 𝐼 index of the constraints that

must hold jointly.Theprevious probabilistic constraint can be
written in its expectational form (or deterministic equivalent)
where 𝑓𝑖 is an indicator of {𝜔 | 𝐴

𝑖
𝑥(𝜔) ≥ ℎ

𝑖
(𝜔)}:

𝐸
𝜔
(𝑓

𝑖
(𝜔, 𝑥 (𝜔))) ≥ 𝛼

𝑖
. (13)

The focus of this paper is on the further development
of DEA coupled with CCP. The benefit of applying CCP to
DEA is such that the multidimensional and nonparametric
form of DEA is maintained. To drop the a priori assumption
discussed in [9, 11, 18] regarding the distributional form
to account for possible data disparity, a distribution-free
method is introduced. In [11, 18], CCP DEA input-oriented
model is formulated on the basis that discrepancies in outputs
are due to statistical noise while those in inputs are caused by
inefficiency:

Min 𝑧
0
= 𝜃,

Subject to 𝑃 (𝑌𝜆 − 𝑦
0
≥ 0) ≥ 1 − 𝛼,

𝑋𝜆 − 𝜃𝑥
0
≤ 0,

1⃗𝜆 = 1,

𝜃, 𝜆 ≥ 0.

(14)

The CCP formulation shown in (14) is designed to
minimize the radial input contraction factor 𝜃, subject to the
constraints specified. CCP DEA models in the past generally
assume that the normal distribution suffices. For example, the
assumption that the variation shown previously is normal,

the formulation (14) can be written in the following vector
deterministic form (15):

Min 𝑧
0
= 𝜃,

Subject to 𝐸 (𝑌𝜆 − 𝑦
0
) − 1.645𝜎 ≥ 0,

𝑋𝜆 − 𝜃𝑥
0
≤ 0,

1⃗𝜆 = 1,

𝜃, 𝜆 ≥ 0,

(15)

where 𝑋 and 𝑌 denote the vectors of inputs and outputs,
respectively. Assuming that eachDMU is independent of oth-
ers, then the covariance equals zero. 𝜎 denotes the standard
deviation for 𝑌𝜆 − 𝑦

0
which is formulated as

√Var (𝑌𝜆 − 𝑦
0
)

= √Var (𝑦
1
𝜆
1
+ 𝑦

2
𝜆
2
+ ⋅ ⋅ ⋅ + 𝑦

𝑞
𝜆
𝑞
− 𝑦

0
),

(16)

where subscript 𝑞 denotes the number of DMUs. If the DMU
under evaluation is DMU

1
, then 𝑦

0
≡ 𝑦

1
, hence, (16) can be

written as

𝜎 = √(𝜆
1
− 1)

2 Var (𝑦
1
) + 𝜆

2

2
Var (𝑦

2
) + ⋅ ⋅ ⋅ + 𝜆2

𝑞
Var (𝑦

𝑞
).

(17)

If 𝜆
1
= 1 and 𝜆

𝑟 ̸= 1
= 0, then the efficiency scores calculated

in CCP will be the same as that of DEA. This does not
imply that all DEA scores will coincide with the CCP ones
(except for DMU

1
’s score). In this case the standard deviation

disappears.
The first constraint in (15) states that there is a slight

chance (i.e. 𝛼 = 0.05) that outputs of the observed unit
may exceed those of the best practice units with a very
small probability. 𝐸(𝑌𝜆 − 𝑦

0
) is determined based on the

assumption that the observed values are representative of
their mathematical expectation. The second constraint is
strictly deterministic which states that the best performers
cannot employ more than 𝜃𝑋

0
amount of inputs, and if they

do, they cannot be efficient and will not be included in the
reference set of best performers.

Using the same mathematical formulation shown in (14)
and (15), and by incorporating a distribution-free approach,
the DCF is established.

4. DEA-Chebyshev Model

The advantages of using DEA-Chebyshev model as an effi-
ciency evaluation tool are that it provides an approximation
of performance given that random errors and inefficiencies
do exist, and these deviations are considered, either through
expert opinion or through data inference. Nevertheless, the
results should always be subject tomanagement scrutiny.This
method also provides for ranking efficient DMUs.

4.1. Chebyshev’s Theorem. In a simplified explanation, the
Chebyshev theorem states that the fraction of the dataset
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lying within 𝜏 standard deviations of the mean is at least
1 − (1/𝜏

2
) where 𝜏 > 1.

DEA-Chebyshev model developed in this paper will not
be restricted to any one distribution but instead will assume
an unknown distribution. A distribution-free approach will
be used to represent the stochastic nature of the data. This
approach is applied to the basic DEA model using chance-
constraint programming. This distribution-free method is
known as the Chebyshev inequality. It states that

𝑃 (
𝑥 − 𝜇

 ≥ 𝜏𝜎) ≤
1

𝜏2
, (18a)

or equivalently

𝑃 (
𝑥 − 𝜇

 ≥ 𝜏) ≤
𝜎
2

𝜏2
. (18b)

Let a random variable x have some probability distribu-
tion of which we only know the variance (𝜎2) and the mean
(𝜇) [19]. This inequality implies that the probability of the
sample mean, 𝑥, falling outside the interval [𝜇 ± 𝜏𝜎] is at
most 1/𝜏2, where 𝜏 refers to the number of standard deviation
away from themean using the notation in [19].The one-sided
Chebyshev’s inequality can be written as

𝑃 (𝑥 − 𝜇 ≥ 𝜏) ≤
𝜎
2

𝜎2 + 𝜏2
(19)

as shown in [20].
Other methods considered to define the probabilities

for DEA-Chebyshev model were the distribution-free linear
constraint set (or linear approximation), the unit sphere
method, and the quantilemethod.Thesemethods were tested
to determine which of them would provide the best estimate
of the true boundary mentioned in [21]. The true boundary
(called set 𝑆) is defined to be a two-dimensional boundary
which is generated using some parametric function defined
as the chance-constrained set shown later:

𝑆 = {𝑋 = (𝑥
1
, . . . , 𝑥

𝑚
) | 𝑝𝑟 [𝐴𝑋 − 𝑏 ≤ 0] ≥ 𝛼; 𝑋 ≥ 0} ,

(20)

where 𝑏 and the vector 𝐴 = (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑚
) are random

variables. Let the function 𝐿(𝑋) be defined as 𝐿(𝑋) = 𝐴𝑋−𝑏,
and 𝐸[𝐿(𝑋)] and 𝜎[𝐿(𝑋)] denote the expected value and the
standard deviation of 𝐿(𝑋), respectively. In this example𝑚 =

2. Twenty-nine samples were generated.
The distribution-free approaches tested were the Cheby-

shev extended lemma (24), quantile method (21), linear
approximation (23), and unit sphere (22). The deterministic
equivalent of these methods can be written in the following
mathematical forms according to the notation used by [21].

Quantile method

𝑆
𝑄
(𝛼) = {𝑋 | 𝐸 [𝐿 (𝑋)] + 𝐾

𝛼
𝜎 [𝐿 (𝑋)] ≤ 0; 𝑋 ≥ 0} .

(21)

𝐾
𝛼
is known as the quantile of order 𝛼 of the standardized

variate of 𝐿(𝑋). If random variable, 𝑋, belongs to a class of
stable distributions, then the quantile method can be applied

successfully. All stable distributions share the common prop-
erties of being specified by the parameters 𝑈 and 𝑉 of the
general functional form𝐹[(𝑥−𝑈

1
)/𝑉

1
], . . . , 𝐹[(𝑥−𝑈

𝑙
)/𝑉

𝑙
] and

when convolutedwill again give us𝐹[(𝑥−𝑈)/𝑉]. Examples of
stable distributions are Binomial, Poisson, Chi-squared, and
Normal [NOLA99].

Unit sphere 𝑆
𝑆
(𝛼) = {𝑋 | √1𝑋2

≤ √
1

max (𝑎
1,ℎ
)
2

+max (𝑎
2,ℎ
)
2
} .

(22)

Linear approximation 𝑆
𝐿
(𝛼) = {𝑋 | 𝐴

∗
𝑋 ≤ 1} , (23)

where 𝑎
𝑔,ℎ

is an element amongst the 29 simulated samples of
𝑎
𝑔
= (𝑎

𝑔,1
, . . . , 𝑎

𝑔,𝐻
); 𝑔 = 1, . . . , 𝑚 (𝑔 = 2 in this example);

and 𝐻 = 𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒 = 29. Vector 𝐴∗ is defined as 𝐴∗ =

(max(𝑎
1,ℎ1

),max(𝑎
2,ℎ2

)):

Chebyshev 𝑆
𝑇
(𝛼) = {𝑋 | 𝐸 [𝐿 (𝑋)]

+√
𝛼

1 − 𝛼
⋅ 𝜎 [𝐿 (𝑋)] ≤ 0; 𝑋 > 0} .

(24)

Allen et al. have proven in their paper [21] that the quan-
tile method was the least conservative, while the Chebyshev
was the most conservative. When a method of estimation
provides relatively large confidence limits, the method is said
to be “conservative.” The advantage of those two methods
is that they both have the tendency to follow the shape
of the true (real) boundary more closely than the other
two methods, that is, unit sphere and linear approximation
[21]. Given that Chebyshev provides the most conservative
point of view and has the inclination to follow the shape of
the true boundary with no regard to distributional forms,
this method was chosen as the estimation for CCP DEA.
Although the error-free frontier (EFF) is unknown, we can,
at best, estimate its location or estimate its shape with respect
to the DEA frontier. The EFF represents the frontier where
measurement errors and random errors are not present, but
it does not imply absolute efficiency. This means that there
can be room for improvement even for the DMUs on the
EFF.The theoretical frontier represents the absolute attainable
production possibility set where there can no longer be
any improvements in the absence of statistical noise and
measurement errors. It is undefined due to the fact that
human performance limits are still undefined at the present
time.

Since, we do not want to place an a priori assumption
regarding which stable distribution best describes the ran-
dom variables in DEA, the Chebyshev theorem will be used.
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Thedeterministic equivalent of (20) byChebyshev’s extended
lemma is shown as (24).

Derivation of √𝛼/(1 − 𝛼) ⋅ 𝜎[𝐿(𝑋)] in (24). We use the one-
sided Chebyshev’s inequality and the notation used by [21]:

𝑃 (𝐿 (𝑋) − 𝐸 [𝐿 (𝑋)] ≥ 𝜏) ≤
𝜎
2

𝜎2 + 𝜏2
, (25)

which states that the probability that 𝐿(𝑋) will take on a
value that is greater than 𝜏 standard deviations away from its
mean, 𝐸[𝐿(𝑋)], is at most 1/(1+𝜏2). 𝛼 in chance-constrained
programming can be expressed in the general form:𝑃(𝐿(𝑋)−

𝐸[𝐿(𝑋)] ≤ 0) ≥ 𝛼. Hence,

1 − 𝛼 =
𝜎
2

𝜎2 + 𝜏2

⇒ 𝜏 = 𝜎√
𝛼

1 − 𝛼
.

(26)

Note that from here onwards as we discuss the DCF model,
for simplification and clarity we will denote 𝜏

𝛼
= 𝜏/𝜎.

A “k-flexibility function” is coined because 𝛼 is a value
that may be defined by the user (where k denotes the user’s
certainty of the estimate) or inferred from the industry data.
The unique property of 𝛼 is its ability to define 𝜏

𝛼
such that

it mimics the normal distribution given that random noise is
present or to includemanagement concerns and expectations
with regard to their perceived or expected performance levels.
This can overcome the problem of what economists coin as
“nuisance parameters.” These parameters can be problems
of controlling difficult-to-observe or unquantifiable factors
such as worker effort or worker quality. When firms can
identify and exploit opportunities in their environment,
organizational constraintsmay be violated [22]. BecauseDCF
allows for management input, the flexibility function can
approximate these constraint violations. The mathematical
formulation, implications for management, and practical
definition of 𝛼 will be explained later.

4.2. Assumptions in DEA-Chebyshev Model. Two general
assumptions have been made when constructing the model.
First, nuisance parameters (including confounding variables)
will affect efficiency scores causing them to differ from the
true performance level if they are not accounted for in the
productivity analysis. Second, variations in the observed vari-
ables can arise from both statistical noise and measurement
errors and are convoluted.

In the simulation to follow, as an extension to the
general assumptions mentioned previously, we will assume
that variations in outputs are negligible and will average
out to zero [11, 18]. The variations in inputs are assumed to
arise from statistical noise and inefficiency (inefficient use
of inputs). Both of these errors contribute to the possible
technical inefficiencies in DEA-efficient units. These possible
inefficiencies are not observed in DEA since it is an empir-
ical extreme point method. Using the same characteristics
defined in SFA, statistical noise and measurement errors are
said to be normally distributed V ∼ 𝑁(𝜇, 𝜎

2
), and inefficiency

is said to be half normally distributed 𝑢 ∼ 𝑁
+
(𝜇, 𝜎

2
). Thus,

the relationship between the expected inputs, 𝜇
𝑖𝑟
, versus the

observed, 𝑥obs
𝑖𝑟

, can be written as

𝑥
obs
𝑖𝑟

= 𝜇
𝑖𝑟
+ (V + 𝑢)

𝑖𝑟
, (27)

where (V + 𝑢)
𝑖𝑟
denotes the convoluted error terms of input

𝑖 for DMU
𝑟
.

The assumption regarding the disparity between the
observed and expected inputs is to illustrate the input-
oriented DEA-Chebyshev model. In input-oriented models,
the outputs are not adjusted for efficiency, but the inputs are
based on the weights applied to those DMUs that are efficient.
This assumption regarding errors can be reversed between
inputs and outputs depending on expert opinions and the
objective of the analysis (i.e., input versus output-oriented
models).

As an extension of Land et al. [11] and Forrester and
Anderson [18], DEA-Chebyshev model relaxes the distri-
butional assumption. In doing so, convolution of errors
can be accommodated without having to specify some
distributional form for both components. This method of
approximating radial contraction of inputs or expansion of
outputs is generally less computationally intensive than the
bootstrap method, as CCP can be directly incorporated into
the LP and solved in a similar fashion as the standard DEA
technique. The bootstrap method introduced by Simar and
Wilson [23] is more complex in that it requires certain
assumptions regarding the data generating process (DGP)
of which the properties of the frontier and the estimators
will depend upon. However, this method of bootstrapping
is nonparametric since it does not require any parametric
assumptions except those to establish consistency and the rate
of convergence for the estimators.

Theoretically, the DEA, algorithm allows the evaluation
of models containing strictly outputs with no inputs and vice
versa. In doing so, it neglects the fact that inputs are crucial
for the production of outputs. However, the properties of a
production process are such that they must contain inputs
in order to produce outputs. Let the theoretically attainable
production possibility set characterize the absolute efficient
frontier, which is unknown, be denoted as Ψ = {(𝑋, 𝑌) ∈

R𝑚+𝑛
| 𝑋 can produce 𝑌}. Thus, given that the set Ψ is not

presently bounded, the inclusion ΨEFF, ΨDEA, ΨDCF ⊂ Ψ is
always true where ΨEFF, ΨDEA, ΨDCF denote the attainable set
in Error-Free Frontier (EFF), DEA, and the DEA-Chebyshev
frontier, respectively. It is certain that a DMU cannot produce
outputs without inputs although the relationship between
them may not be clear. The following postulates regarding
the relationship between the three frontiers are expressed as
follows.

Postulate 1. The DEA frontier will converge to the EFF;
ΨDEA

𝑞→∞

→ ΨEFF according to the central limit theorem [24].
Appendices A, B, and C provide the details. However, both
DEA and DCF will exhibit a very slow rate of convergence to
the theoretical frontier as the number of dimensions increases
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or when the sample size is small. This is known as the curse
of dimensionality [25].

Postulate 2. The production possibility set of DEA is con-
tained in that of DCF{ΨDEA ⊂ ΨDCF}. The DEA and the
corrected frontier may likely overlap the EFF depending on
the degree of data variation observed and estimated.

4.3. Mathematical Formulation. An input-oriented BCC
model will be used to illustrate this work. Here, 𝜃 is defined
as the radial input contraction factor and 𝜆 is defined as the
column vector corresponding to the “best practice” units,
which will form the projection unto the frontier for an
inefficient unit

𝜃 = min{𝜃 | 𝑦
𝑗0
≤

𝑞

∑

𝑟=1

𝑦
𝑗𝑟
𝜆
𝑟
, 𝜃𝑥

𝑖0
≥

𝑞

∑

𝑟=1

𝑥
𝑖𝑟
𝜆
𝑟
,

𝑞

∑

𝑟=1

𝜆
𝑟
= 1, 𝜆

𝑟
≥ 0} .

(28)

Consider the following chance constraint sequence as defined
by Allen et al. [21]:

𝑆 = {�̆� = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
) | 𝑃(

𝑞

∑

𝑟=1

𝜆
𝑟
𝑥
𝑖𝑟
− 𝜃𝑥

𝑖0
≤ 0) ≥ 𝛼;

𝜃 ≥ 0, 𝑥
𝑖𝑟
≥ 0, ∀𝑟 = 1, . . . , 𝑞} ,

(29)

where 𝛼 is a real number such that 0 ≤ 𝛼 ≤ 1 for all 𝑗 =

1, . . . , 𝑛 and for all 𝑖 = 1, . . . , 𝑚.
Since it is difficult to establish a specific form of distribu-

tion with empirical data due to the convolution of different
types of errors, a distribution-free approach is taken. In
this case, the Chebyshev one-sided inequality [21] will be
applied to convert (29). A deterministic equivalent can be
approximated to (30) for the 𝑖th input of DMU

𝑟
:

𝑆
𝐶
(𝛼) = {�̆� | 𝐸(∑

𝑟

𝑥
𝑖𝑟
𝜆
𝑟
− 𝜃𝑥

𝑖0
) ± 𝜎

𝑖
𝜏
𝛼
≥ 0,

𝜃 ≥ 0, 𝑥
𝑖𝑟
≥ 0 ∀𝑟} ,

(30)

where 𝜎
𝑖

= √var(∑
𝑟
𝜆
𝑟
𝑥
𝑖𝑟
− 𝜃𝑥

𝑖0
) =

√𝜆
2

1
var(𝑥

𝑖1
) + ⋅ ⋅ ⋅ + 𝜆2

𝑞
var(𝑥

𝑖𝑞
) + 𝜃2var(𝑥

𝑖0
) and 0 < 𝛼 ≤ 1,

with strict inequality on the left hand side. For example,
if 𝑟 = 1, then 𝑥

𝑖0
= 𝑥

𝑖1
; hence, 𝜎

𝑖
is calculated as 𝜎

𝑖
=

√(𝜆
1
− 𝜃)

2var(𝑥
𝑖1
) + ⋅ ⋅ ⋅ + 𝜆2

𝑞
var(𝑥

𝑖𝑞
). Based on the

assumption that DMUs are independent of each other,
then var(𝑥

𝑖𝑟
) = 𝑐, for all 𝑟 = 1, . . . , 𝑞 where 𝑐 denotes some

constant and cov(𝑥
𝑖𝑟
, 𝑥
𝑖𝑙 ̸= 𝑖𝑟

) = 0, for all 𝑟, 𝑙. The value for
𝜏
𝛼
can be defined as

Let 𝜏
𝛼
= √

𝛼

1 − 𝛼
, (31)

where 𝛼 denotes the probability of staying within the
tolerance region defined using the one-sided Chebyshev’s
inequality. As 𝛼 increases, 𝜏

𝛼
and the standard deviation will

also increase; hence, it becomes more likely that the EFF will
be within the confidence limits.

The value of 𝛼 can be defined such that the 𝜏
𝛼
will be

equal to or less than 1.645 so that DCF can provide a less
conservative estimate of the upper and lower limits of the
frontier when compared to 𝑧

0.05
= 1.645. The standard

normal distribution value 𝑧
0.05

= 1.645 has been used in the
previous CCP efficiency evaluation methodology in [11, 26].
The reasoning behind wanting a less conservative estimation
is because data collected will more likely be accurate than
inaccurate. When 𝛼 ≥ 0.99, then 𝜏

𝛼
increases exponentially

into infinity. For 0.7 < 𝛼 < 0.75, note that 𝜏
0.7

< 𝑧
0.05

<

𝜏
0.75

; 𝛼 can be defined such that DEA-Chebyshev model
provides less conservative estimates. Taking a glance at the
CCP DEA developed by Land et al. [11], the results obtained,
when assuming a normal distribution, can be shown to
be drastically different from that of the expected frontier
depending on the level of data disparity.

The deterministic LP formulation for DEA-Chebyshev
model can be written in the following mathematical form:

Min
𝜆

𝜃

Subject to 𝐸(

𝑞

∑

𝑟=1

𝑥
𝑖𝑟
𝜆
𝑟
− 𝜃𝑥

𝑖0
) ± 𝜎

𝑖
𝜏
𝛼
≤ 0,

𝑞

∑

𝑟=1

𝑦
𝑗𝑟
𝜆
𝑟
− 𝑦

𝑗0
≥ 0,

𝑞

∑

𝑟=1

𝜆
𝑟
= 1,

𝜆
𝑟
≥ 0 ∀𝑟,

𝜃 ≥ 0.

(32)

Let 𝜏
𝛼
be an estimate for 𝜏

𝛼
which is defined as

𝜏
𝛼
= √

𝛼

1 − 𝛼
, (33)

where 𝛼 is a value based on management’s expectations
or is inferred from a time series of data which has been
transformed into a single value. The model shown in (32)
can also be modified such that only discretionary inputs are
considered for stochastic treatment [27].

The value of 𝛼 can be defined such that its values are
restricted between 0.5 (the point of inflection) and 0.6 if no
qualitative information regarding expectations is available,
but we are almost certain that the data obtained is accurate.
The value of 𝜏

𝛼
is then approximated as 1 ≤ 𝜏

𝛼
≤ 1.2247. In

this case, the results produced will be less conservative than
that of the normal distribution at 𝛼 = 0.05 (i.e., 𝑧

0.05
= 1.645).

For 𝛼 < 0.5, a deterministic model will suffice since the DEA-
Chebyshev model will provide the same results as that of the
DEA.
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4.4. The “k-Flexibility Function” 𝜏
𝛼
: Unique Management

Interpretation. It may not be sufficient to develop a model
that technically sounds with appropriate theoretical proofs.
We cannot discount the fact that management expertise can
play an important role in defining the corrected frontier nor
should we cause the user to reject the model. Hence, DEA-
Chebyshev model is designed to incorporate management
input, which can become a crucial factor in the modeling
process. One of the major advantages of this model is its
flexibility as compared to models that require a distributional
form. It can provide crucial information to management
based upon their expertise and experience in their own field
of specialization thereby redefining the efficient frontier.

In DEA-Chebyshev model, 𝛼 has a unique management
interpretation and implication. It can be defined as the
management’s opinion of the expected degree of competence
with regard to either input or output usage. In other words,
it is the estimated degree of deviation from the observed level
of performance. The smaller the value of 𝛼 is, the more
certain that the data is accurate and that little improvements
can be made ceteris paribus or that expectations have been
approximatelymet.When 𝛼 = 0, thenDCF = DEA, implying
thatmanagement is certain that the data they have obtained is
accurate (no need to account for deviation or random effects
or inefficiency) or that present expectations have been met.
If 𝛼 ∼ 1, then it implies that the data obtained is extremely
erroneous or that expectations are not met.

The value for 𝛼 is an aggregate of two factors (or two
events). First, the certainty of inaccuracy is denoted by
𝑃(𝐸), and second, the translated percentage of inaccuracy is
denoted by 𝑃(𝐷). Let 𝑃(𝐸) denote the true/false existence of
errors.When𝑃(𝐸) = 1, it implies that the data is inaccurate. If
𝑃(𝐸) = 1, then 0.5 < 𝑃(𝐷) < 1; otherwise, 𝑃(𝐷) = 0. In other
words, event E implies D; when the data is 100% accurate,
then there is no deviation. Therefore, 𝛼 can be defined:

𝛼 = 𝑃(
𝐷

𝐸
) =

𝑃 (𝐷 ∩ 𝐸)

𝑃 (𝐸)
=
𝑃 (𝐷)

𝑃 (𝐸)
. (34a)

Proof. 𝑃(𝐷) = 𝑃(𝐷 ∩ 𝐸) + 𝑃(𝐷 ∩ 𝐸

), since 𝑃(𝐷 ∩ 𝐸


) = 0,

then 𝑃(𝐷) = 𝑃(𝐷 ∩ 𝐸).
Hence, for 𝑃(𝐸) = 1, 𝛼 can be approximated as

𝛼 ∼
𝑃 (𝐷)

𝑃 (𝐸)
+ 𝑘 = 𝑃 (𝐷) + 𝑘. (34b)

The constant, 𝑘 ≥ 0, represents the degree of (the expert’s)
uncertainty.

When deviation due to errors is negligible, then
% 𝑑𝑒V𝑖𝑎𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑜𝑏𝑠𝑒𝑟V𝑒𝑑 ∼0. Hence 𝛼 will be at most
0.5. 𝑃(error) = 0 implying that the data is error-free, thus
% deviation from 𝑜𝑏𝑠𝑒𝑟V𝑒𝑑 = 0. In this case, 𝛼 = 0 and
DCF = DEA. Based on (31), the value for 𝜏

𝛼
should be

restricted to not be less than 1, and therefore, 𝛼 ≥ 0.5.
Otherwise, the confidence limits become too small, which
implies that DCF ≅ DEA. We do not want this to occur
because DCF should only equal DEA when there is absolute
certainty that the data is error-free. Hence, 𝑃(𝐷) must be
defined such that 0.5 ≤ 𝛼 < 1 (34b) for 𝑃(𝐸) = 1 and zero
otherwise.

Table 1: Control group: the error-free production units.

DMU Output Input 1 Input 2
1 12.55 2 12
2 10.43 3 8
3 9.68 4 6
4 9.53 5 4.8
5 9.68 6 4
6 10.01 7 3.43
7 10.43 8 3
8 11.45 10 2.4
9 11.99 11 2.18
10 12.55 12 2
11 13.12 13 1.85
12 14.25 15 1.6
13 15.36 17 1.41
14 16.46 19 1.26
15 16.99 20 1.2

4.5. Approximating the Error-Free Frontier: Development
of the DCF. Unlike the straightforward method in which
DEA scores are calculated, DEA-Chebyshev model efficiency
scores are slightly more complicated to obtain. There are five
stages to the determination of the best efficiency rating for a
DMU.

Stage I. Determining the DEA efficient units

Stage II. Establishing the upper and lower limits for
efficiency scores using DEA-Chebyshev model where the
value of 𝛼 is defined to reflect management concerns

Stage III. Establishing the corrected frontier from the
upper and lower limits calculated in stage II for DEA
efficient units.The upper and lower limits of efficiency scores
established by DEA-Chebyshev model for each of the DEA-
efficient units form the confidence bounds for the error-
free efficiency scores. These limits determine the most likely
location of the EFF. The following are characteristic of DEA-
Chebyshev model efficiency scores.

(1) An efficient DMU with a smaller standard deviation
implies a smaller confidence region in which the EFF
resides, hence, this particular DMU is considered to
be more robustly efficient since it is closer to the EFF.

(2) It can be conjectured that for DEA efficient DMUs,
𝜃
𝑈
≤ 1 and 𝜃

𝐿
≥ 1 will always be true (not so for the

inefficient units).

(3) When 𝜃
𝐿
≥ 𝑐 where c is a very large constant, it may

be an indication that the DMU is likely an outlier.

(4) In general, the mean efficiency score in DEA-Cheby-
shev model is such that 𝜃 = (𝜃

𝑈
+ 𝜃

𝐿
)/2 ≈ 𝜃DEA,

unless the third characteristic previously mentioned
is observed.
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Table 2: Four experimental groups with variations and inefficiencies introduced to both inputs while keeping outputs constant.

DMU Output Experimental Grp 1 Experimental Grp 2 Experimental Grp 3 Experimental Grp 4
Input 1 Input 2 Input 1 Input 2 Input 1 Input 2 Input 1 Input 2

1 12.55 3.16 12.5 2.34 12.85 2.91 12.6 2.68 13.92
2 10.43 3.69 9.08 1.6 10.07 2.34 8.23 3.32 8.34
3 9.68 4.88 8.41 3.58 5.97 6.1 6.43 4.25 6.53
4 9.53 5.27 5.31 7.28 9.43 7.84 3.96 6.44 4.25
5 9.68 8.39 7.43 6.98 5.9 7.64 2.96 9.93 3.55
6 10.01 9.17 3.8 7.04 5.57 9.6 4.01 10.46 4.98
7 10.43 10.92 3.11 9.6 3.26 7.71 2.9 6.29 2.95
8 11.45 13.14 3.95 11.41 1.88 10.38 3.14 11.71 3.05
9 11.99 9.33 2.85 11.53 4.75 13.88 0.59 13.25 2.47
10 12.55 10.38 7.43 13.94 2.46 12.55 4.44 12.19 3.73
11 13.12 12.67 1.69 12.46 4.79 13.53 1.1 13.24 1.1
12 14.25 17.59 4.8 15.71 2.09 16.57 2.27 14.14 2.08
13 15.36 17.35 4.23 17.33 4.44 15.35 1.38 15.47 2.25
14 16.46 19.13 1.4 20.33 3.49 19.11 0.06 18.67 0.57
15 16.99 19.98 2.51 19.31 4.85 20.57 1.21 19.32 2.59

Table 3: DEA and CCP efficiency evaluation for simulation 1.

DEA
𝜃

∑
𝑞

𝑅=1
𝜆
𝑟,𝑅

CCP (U)
𝜃
𝑈

CCP

CCP (L)
𝜃
𝐿

CCP

Average
𝜃CCP

CCP
𝜃CCP

∑
𝑞

𝑅=1
𝜆
𝑈

𝑟,𝑅
∑
𝑞

𝑅=1
𝜆
𝐿

𝑟,𝑅
∑
𝑞

𝑅=1
𝜆
𝑟,𝑅

DMU1 1 1.674 0.795 1.52 1.158 1 1.834 (8) 2.124 (6) 1.979
DMU2 1 1.58 0.762 1.259 1.011 1 1.31 (3) 1.18 (5) 1.245
DMU3 0.892 0 0.694 1.074 0.884 0.884 0 0.323 0.162
DMU4 1 2.56 0.69 1.277 0.984 0.984 3.458 (7) 1.785 (8) 2.621
DMU5 0.679 0 0.481 0.852 0.666 0.666 0 0 0
DMU6 0.909 0 0.706 1.089 0.898 0.898 0 0.5463 0.273
DMU7 0.882 0 0.653 1.094 0.873 0.873 0 0.5199 0.26
DMU8 0.715 0 0.538 0.885 0.711 0.711 0 0 0
DMU9 1 4.778 0.777 1.238 1.008 1 4.876 (10) 2.415 (9) 3.645
DMU10 0.787 0 0.665 0.894 0.779 0.779 0 0 0
DMU11 1 1.105 0.82 1.593 1.206 0.91 0.0996 (3) 2.37 (9) 1.235
DMU12 0.749 0 0.666 0.819 0.743 0.743 0 0 0
DMU13 0.879 0 0.772 0.962 0.867 0.867 0 0 0
DMU14 1 2.302 0.912 2.154 1.533 1 1.532 (4) 2.134 (6) 1.833
DMU15 1 1 0.924 2.906 1.915 1 1.892 (2) 1.601 (5) 1.747

5. Simulation

Five data sets, each containing 15DMUs in a two-input one-
output scenario, were generated in order to illustrate the
approximation of the EFF using the DEA-Chebyshev model.
This will demonstrate the proximity of the DCF to the EFF.
A comparison is drawn between the results provided by
the DCF, DEA, and the CCP input-oriented VRS models as
compared against the EFF.

5.1. Step I: Simulation: The Data Generating Process. The first
data set shown in Table 1 is known as the control group.

It contains two inputs and one output generated using a
logarithmic production function of the following form:

𝑦 = 𝛽
0
+ 𝛽

1
ln𝑥2

1
+ 𝛽

2
ln𝑥2

2
, (35)

where 𝛽
0
is some constant and𝛽

1
and 𝛽

2
are arbitrary weights

or coefficients assigned to inputs. Input 1 (𝑥
1
)has been chosen

arbitrarily and input 2 (𝑥
2
) is a function of 𝑥

1
; 𝑥
2
= 𝑐(1/𝑥

1
),

where 𝑐 is some arbitrary constant; in this case 𝑐 = 24.
This is to ensure that the frontier generated by the control
group contains only efficient units and is convex. The linear
convex combination in EFF consists of discrete production
possibility sets defined for every individual DMU. Output
(𝑦) is then calculated using the equation shown in (35)
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Table 4: DEA and CCP efficiency evaluation for simulation 2.

DEA
𝜃

∑
𝑞

𝑅=1
𝜆
𝑟,𝑅

CCP (U)
𝜃
𝑈

CCP

CCP (L)
𝜃
𝐿

CCP

Average
𝜃CCP

CCP
𝜃CCP

∑
𝑞

𝑅=1
𝜆
𝑈

𝑟,𝑅
∑
𝑞

𝑅=1
𝜆
𝐿

𝑟,𝑅
∑
𝑞

𝑅=1
𝜆
𝑟,𝑅

DMU1 1 1.222 0.803 1.702 1.252 1 1.61 (6) 1.449 (5) 1.53
DMU2 1 1 0.759 1.924 1.341 0.879 0.875 (2) 1.117 (6) 0.996
DMU3 1 4.377 0.699 1.329 1.014 1 4.205 (8) 2.998 (7) 3.602
DMU4 0.593 0 0.425 0.764 0.595 0.595 0 0 0
DMU5 0.822 0 0.615 1.012 0.814 0.814 0 0.0678 0.034
DMU6 0.848 0 0.639 1.038 0.839 0.839 0 0.3006 0.15
DMU7 0.948 0 0.73 1.164 0.947 0.947 0 0.7558 0.378
DMU8 1 2.872 0.78 1.629 1.204 1 3.263 (10) 2.305 (10) 2.784
DMU9 0.843 0 0.727 0.963 0.845 0.845 0 0 0
DMU10 0.915 0 0.779 1.243 1.011 0.889 0 0.7534 0.377
DMU11 0.917 0 0.789 1.026 0.907 0.907 0 0.0958 0.048
DMU12 1 3.074 0.847 1.64 1.243 1 2.603 (6) 2.132 (8) 2.367
DMU13 0.941 0 0.856 1.033 0.944 0.944 0 0.1427 0.071
DMU14 1 1 0.888 1.439 1.163 0.944 0.259 (2) 1.264 (4) 0.761
DMU15 1 1.455 0.922 1.514 1.218 1 2.186 (5) 1.62 (5) 1.903

Table 5: DEA and CCP efficiency evaluation for simulation 3: if the data contains small nonsystematic errors, the DEA model outperforms
the CCP. CCP works well under conditions where inefficiency has not been partially offset by noise.

DEA
𝜃

∑
𝑞

𝑅=1
𝜆
𝑟,𝑅

CCP (U)
𝜃
𝑈

CCP

CCP (L)
𝜃
𝐿

CCP

Average
𝜃CCP

CCP
𝜃CCP

∑
𝑞

𝑅=1
𝜆
𝑈

𝑟,𝑅
∑
𝑞

𝑅=1
𝜆
𝐿

𝑟,𝑅
∑
𝑞

𝑅=1
𝜆
𝑟,𝑅

DMU1 1 1 0.794 1.566 1.18 1 1.136 (4) 1.283 (2) 1.20945
DMU2 1 1.901 0.731 1.603 1.167 1 3.148 (11) 1.305 (4) 2.22655
DMU3 0.845 0 0.659 1.003 0.831 0.831 0 0 0
DMU4 0.898 0 0.67 1.079 0.874 0.874 0 0 0
DMU5 1 2.986 0.728 1.235 0.982 0.982 0 (0) 2.137 (7) 1.0685
DMU6 0.779 0 0.571 0.954 0.762 0.762 0 0 0
DMU7 1 2.704 0.725 1.24 0.982 1 5.681 (10) 2.598 (7) 4.13975
DMU8 0.877 0 0.705 1.028 0.867 0.867 0 0 0
DMU9 1 1 0.791 2.408 1.599 0.896 0 (0) 1.963 (10) 0.98141
DMU10 0.779 0 0.664 0.88 0.772 0.772 0 0 0
DMU11 1 1 0.799 1.298 1.048 0.899 0 0.6928 0.3464
DMU12 0.814 0 0.674 0.926 0.8 0.8 0 0 0
DMU13 1 2.409 0.893 1.161 1.027 0.947 2.634 (8) 0.451 (3) 1.54245
DMU14 1 1 0.936 29.92 15.43 0.968 0.585 (2) 3.528 (6) 2.05655
DMU15 1 1 0.926 2.77 1.848 1 1.816 (2) 1.041 (2) 1.42865

from a discrete set of inputs where 𝛽
0
, 𝛽
1
, and 𝛽

2
have been

arbitrarily defined and are fixed for the all groups (control
and experimental). The control group is one that contains
no measurement errors or statistical errors and no inefficient
DMUs. It will be the construct of the EFF.

The experimental groups are generated from the control
group with the error components.Their outputs are the same
as the control groups and are held deterministic, while inputs
are stochastic containing confounded measurement errors
distributed as half-normal nonzero inefficiency 𝑁

+
(𝜇, 𝜎

2
)

and statistical noise𝑁(0, 1)

𝑦 ∼ 𝛽
0
+ 𝛽

1
ln𝑥2

1
+ 𝛽

2
ln𝑥2

2
. (36a)

In (36a), inputs are confounded with random errors and
inefficiency:

𝑥
𝑖
= 𝑥

𝑖
+ 𝜀

𝑖
, (36b)

where 𝜀 = V + 𝑢. Variability in the inputs across simulations
is produced by different arbitrarily chosen 𝜇 and 𝜎 for the
inefficiency component which is distributed half normally;
𝑢 ∼ 𝑁

+
(𝜇, 𝜎

2
) for each simulation. Table 2 shows the details.

5.2. Step II: Establishing Efficiency Scores: DEA, DEA-
Chebyshev Model, and CCP Efficiency Evaluation. The DEA
results were calculated using ProDEA, while CCP and
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Table 6: DEA and CCP efficiency evaluation for simulation 4.

DEA
𝜃

∑
𝑞

𝑅=1
𝜆
𝑟,𝑅

CCP (U)
𝜃
𝑈

CCP

CCP (L)
𝜃
𝐿

CCP

Average
𝜃CCP

CCP
𝜃CCP

∑
𝑞

𝑅=1
𝜆
𝑈

𝑟,𝑅
∑
𝑞

𝑅=1
𝜆
𝐿

𝑟,𝑅
∑
𝑞

𝑅=1
𝜆
𝑟,𝑅

DMU1 1 1.036 0.797 1.613 1.205 1 1.182 (7) 1.383 (3) 1.283
DMU2 1 1 0.726 1.294 1.01 0.863 1.954 (6) 0.911 (3) 1.432
DMU3 1 1.255 0.773 1.207 0.99 0.99 0 (0) 0.715 (4) 0.358
DMU4 0.899 0 0.667 1.129 0.898 0.898 0 0.939 0.469
DMU5 0.747 0 0.462 0.99 0.726 0.726 0 0 0
DMU6 0.6 0 0.428 0.815 0.622 0.622 0 0 0
DMU7 1 5.52 0.712 1.367 1.039 1 7.079 (13) 3.819 (10) 5.449
DMU8 0.754 0 0.57 0.981 0.775 0.775 0 0 0
DMU9 0.774 0 0.601 1.013 0.807 0.807 0 0.018 0.009
DMU10 0.818 0 0.696 0.929 0.812 0.812 0 0 0
DMU11 1 2.009 0.797 1.781 1.289 0.899 0 (0) 2.338 (9) 1.169
DMU12 0.969 0 0.829 1.079 0.954 0.954 0 0.518 0.259
DMU13 1 1.87 0.935 1.098 1.017 0.968 1.455 (3) 0.506 (3) 0.981
DMU14 1 1.31 0.912 3.899 2.406 1 1.303 (5) 2.734 (7) 2.018
DMU15 1 1 0.922 2.743 1.832 1 2.028 (3) 1.119 (2) 1.573

Table 7: Qualitative information: determining the value for 𝛼.

Simulation 1
Largest % deviation from the expected level of performance of the4 simulations

𝛼 ∼
1 + (0.112 + 0.282)

2
+ 𝑘 ∼ 0.75

∴ 𝜏
𝛼
= 1.732

Simulation 2
𝛼 ∼

1 + (0.067 + 0.312)

2
+ 𝑘 ∼ 0.74

∴ 𝜏
𝛼
= 1.687

Simulation 3
Smallest % deviation from the expected performance level of the 4 simulations

𝛼 ∼
1 + (0.118 + 0.132)

2
+ 𝑘 ∼ 0.675

∴ 𝜏
𝛼
= 1.441

Simulation 4
𝛼 ∼

1 + (0.092 + 0.23)

2
+ 𝑘 ∼ 0.72

∴ 𝜏
𝛼
= 1.604

Note that in the simulations, the correction factor is set to 𝑘 ∼ 0.05 which implies that the user may have underestimated by 5%. Note that the value for 𝑘 can
be zero. The values are calculated as the perceived inefficiency divided by the observed values.

DEA-Chebyshev model results were calculated using Math-
Cad. The CCP LP formulation follows that from [11, 18], the
upper and lower bounds for the CCP frontier are

𝜃
𝑈

CCP = min{𝜃𝑈 | 𝑦
𝑗0
≤

𝑞

∑

𝑟=1

𝑦
𝑗𝑟
𝜆
𝑟
, 𝐸 (𝜃

𝐿
𝑥
𝑖0
−

𝑞

∑

𝑟=1

𝑥
𝑖𝑟
𝜆
𝑟
)

−1.645𝜎 ≥ 0,

𝑞

∑

𝑟=1

𝜆
𝑟
= 1, 𝜆

𝑟
≥ 0} ,

(37a)

𝜃
𝐿

CCP = min{𝜃𝐿 | 𝑦
𝑗0
≤

𝑞

∑

𝑟=1

𝑦
𝑗𝑟
𝜆
𝑟
, 𝐸 (𝜃

𝐿
𝑥
𝑖0
−

𝑞

∑

𝑟=1

𝑥
𝑖𝑟
𝜆
𝑟
)

+1.645𝜎 ≥ 0,

𝑞

∑

𝑟=1

𝜆
𝑟
= 1, 𝜆

𝑟
≥ 0} .

(37b)

Table 3 shows the results of the efficiency analysis for the
DEA and CCP models. The 𝜆-conditions which CCP must
satisfy will be the same for the DCF. The value, ∑𝑞

𝑅=1
𝜆
𝑟,𝑅
,

for CCP is approximately the same as that for the DCF.
Although DMU11 is DEA efficient, it is not CCP efficient
given that is has violated one of the two 𝜆-conditions. Note
that∑𝑞

𝑅=1
𝜆
𝑟,𝑅

= (∑
𝑞

𝑅=1
𝜆
𝑈

𝑟,𝑅
+∑

𝑞

𝑅=1
𝜆
𝐿

𝑟,𝑅
)/2 shown in Tables 3,

4, 5, and 6.
In this simulation, because we do expect data collected

to be reasonably reliable, a less conservative model would
be a better choice. Conservative models tend to provide
results with greater standard deviation and therefore produce
an estimate with less accuracy. The four simulations were
designed to test CCP, DEA, and DEA-Chebyshev model to
determine the accuracy of the results obtained in comparison
to the EFF. The results for DEA, CCP, and DCF for all four
simulations using the values of 𝛼 can be found in Tables 3, 4,
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Table 8: DEA-Chebyshev model efficiency analysis from simulation 1 at 𝛼 = 0.75.

𝜃
𝑈

𝛼=0.75

Upper
bounds

𝜃
𝐿

𝛼=0.75

Lower
bounds

∑
𝑞

𝑅=1
𝜆
𝑈

𝑟,𝑅
∑
𝑞

𝑅=1
𝜆
𝐿

𝑟,𝑅
∑
𝑞

𝑅=1
𝜆
𝑟,𝑅

St. dev (𝜃) 𝜃
𝛼=0.75

DMU1 0.786 1.548 1.85 (8) 2.127 (6) 1.988 (0.63) 0.539 1
DMU2 0.751 1.272 1.297 (3) 1.184 (5) 1.24 (0.83) 0.368 1
DMU3 0.683 1.082 0 0.357 0.179 0.282 0.883
DMU4 0.673 1.287 3.491 (7) 1.72 (8) 2.605 (0.02) 0.434 0.98
DMU5 0.47 0.858 0 0 0 0.275 0.664
DMU6 0.696 1.096 0 0.591 0.295 0.283 0.896
DMU7 0.643 1.104 0 0.547 0.274 0.326 0.874
DMU8 0.531 0.892 0 0 0 0.255 0.712
DMU9 0.767 1.249 4.839 (10) 2.363 (9) 3.601 (0.03) 0.341 1
DMU10 0.659 0.898 0 0 0 0.169 0.779
DMU11 0.813 1.628 0.101 (3) 2.328 (9) 1.214 (0.006) 0.577 0.906
DMU12 0.662 0.822 0 0 0 0.113 0.742
DMU13 0.768 0.965 0 0 0 0.14 0.867
DMU14 0.906 2.225 1.53 (4) 2.193 (8) 1.862 (0.55) 0.932 1
DMU15 0.92 3.232 1.892 (2) 1.592 (5) 1.742 (0.75) 1.635 1

Table 9: DEA-Chebyshev model efficiency analysis from simulation 2 at 𝛼 = 0.74.

𝜃
𝑈

𝛼=0.75

Upper
bounds

𝜃
𝐿

𝛼=0.75

Lower
bounds

∑
𝑞

𝑅=1
𝜆
𝑈

𝑟,𝑅
∑
𝑞

𝑅=1
𝜆
𝐿

𝑟,𝑅
∑
𝑞

𝑅=1
𝜆
𝑟,𝑅

St. dev (𝜃) 𝜃
𝛼=0.75

DMU1 0.793 1.739 1.787 (8) 1.45 (5) 1.619 (0.5) 0.669 1
DMU2 0.748 1.964 0.809 (1) 1.178 (7) 0.994 (0.25) 0.86 0.874
DMU3 0.684 1.342 4.027 (8) 2.832 (7) 3.429 (0.05) 0.465 1
DMU4 0.417 0.771 0 0 0 0.25 0.594
DMU5 0.604 1.02 0 0.115 0.058 0.294 0.812
DMU6 0.628 1.047 0 0.337 0.169 0.296 0.837
DMU7 0.719 1.174 0 0.764 0.382 0.322 0.947
DMU8 0.769 1.657 3.568 (10) 2.269 (10) 2.918 (0.08) 0.627 1
DMU9 0.719 0.967 0 0 0 0.176 0.843
DMU10 0.78 1.264 0 0.794 0.397 0.342 0.89
DMU11 0.782 1.03 0 0.115 0.057 0.175 0.906
DMU12 0.84 1.664 2.26 (5) 2.103 (8) 2.182 (0.83) 0.582 1
DMU13 0.852 1.037 0 0.152 0.076 0.131 0.944
DMU14 0.887 1.46 0.646 (1) 1.273 (4) 0.959 (0.08) 0.405 0.943
DMU15 0.918 1.556 1.904 (5) 1.617 (5) 1.761 (0.29) 0.452 1

5, 6, 8, 9, 10, and 11. The upper (38a) and lower (38b) bounds
for the constraints in the DCF formulation are given as

𝐸(𝜃
𝑈
𝑥
𝑖0
−

𝑞

∑

𝑟=1

𝑥
𝑖𝑟
𝜆
𝑟
) − 𝜏

𝛼
𝜎 ≥ 0, (38a)

𝐸(𝜃
𝐿
𝑥
𝑖0
−

𝑞

∑

𝑟=1

𝑥
𝑖𝑟
𝜆
𝑟
) + 𝜏

𝛼
𝜎 ≥ 0. (38b)

When 𝛼 increases, 𝜏
𝛼
𝜎 also increases and so will the spread

between the upper and lower bounds of 𝜃.
When the degree of deviation from observed perfor-

mance levels is available, the results generated using DEA-
Chebyshevmodel are generally amore precise approximation
of the EFF compared to CCP, which assumes the normal
distribution. From the simulations, it has been shown that the
alpha values based on the deviation from the observed level of
performance consistently produce the best approximations.
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Table 10: DEA-Chebyshev model efficiency analysis from simulation 3 at 𝛼 = 0.675.

𝜃
𝑈

𝛼=0.675

Upper
bounds

𝜃
𝐿

𝛼=0.675

Lower
bounds

∑
𝑞

𝑅=1
𝜆
𝑈

𝑟,𝑅
∑
𝑞

𝑅=1
𝜆
𝐿

𝑟,𝑅
∑
𝑞

𝑅=1
𝜆
𝑟,𝑅

St. dev (𝜃) 𝜃
𝛼=0.675

DMU1 0.794 1.566 1.073 (3) 1.356 (2) 1.214 (0.48) 0.4796 1
DMU2 0.731 1.603 2.528 (9) 1.47 (7) 1.999 (0.006) 0.5503 1
DMU3 0.659 1.003 0 0 0 0.213 0.833
DMU4 0.67 1.079 0 0.461 0.23 0.255 0.877
DMU5 0.728 1.235 0.377 (1) 2.111 (8) 1.244 (0.06) 0.3195 0.985
DMU6 0.571 0.954 0 0 0 0.24 0.765
DMU7 0.725 1.24 5.206 (10) 2.573 (8) 3.889 (0.008) 0.326 1
DMU8 0.705 1.028 0 0.027 0.014 0.204 0.87
DMU9 0.791 2.408 0.805 (1) 1.061 (8) 0.933 (0.005) 0.9715 0.905
DMU10 0.664 0.88 0 0 0 0.1347 0.774
DMU11 0.799 1.298 0 1.077 0.538 0.2745 0.921
DMU12 0.674 0.926 0 0 0 0.157 0.803
DMU13 0.893 1.161 2.855 (7) 1.113 (5) 1.984 (0.03) 0.1655 1
DMU14 0.936 29.92 1 (1) 2.718 (6) 1.859 (0.04) 17.971 1
DMU15 0.926 2.77 1.156 (2) 1.034 (4) 1.095 (0.37) 1.2342 1

Table 11: DEA-Chebyshev model efficiency analysis from simulation 4 at 𝛼 = 0.725.

𝜃
𝑈

𝛼=0.725

Upper
bounds

𝜃
𝐿

𝛼=0.725

Lower
bounds

∑
𝑞

𝑅=1
𝜆
𝑈

𝑟,𝑅
∑
𝑞

𝑅=1
𝜆
𝐿

𝑟,𝑅
∑
𝑞

𝑅=1
𝜆
𝑟,𝑅

St. dev (𝜃) 𝜃
𝛼=0.725

DMU1 0.8 1.605 1.207 (7) 1.377 (3) 1.292 (0.68) 0.57 1
DMU2 0.729 1.291 1.951 (6) 0.918 (3) 1.4347 (0.05) 0.398 1
DMU3 0.776 1.204 0 (0) 0.719 (4) 0.359 (0.1) 0.303 0.99
DMU4 0.67 1.126 0 0.92 0.46 0.322 0.898
DMU5 0.464 0.987 0 0 0 0.37 0.726
DMU6 0.43 0.813 0 0 0 0.271 0.622
DMU7 0.716 1.363 6.874 (12) 3.849 (10) 5.361 (0.00) 0.458 1
DMU8 0.572 0.979 0 0 0 0.288 0.775
DMU9 0.603 1.01 0 0.015 0.007 0.288 0.807
DMU10 0.697 0.928 0 0 0 0.163 0.812
DMU11 0.799 1.767 0 (0) 2.327 (9) 1.164 (0.002) 0.685 0.9
DMU12 0.831 1.077 0 0.512 0.256 0.174 0.954
DMU13 0.884 1.097 2.217 (4) 0.514 (3) 1.366 (0.06) 0.15 0.991
DMU14 0.913 3.862 1.316 (5) 2.731 (7) 2.023 (0.03) 2.085 1
DMU15 0.923 2.682 1.435 (3) 1.119 (2) 1.277 (0.29) 1.244 1
Note: In Tables 8–11, the values shown in columns 4 and 5 in brackets represent the frequency with which a DEA-efficient DMU is used as a reference unit in
DCF. Those in column 6 represent the 𝑃 values for the upper and lower limits for the lambdas for the DEA-efficient units.

The estimated degree of deviation due to inefficiency from
the observed level of performance is formulated as follows:

𝛼 ∼
𝑃 (𝐷)

𝑃 (𝐸)
+ 𝑘

= 𝑃 (𝐷) + 𝑘

=
1 + 𝑃 (deviation)

2
+ 𝑘,

(39)

where 𝛼 denotes management or expert defined values of
data deviation (if available) and “k” denotes a constant
correction factor. In other words, it is a reflection of the users’
confidence of their own expectations where “k” will always be
greater than or equal to “0.” P(deviation) is defined to be the
perceived excess of inputs to observed inputs. The numerical
calculations using (39) are shown in Table 7.

The Tables 8-11 show efficiency scores determined under
DEA-Chebyshev model, based on the 𝛼-values shown in
Table 7.
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Table 12: Deterministic efficiency results for all four simulations with an aggregate of 30DMUs; 15 from the control group and another 15
virtual units calculated according to CCP and DEA, respectively.

Simulation 1 Simulation 2 Simulation 3 Simulation 4
DEA CCP DCF DEA CCP DCF DEA CCP DCF DEA CCP DCF

DMU1 1 1 1 1 1 1 1 1 1 1 1 1
DMU2 1 1 1 0.986 0.946 0.942 0.962 0.962 0.962 1 0.937 1
DMU3 1 1 1 0.96 0.96 0.96 1 1 1 1 0.981 1
DMU4 1 1 1 1 1 1 1 1 1 0.989 0.977 0.989
DMU5 1 1 1 1 1 1 1 1 1 0.945 0.94 0.945
DMU6 1 1 1 1 1 1 0.991 0.987 0.988 0.888 0.888 0.888
DMU7 1 1 1 1 1 1 0.965 0.965 0.965 0.901 0.885 0.885
DMU8 1 0.965 0.963 1 1 1 0.971 0.933 0.943 0.914 0.872 0.872
DMU9 0.991 0.937 0.935 1 1 1 0.968 0.917 0.931 0.918 0.863 0.863
DMU10 0.978 0.906 0.903 1 1 1 0.962 0.901 0.919 0.926 0.87 0.871
DMU11 0.966 0.882 0.878 1 1 1 0.954 0.893 0.913 0.932 0.876 0.877
DMU12 0.985 0.931 0.929 1 1 1 0.934 0.903 0.911 0.939 0.906 0.914
DMU13 0.996 0.966 0.965 1 1 1 0.914 0.909 0.912 0.949 0.932 0.939
DMU14 1 0.991 0.991 1 1 1 0.973 0.957 0.973 0.967 0.967 0.967
DMU15 1 1 1 1 1 1 1 1 1 1 1 1
V.DMU1 0.889 0.885 0.884 0.921 0.921 0.921 0.898 0.999 0.898 0.841 0.84 0.84
V.DMU2 0.86 0.86 0.86 1 1 1 1 0.987 0.993 0.938 1 0.938
V.DMU3 0.864 0.872 0.873 1 1 1 1 1 1 0.931 0.92 0.941
V.DMU4 0.929 0.944 0.948 0.976 0.972 0.974 1 0.971 0.986 0.982 0.979 0.984
V.DMU5 0.926 0.943 0.946 0.934 0.943 0.945 1 1 1 1 1 1
V.DMU6 0.915 0.927 0.928 0.955 0.966 0.968 1 0.998 1 0.999 0.963 0.964
V.DMU7 0.959 0.947 0.946 0.926 0.926 0.927 1 1 1 1 1 1
V.DMU8 0.977 0.954 0.951 1 1 1 1 1 1 1 0.929 0.93
V.DMU9 1 0.99 0.987 0.956 0.946 0.946 0.989 0.989 0.989 1 0.898 0.899
V.DMU10 0.959 0.938 0.936 0.933 0.959 0.958 1 1 1 0.989 0.958 0.959
V.DMU11 1 1 1 0.939 0.94 0.94 0.938 0.954 0.952 1 1 1
V.DMU12 0.977 0.953 0.952 0.933 0.932 0.932 0.972 0.989 0.988 0.996 0.976 0.987
V.DMU13 0.971 0.975 0.975 0.903 0.899 0.899 0.998 1 1 0.992 1 0.995
V.DMU14 0.986 0.98 0.979 0.872 0.924 0.924 0.99 1 1 1 1 1
V.DMU15 1 1 1 1 1 1 1 1 1 1 1 1

5.3. Step III: Hypothesis Testing: Frontiers Compared. All
the efficiency evaluation tools will be measured against the
control group to determine which of these would provide the
best approximation method. Both CCP and DEA-Chebyshev
model efficiency scores are defined in the same manner. The
upper and lower bounds of the frontier determine the region
where the EFFmay likely be and is approximated by the DCF
efficiency score, 𝜃.

Using the results obtained in Step II, the four simulated
experimental groups are adjusted using their respectively
efficiency scores. The virtual DMUs are the DMUs from the
four experimental groups in which their inputs have been
reduced according to their efficiency scores from Step II,
according to the contraction factor, 𝜃 for DEA, 𝜃CCP for CCP,
and 𝜃 for DCF.

In this step, in order to test the hypothesis, the 12 data
sets of virtual DMUs are each aggregated with the control
group, forming a sample size of 30DMUs per simulation.

“DMU#” denotes the control group (or “sample one”) and
“V.DMU#” denotes the efficient virtual units derived from
the experimental group (or “sample two”) using the efficiency
scores generated by DEA, CCP, and DEA-Chebyshev model,
respectively. There are 12 data sets in total: three for each of
the simulations (three input contraction factors per DMU,
fromDEA, CCP (normal), and DEA-Chebyshev model).The
inputs for the virtual DMUs calculated from each of these
three methodologies for the same experimental group will
be different. The sample size of 30DMUs in each of the 12
sets is a result of combining the 15 error-free DMUs with
the 15 virtual DMUs. These 30DMUs are then evaluated
using ProDEA (software). It is logical to use DEA for our
final analysis to scrutinize the different methods since this
is a deterministic method, which would work perfectly in an
error-free situation.TheDEA results for the 4 simulations are
given in Table 12.

In order to determine if the frontiers created by these
models are substantially different from that of the control
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Table 13: Hypothesis tests for mean differences of efficiency scores. Sample 1 is denoted as the “Control group” and sample 2 is denoted as
the “Virtual group”.

Simulation 1 Simulation 2 Simulation 3 Simulation 4
Control
group

Virtual
group

Control
group

Virtual
group

Control
group

Virtual
group

Control
group

Virtual
group

DEA
Mean 0.999 0.943 0.996 0.95 0.973 0.986 0.951 0.978

Variance 0.00001 0.00187 0.00011 0.00153 0.0007 0.0009 0.0015 0.0019

Observations 15 15 15 15 15 15 15 15

Pearson correlation 0.7117 0.1166 −0.5253 −0.1409

Hypothesized mean difference 0 0 0 0

Df 14 14 14 14
Rank-sum test −3.09 −3.2146 1.3688 1.7213
𝑡 stat 5.2614 4.5917 −1.0167 −1.6501

P (T ≤ t) two tail 0.00012 0.00042 0.3266 0.1212
𝑡 critical two tail 2.145 2.145 2.145 2.145

CCP efficiency evaluation
Mean 0.972 0.944 0.994 0.955 0.955 0.992 0.926 0.964

Variance 0.0016 0.0019 0.00028 0.0011 0.00176 0.00018 0.0025 0.00231

Observations 15 15 15 15 15 15 15 15

Pearson correlation 0.35661 −0.5373 −0.14 −0.5035

Hypothesized mean difference 0 0 0 0

Df 14 14 14 14
Rank-sum test −1.8873 −3.0072 2.136 2.0117
𝑡 stat 2.2373 3.334 −3.1453 −1.7383

P (T ≤ t) two tail 0.042 0.005 0.0072 0.1041
𝑡 critical two tail 2.145 2.145 2.145 2.145

DCF
Mean 0.971 0.944 0.993 0.956 0.961 0.987 0.934 0.962

Variance 0.00168 0.0019 0.0003 0.0011 0.0013 0.0008 0.00304 0.00217

Observations 15 15 15 15 15 15 15 15

Pearson correlation 0.3296 −0.5296 −0.4235 −0.0966

Hypothesized mean difference 0 0 0 0

Df 14 14 14 14

Rank-sum test −1.8873 −2.9657 1.8665 1.2236
𝑡 stat 2.1038 3.2401 −1.8448 −1.4533

P (T ≤ t) two tail 0.05396 0.0059 0.08633 0.1682
𝑡 critical two tail 2.145 2.145 2.145 2.145

The Rank-sum test shown previously is used to determine if the two samples being tested are of the same population. If they are of the same population, then
we can conclude that the two frontiers for both the samples respectively, are one, and the same or that they consistently overlap one another, thus they can be
assumed to be of the same surface.

group (or the error-free units), the rank-sum-test and statis-
tical hypothesis test for mean differences were used.

The DEA-Chebyshev model is scrutinized using several
statistical methods, which show that there is a strong rela-
tionship between the DCF and the EFF. All the statistical
tools used to test the DCF against the EFF have produced
consistent conclusions that the corrected frontier is a good
approximation of the EFF.The statistical methods used to test
the DCF versus the EFF are the Wilcoxon-Mann-Whitney

test (or the rank-sum test) and the t-test for the differences in
mean values of 𝜃 shown in Table 13.The rank-sum test is used
to determine if the virtual DMUs established by the DCF are
from the same population as that of the DMUs in the control
group; if they are, then the difference in efficiency scores of
both groups will not be statistically significant. This does not
imply that the EFF and the corrected frontier are exactly the
same but rather that the latter is a good approximation of the
former. Its results are better than that of theCCPperformance
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Table 14: “Näıve” ranking of empirically efficient DMUs in order
of declining levels of efficiency. Values in bold correspond to DEA
efficient units with a score of “1”.

Rank 𝜃

DMU15 2.076
DMU14 1.566
DMU11 1.22
DMU1 1.167
DMU2 1.012
DMU9 1.008

Simulation 1 DMU4 0.98
DMU6 0.896
DMU3 0.883
DMU7 0.874
DMU13 0.867
DMU10 0.779
DMU12 0.742
DMU8 0.712
DMU5 0.664
DMU2 1.356
DMU1 1.266
DMU12 1.252
DMU15 1.237
DMU8 1.213
DMU14 1.173

Simulation 2 DMU10 1.022
DMU3 1.013
DMU7 0.947
DMU13 0.944
DMU11 0.906
DMU9 0.843
DMU6 0.837
DMU5 0.812
DMU4 0.594
DMU14 13.632
DMU15 1.807
DMU9 1.498
DMU1 1.157
DMU2 1.15
DMU11 1.036

Simulation 3 DMU13 1.024
DMU7 0.986
DMU5 0.985
DMU4 0.877
DMU8 0.87
DMU3 0.833
DMU12 0.803
DMU10 0.774
DMU6 0.765
DMU14 2.388

Simulation 4 DMU15 1.802
DMU11 1.283

Table 14: Continued.

Rank 𝜃

DMU1 1.202
DMU7 1.039
DMU2 1.01
DMU13 0.991
DMU3 0.99
DMU12 0.954
DMU4 0.898
DMU10 0.812
DMU9 0.807
DMU8 0.775
DMU5 0.726
DMU6 0.622

evaluationmethod developed by Land et al. [11] and Forrester
and Anderson [18].

5.4. Step IV: Efficiency Scores: DEA versus DEA-Chebyshev
Model and Ranking of DEA Efficient Units. There can be
more than one way of ranking efficient units. In the simplest
(or näıve) case, empirically efficient DMUs can be ranked
according to the score 𝜃 calculated as an average of the upper
and lower limits from the DEA-Chebyshev model.

5.4.1. Naı̈ve Ranking. Table 14 illustrates the ranking of all
DMUs.Thefigures in bold denote theDEA-Chebyshevmodel
efficiency scores for the DEA efficient units. All production
units are ranked in descending order of efficiency according
to the average of the upper and lower limits, 𝜃. An anomaly
in DMU14 of simulation 3 is caused by an extremely small
value for Input 2. Because the LP formulation for DEA, DEA-
Chebyshev model, and CCP (normal) applies the greatest
weight to the input or output in order tomake a DMU appear
as favourable as possible, Input 2 in this case is weighted
heavily. In DEA, the mathematical algorithm does not allow
the efficiency score to exceed 1.00; thus, this problem is
not detected. In DEA-Chebyshev model and CCP, because
efficiency scores are not restricted to 1.00, this problem arises
indicating a possible outlier. It would be advisable to remove
this DMU from the analysis. In this simulation, because the
errors are generated randomly, the error-value for this DMU
lies in the tail end of the distribution, hence, creating an
outlier.

This method of ranking is naı̈ve because it ignores
the standard deviation, which indicates the robustness of
a DMU’s efficiency score to the possible errors and the
unobserved inefficiency. It also does not distinguish between
possible outliers and legitimate units.

5.4.2. Ranking by Robustness of DEA-Chebyshev Model Effi-
ciency Scores. The ranking in the order of robustness of
a DMU begins with the efficiency score defined as 𝜃.
Those with 𝜃 = 1 are ranked from the most robust to
the least robust (from the smallest standard deviation to
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Table 15: Ranking of efficient DMUs according to robustness based on their standard deviations. The DMUs in bold denote the empirically
efficient DMUs.

Simulation 1 Simulation 2 Simulation 3 Simulation 4
𝜃
𝛼=0.75

Std. dev. 𝜃
𝛼=0.75

Std. dev. 𝜃
𝛼=0.675

Std. dev. 𝜃
𝛼=0.725

Std. dev.
DMU9 1 0.34111 DMU15 1 0.45149 DMU13 1 0.16546 DMU13 1 0.15033
DMU2 1 0.36819 DMU3 1 0.46499 DMU7 1 0.32591 DMU3 1 0.30285
DMU1 1 0.53889 DMU12 1 0.5823 DMU1 1 0.47956 DMU2 1 0.39775
DMU14 1 0.93225 DMU8 1 0.62735 DMU2 1 0.55027 DMU7 1 0.45771
DMU15 1 1.63455 DMU1 1 0.66871 DMU15 1 1.23418 DMU1 1 0.56972
DMU4 0.98 0.43388 DMU7 0.947 0.3218 DMU14 1 17.971 DMU11 1 0.68462
DMU11 0.906 0.57657 DMU13 0.944 0.13124 DMU5 0.985 0.31947 DMU15 1 1.24437
DMU6 0.896 0.28298 DMU14 0.943 0.4051 DMU11 0.921 0.2745 DMU14 1 2.0849
DMU3 0.883 0.28164 DMU11 0.906 0.17515 DMU9 0.905 0.97149 DMU12 0.969 0.17444
DMU7 0.874 0.32605 DMU10 0.89 0.34217 DMU4 0.877 0.25512 DMU4 0.899 0.32244
DMU13 0.867 0.13958 DMU2 0.874 0.85998 DMU8 0.87 0.20386 DMU10 0.818 0.16313
DMU10 0.779 0.16935 DMU9 0.843 0.17572 DMU3 0.833 0.21305 DMU9 0.774 0.28765
DMU12 0.742 0.11335 DMU6 0.837 0.29614 DMU12 0.803 0.15726 DMU8 0.754 0.28786
DMU8 0.712 0.25534 DMU5 0.812 0.2938 DMU10 0.774 0.1347 DMU5 0.747 0.3701
DMU5 0.664 0.2745 DMU4 0.594 0.25039 DMU6 0.765 0.24013 DMU6 0.6 0.27103

the largest). The standard deviation is determined using the
upper and lower bounds of the efficiency scores. Then the
rest of the empirically efficient units are ranked based on
their respective 𝜃 (using their standard deviations will also
provide the same ranking for these units). Once all the
empirically efficient units have been ranked, the remainders
are organized according to their stochastic efficiency scores
from the most efficient to the least efficient. The ranking of
these inefficient units is very similar to that of the empirical
frontier.

Ranking from the most efficient down, those DMUs
which have a DEA-Chebyshev model score of 𝜃 = 1 (input
oriented case) can fall into either of two categories: hyper-
efficient or efficient/mildly efficient depending on how robust
they are (based on their standard deviation). DMUs that are
not printed in bold are DMUs that are DEA-inefficient (See
Table 15), and hence, they are ranked below those which have
been deemed empirically efficient. DEA efficient DMUs that
fail to satisfy the conditions for 𝜃 = 1 will be given efficiency
scores of at most 1.00.

5.5. Further Analysis. Additional analyses were conducted by
taking the observed DMUs in each simulation and evaluating
them against the EFF,DEA,CCP, andDEA-Chebyshevmodel
results. If DCF is a good approximation of the EFF, then
the efficiency scores for the observed DMUs should not be
substantially different from the efficiency scores generated by
the EFF. This also holds true for CCP.

5.5.1. Observed DMUs Evaluated against the EFF, CCP, and
DCF. The efficiency scores of the observed DMUs from
the experimental groups determined by the EFF (to be
denoted as “exp.grp+EFF”) will provide a benchmark for
evaluating the DEA frontier (“exp.grp+DEA”), CCP (nor-
mal) frontier (“exp.grp+CCP”), and the corrected frontier

(“exp.grp+DCF”). A comparison is drawn between the effi-
ciency scores of the experimental groups generated by the
four frontiers.

The hypothesis is that the mean of the efficiency scores
for the 15 observed units in the “exp.grp+EFF” group and the
“exp.grp+DCF” group should be approximately the same (i.e.,
the difference is not statistically significant). From Table 16,
the null hypothesis can be seen from the rank-sum test and
the t-test at 𝛼 = 0.05, and the difference is not statistically
significant in simulations 3 and 4, hence, the corrected
frontier is a good approximation of the EFF. Although the
hypothesis test for simulations 1 and 2 indicates some level
of significance, the results generated by the DCF model are
still superior to those of the CCP and the DEA.

Table 16 shows the statistical tests used to compare the
DEA, CCP, andDCF against the EFF.The Pearson Correlation
analysis, (regression line) which ranges from −1 to 1 inclu-
sively, reflects the extent of the linear relationship between
two sets of data. The P values, the rank-sum test, and the
Pearson correlation observed for all the four simulations
indicate that in general the DCF outperforms DEA and CCP
(which assumed the normal distribution).

Outliers have a tendency to exhibit large standard devi-
ations, which is translated to large confidence limits. Conse-
quently, the reason for establishing DCF and CCP scores is
to reduce the likelihood of a virtual unit from becoming an
outlier. Also, the results generated by the stochastic models
(as opposed to deterministic ones) such as the DCF and
CCP can be greatly affected because the efficiency scores
are generally not restricted to 1.00. In reality, outliers are
not always easily detected. If the data set contains some
outliers, the stochasticmodelsmay not performwell. DMU14
in Simulation 3 is an example of this problem. It can be
solved by either removing the outliers or by imposing weight
restrictions. However, weight restrictions are not within the
scope of this paper.
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Table 16: Statistical analysis for frontier comparisons. Observed DMUs are evaluated against the 3 different frontiers to determine their
efficiency scores which are calculated using the normal DEA model and to determine if the efficiency scores for each group are substantially
different when comparing EFF to DEA, EFF to DCF, and EFF to CCP.

Exp.grp+
EFF

Exp.grp+
DEA

Exp.grp+
EFF

Exp.grp+
DCF

Exp.grp+
EFF

Exp.grp+
CCP

Simulation 1
Mean 0.852 0.899 0.852 0.885 0.852 0.887

Variance 0.01396 0.01355 0.01396 0.01389 0.01396 0.01376

Observations 15 15 15 15 15 15

Pearson correlation 0.922 0.87986 0.881

Hypothesized mean difference 0 0 0

Df 14 14 14

Rank-sum test 1.2858 0.9125 0.9125
𝑡 stat −3.9644 −2.2335 −2.3537

P (T ≤ t) two tail 0.0014 0.04235 0.03372
𝑡 critical two tail 2.145 2.145 2.145

Simulation 2
Mean 0.875 0.922 0.875 0.908 0.875 0.908

Variance 0.01272 0.01242 0.0127 0.0115 0.0127 0.0115

Observations 15 15 15 15 15 15

Pearson correlation 0.94071 0.8875 0.8918

Hypothesized mean difference 0 0 0

Df 14 14 14

Rank-sum test 1.3066 0.9747 1.0162
𝑡 stat −4.6604 −2.3984 −2.487

P (T ≤ t) two tail 0.00037 0.031 0.02611
𝑡 critical two tail 2.145 2.145 2.145

Simulation 3
Mean 0.92 0.933 0.92 0.916 0.92 0.902

Variance 0.00879 0.00815 0.00879 0.00806 0.00879 0.0077

Observations 15 15 15 15 15 15

Pearson correlation 0.95301 0.8804 0.9082

Hypothesized mean difference 0 0 0

Df 14 14 14

Rank-sum test 0.7259 −0.0622 −0.6014
𝑡 stat −1.8125 0.29423 1.68719

P (T ≤ t) two tail 0.0914 0.7729 0.1137
𝑡 critical two tail 2.145 2.145 2.145

Simulation 4
Mean 0.882 0.904 0.882 0.887 0.882 0.868

Variance 0.0153 0.0173 0.0153 0.0184 0.0153 0.0162

Observations 15 15 15 15 15 15

Pearson correlation 0.9425 0.905 0.8996

Hypothesized mean difference 0 0 0

Df 14 14 14
Rank-sum test 0.8503 0.1452 −0.394
𝑡 stat −1.9248 −0.312 1.0043

P (T ≤ t) two tail 0.0748 0.7599 −0.312
𝑡 critical two tail 2.145 2.145 2.145
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6. Conclusions

Traditional methods of performance analysis are no longer
sufficient in a fast paced constantly evolving environment.
Observing past data alone is not adequate for future projec-
tions. The DEA-Chebyshev model is designed to bridge the
difference between conventional performancemeasurements
and new techniques to incorporate relevance into such mea-
sures. This algorithm not only provides a multidimensional
evaluation technique, but it has successfully incorporated a
new element into an existing deterministic technique (DEA).
This is known as the k-flexibility functionwhichwas originally
derived from the one-sided Chebyshev’s inequality. This in
turn allowsmanagement to include expert opinion as a single
value, such as a 20% net growth by next year end from the
current year.The single value is dichotomized into unmet (or
over target) present level of growths (or declines). Because
management expertise is included, the expected growth (or
decline) is not unreasonable and will inherently include
factors which do not need to be explicitly expressed in the
model such as environmental, economic, and social changes.
Since these changes are becoming increasingly rapid, per-
formance measures can no longer ignore qualitative inputs.
In a highly competitive environment, future projections and
attainable targets are key performance indicators. Intellec-
tual capital and knowledge are today’s two most important
assets.

The combination of normal DEA with DCF can suc-
cessfully provide a good framework for evaluation based on
quantitative data and qualitative intellectual knowledge of
management. When no errors are expected, then standard
DEA models will suffice. DCF is designed such that in
the absence of errors, the model will revert to a DEA
model. This occurs when the k-flexibility function equals
zero. DEA provides a deterministic frontier which DEA-
Chebyshev model works on to define the estimate of the
EFF.

The simulated dataset was tested on DEA-Chebyshev
model. It has been statistically proven that this model is an
effective tool with excellent accuracy to detect or predict the
EFF frontier as a new efficiency benchmarking technique. It is
an improvement over othermethods, easily applied, practical,
not computationally intensive, and easy to implement. The
results have been promising thus far.The futurework includes
using a real data application to illustrate the usefulness of
DEA-Chebyshev model.

Appendices

A.

Note that semi-positive is defined to be the nonpositive
characteristics of all data where at least one component in
every input and output sector is positive; mathematically,
𝑋
𝑖
≥ 0, 𝑋

𝑖
̸= 0 and 𝑌

𝑗
≥ 0, 𝑌

𝑗
̸= 0. That is to say that for

every DMU, there must be at least one positive value in both
input and output. The following properties were noted from
Cooper et al. [26, 28].

(P.1) Let Ψ be the production possibility set (PPS of
physically attainable points (𝑥, 𝑦):

Ψ = {(𝑥, 𝑦) ∈ 𝑅
𝑚+𝑛

+
| 𝑥 can produce 𝑦} . (A.1)

Each pair of input 𝑥 ∈ 𝑅
𝑚 and output 𝑦 ∈ 𝑅

𝑛

is regarded as semi-positive orthant point in 𝑚 + 𝑛

dimensional space in Ψ

(P.2) Inefficiency:
For any semi-positive PPS where 𝑥 ≥ 𝑥 and/or 𝑦 ≥ 𝑦,
it is also true that they belong to the set of attainable
points (𝑥, 𝑦) ⊂ Ψ.

(P.3) Convexity:
if (𝑥

𝑖𝑟
, 𝑦
𝑖𝑟
) ∈ Ψ, 𝑟 = 1, . . . , 𝑞, and 𝜆

𝑟
≥ 0, such that

∑
𝑟
𝑦
𝑟
= 1, then (∑

𝑟
𝑥
𝑖𝑟
𝜆
𝑟
, ∑

𝑟
𝑦
𝑗𝑟
𝜆
𝑟
) ∈ Ψ

(P.4) Ray unboundedness:

if a PPS (𝑥, 𝑦) ⊂ Ψ, then (𝑡𝑥, 𝑡𝑦) ⊂ Ψ for any scalar t
(refer to CRS).

(P.5) Any semi-positive linear combination of PPS in Ψ

also belongs to Ψ.

Therefore, satisfying (P.1)–(P.5),

Ψ = {(𝑥, 𝑦) | 𝑥 ≥ 𝑋𝜆, 𝑦 ≤ 𝑌𝜆, 𝜆 ≥ 0} . (A.2)

𝑥 + 𝑦 represents a vector of inputs and a vector of outputs for
one DMU; 𝑋 + 𝑌 represents a matrix of inputs and outputs,
respectively, for all DMUs

Definition of ΨDEA is as follows:

ΨDEA = {(𝑦, 𝑥) : 𝑦 ≤

𝑞

∑

𝑟=1

𝜆
𝑟
𝑦
𝑟
, 𝑥 ≥

𝑞

∑

𝑟=1

𝜆
𝑟
𝑥
𝑟
,

𝑞

∑

𝑟=1

𝜆
𝑟
= 1, 𝜆

𝑟
≥ 0, ∀𝑟} .

(A.3)

B.

As theoreticians have shown and used in the past the
characteristic of errors in efficiency analysis, the simulations
generated will incorporate those elements.These characteris-
tics are

(1) statistical noise: V ∼ 𝑁(0, 𝜎
2
), i.i.d., V unrestricted;

(2) inefficiency: 𝑢 ∼ 𝑁
+
(𝜇, 𝛿

2

V), i.i.d. half normal distri-
bution where 𝜇 ≥ 0.

Data variability is caused by statistical noise, measurement
errors, and inefficiency. There errors can arise from either
exogenous or endogenous variables such as poor manage-
ment, economic growth, and environmental and sociological
contributions.

C.

The corrected frontier is defined such that the production
possibility space will always be greater than that of the DEA
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spaces (see (P.2)).That is to say that there will always be room
for improvement in efficiency which companies are always
aspiring for. The following are the properties of the corrected
frontier.

(P.1) if V ̸= 0 and/or 𝑢 > 0, then DCF will be different from
DEA. If V = 0 and 𝑢 = 0, then the corrected frontier
is also the DEA frontier.

(P.2) DMUson theDEA frontier are a subset of those on the
DCF frontier; some DEA efficient units will appear
inefficient inDCF, inwhich case, the frontier is shifted
away from the PPS (i.e., expansion of the PPS).

(P.3) ΨDEA ⊆ ΨDCF, where the radial contraction of inputs
(or the radial expansion of outputs) can be improved
for DEA efficient units.

Although we do not have formal proof of the convergence of
the corrected frontier to the EFF, due to the convergence of
the DEA estimator to the EFF,ΨDEA → ΨEFF when 𝑞 → ∞,
shown in [24], we can conjecture about the convergence of the
DCF that it also converges to the EFF as sample sizes increase.
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