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In order to achieve a mutiscale representation and texture extraction for textured image, a hierarchical (𝐵𝑉, 𝐺𝑝, 𝐿
2) decomposition

model is proposed in this paper. We firstly introduce the proposed model which is obtained by replacing the fixed scale parameter
of the original (𝐵𝑉, 𝐺𝑝, 𝐿

2
) decomposition with a varying sequence. And then, the existence and convergence of the hierarchical

decomposition are proved. Furthermore, we show the nontrivial property of this hierarchical decomposition. Finally, we introduce
a simple numerical method for the hierarchical decomposition, which utilizes gradient decent for energy minimization and
finite difference for the associated gradient flow equations. Numerical results show that the proposed hierarchical (𝐵𝑉, 𝐺𝑝, 𝐿

2
)

decomposition is very appropriate for multiscale representation and texture extraction of textured image.

1. Introduction

Agrayscale image can be represented by a function𝑓: (𝑥, 𝑦) ∈
Ω → R with 𝑓 ∈ 𝐿2(Ω), where Ω is an open, bounded, and
connected subset ofR2, typically a rectangle or a square [1, 2].
We are interested in the decomposition of 𝑓 into two com-
ponents, 𝑓 = 𝑢 + V [3–5], or three components, 𝑓 = 𝑢 +

V + 𝑟 [6–9], where 𝑢 represents piecewise-smooth (cartoon
or structure) component of 𝑓 and V represents the oscillatory
component of 𝑓, that is, texture, and 𝑟 represents the residual
(noise). Image decomposition is an important image process-
ing task, which is widely used in image denoising [4, 10,
11], deblurring [12, 13], image representation [5, 13], texture
extraction or discrimination [6, 14], and so on. It has seen
much recent progress, much of which has particularly been
made through the use of variational framework to model
oscillatory component that represents texture; see, for exam-
ple, [2–6, 8–14]. We give here some classical examples of
image decomposition models by variational approaches that
are most related to our present work.

A celebrated decomposition easier to implement is the
total variation (TV) minimization model by Rudin, Osher,

and Fatemi (ROF) [3] for image denoising, in which an image
𝑓 ∈ 𝐿

2(Ω) is split into 𝑢 ∈ 𝐵𝑉(Ω) and V ∈ 𝐿2(Ω):

(𝑢, V)

= arg inf {𝐽 (𝑓; 𝑢, V) = |𝑢|𝐵𝑉(Ω) + 𝜇‖V‖𝐿2(Ω), 𝑓 = 𝑢 + V} ,
(1)

which yields so-called (𝐵𝑉, 𝐿2) decomposition.This model is
convex and easy to solve in practice.The function 𝑢 ∈ 𝐵𝑉(Ω)
allows for discontinuities along curves; therefore, edges and
contours are preserved in the restored image 𝑢.

However, as Meyer pointed out in [15], the function
space 𝐿2(Ω) is not the most suitable one to model oscillatory
components, since the oscillatory functions do not have small
𝐿
2-norms. He suggested using (𝐵𝑉(Ω)), the dual space of
𝐵𝑉(Ω), instead of 𝐿2(Ω) for the oscillatory components.
However, there is no known integral representation of con-
tinuous linear functional on 𝐵𝑉(Ω). To address this problem,
Meyer used another slightly larger space to approximate
(𝐵𝑉(Ω))

. Using𝐺(Ω) to characterize oscillatory components
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yields the (𝐵𝑉, 𝐺) decomposition by solving the following
variational problem:

inf
𝑢∈𝐵𝑉(Ω),V∈𝐺(Ω)

{|𝑢|𝐵𝑉(Ω) + 𝜇‖V‖𝐺(Ω), 𝑓 = 𝑢 + V} . (2)

The (𝐵𝑉, 𝐺) decomposition model can better extract texture;
however, it cannot be directly solved in practice due to the
nature of the𝐺-norm [4, 6, 14], for which there is no standard
calculation of the associated Euler-Lagrange equation. Vese
andOsher [6, 14] first overcame this difficulty by replacing the
space 𝐺(Ω) with 𝐺𝑝(Ω) (𝑝 ≥ 1). Then, the (𝐵𝑉, 𝐺) decom-
position model (2) is approximated by the following mini-
mization problem:

inf
𝑢∈𝐵𝑉(Ω),V∈𝐺

𝑝(Ω)
{|𝑢|𝐵𝑉(Ω) + 𝜇‖V‖𝐺

𝑝
(Ω), 𝑓 = 𝑢 + V} . (3)

In [6], Vese and Osher did not solve (3) directly but
adapted the model by adding a fidelity term into the energy
functional to guarantee 𝑓 ≈ 𝑢 + V. In detail, their variational
formulation is defined as

inf
𝑢∈𝐵𝑉(Ω),V∈𝐺

𝑝(Ω)
{|𝑢|𝐵𝑉(Ω) + 𝜆

𝑓 − 𝑢 − V
2

𝐿2(Ω)
+ 𝜇‖V‖𝐺

𝑝
(Ω)} .

(4)

In this (𝐵𝑉, 𝐺𝑝, 𝐿
2) decomposition, the image 𝑓 is discom-

posed into three components, 𝑓 = 𝑢 + V + 𝑟 with 𝑢 ∈ 𝐵𝑉(Ω),
V ∈ 𝐺𝑝(Ω), and 𝑟 ∈ 𝐿

2(Ω).
The previous models are examples of a larger class of

the fixed scale decompositions (the scale parameters in these
models are fixed). It has been argued that a human visualizes a
scene in multiple scales [16, 17]. Then, multiscale approaches
are appropriate for image representation because a single
scale may not be a perfect simulation of the human visual
perception. In order to achieve reliable image information in
different scales, both the large-scale and small-scale behaviors
should be investigated and incorporated appropriately. Thus,
a natural way to address this problem is the multiscale ana-
lysis.

Tadmor et al. [5, 13] presented a hierarchical decomposi-
tion based on the ROF model (1) to achieve multiscale image
representation, in which the scale parameter is not fixed, but
a varying sequence: starting with an initial scale 𝜇0,

𝑓 = 𝑢0 + V0,

(𝑢0, V0) = arg inf {|𝑢|𝐵𝑉(Ω) + 𝜇0‖V‖
2

𝐿2(Ω)
, 𝑓 = 𝑢 + V} ,

(5)

and then, successive application of the following dyadic
refinement step

V𝑖 = 𝑢𝑖+1 + V𝑖+1,

(𝑢𝑖+1, V𝑖+1) = arg inf {|𝑢|𝐵𝑉(Ω)

+𝜇02
𝑖+1
‖V‖2𝐿2(Ω), V𝑖 = 𝑢 + V}

(6)

produces, after 𝑘 such steps, the hierarchical (𝐵𝑉, 𝐿2) decom-
position of 𝑓:

𝑓 =

𝑘

∑
𝑖=0

𝑢𝑖 + V𝑘, (𝑘 = 0, 1, . . .) . (7)

In this study, we focus on multiscale representation
and texture extraction for textured image. As discussed
previously, the (𝐵𝑉, 𝐿2) decomposition is not the best one for
textured image, so using hierarchical (𝐵𝑉, 𝐿2) decomposition
(7) introduced by Tadmor et al. to implement multiscale
representation and texture extraction for textured image is
obviously not the best choice. We thus in this paper propose
the hierarchical decomposition using the (𝐵𝑉, 𝐺𝑝, 𝐿

2)model
(4), which enables us to capture an intermediate regularity
between𝐿2(Ω) and𝐵𝑉(Ω) and oscillation between𝐿2(Ω) and
𝐺𝑝(Ω). We here adopt (𝐵𝑉, 𝐺𝑝, 𝐿

2) decomposition because
𝐺𝑝(Ω) is a very suitable function space to model oscillatory
patterns [6, 14]; in addition, the 𝐺𝑝-norm is easier to solve
in practice. In the proposed hierarchical (𝐵𝑉, 𝐺𝑝, 𝐿

2) decom-
position, the scale parameter is not fixed but varies over a
sequence of dyadic scales. Consequently, the decomposition
of a textured image is not predetermined but is resolved in
terms of layers of intermediate scales. So, we can achieve
multiscale image representation. Compared to Tadmor et
al.’s 2-tuple hierarchical decomposition, the proposed 3-tuple
hierarchical decomposition can precisely extract texture in
different scales.

2. Preliminaries

So far, there have been a lot of efficient variational decom-
position models for textured image, much of which follows
Meyer’s work. The (𝐵𝑉, 𝐺𝑝, 𝐿

2) decomposition introduced
by Vese and Osher is the first one to practically solve the
Meyer’s (𝐵𝑉, 𝐺) model presented in (2), in which cartoon
component is measured in 𝐵𝑉(Ω) and texture component
in 𝐺𝑝(Ω), instead of 𝐺(Ω). We here recall the definition and
some known results of 𝐵𝑉(Ω), 𝐺(Ω) and 𝐺𝑝(Ω), which are
much related to our present study.

Definition 1. Let Ω ⊂ R2 be an open subset with Lipschitz
boundary. Then, 𝐵𝑉(Ω) is the subspace of 𝐿1(Ω) such that
the following quantity

|𝑢|𝐵𝑉(Ω) = ∫
Ω

|𝐷𝑢|

= sup {∫
Ω

𝑢 div (𝜑) 𝑑x | 𝜑 ∈ 𝐶1
𝑐
(Ω, 𝑅
2
) ,

𝜑
𝐿∞ ≤ 1}

(8)

is finite. Further, ‖𝑢‖𝐵𝑉(Ω) = ‖𝑢‖𝐿1(Ω) + |𝑢|𝐵𝑉(Ω) is called the
𝐵𝑉-norm.

Remark 2. 𝐵𝑉(Ω) with the norm of ‖𝑢‖𝐵𝑉(Ω) is a Banach
space, but one does not use this norm since it possesses
no good compactness property. Classically, in 𝐵𝑉(Ω) one
works with the 𝐵𝑉-weak∗ topology, which is defined as 𝑢𝑛
convergence to 𝑢 in 𝐵𝑉-weak∗ topology if and only if 𝑢𝑛
converges to 𝑢 strongly in 𝐿1(Ω) and ∫

Ω
𝜑𝐷𝑢𝑛 converge to

∫
Ω
𝜑𝐷𝑢 for all 𝜑 in 𝐶𝑐(Ω,R

2).
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Theorems 3 and 4 show the compactness and lower
semicontinuity of 𝐵𝑉(Ω).

Theorem 3 (see [18]). If 𝑢𝑛 is a uniformly bounded sequence
in 𝐵𝑉(Ω), then there exist a subsequence 𝑢𝑛

𝑘

and 𝑢 in 𝐵𝑉(Ω)
such that 𝑢𝑛

𝑘

converge to 𝑢 in the 𝐵𝑉-weak∗ topology.

Theorem 4 (see [19, 20]). For 𝑢𝑛 ∈ 𝐵𝑉(Ω), if there exists 𝑢 ∈
𝐵𝑉(Ω) such that 𝑢𝑛 converge to 𝑢 in the 𝐵𝑉-weak∗ topology,
then |𝑢|𝐵𝑉 ≤ lim

𝑛→+∞
|𝑢𝑛|𝐵𝑉.

Definition 5. 𝐺(Ω) consists of distributions V which can be
written as

V = 𝜕1𝑔1 + 𝜕2𝑔2 = div (g) , g ∈ 𝐿∞ (Ω; 𝑅2) ,

g ⋅ n = 0 on 𝜕Ω,

(9)

endowed with the norm

‖V‖𝐺(Ω) = inf {g
𝐿∞(Ω) | V = div (g) , g ⋅ n = 0 on 𝜕Ω} .

(10)

Definition 6. 𝐺𝑝(Ω) consists of distributions V which can be
written as

V = 𝜕1𝑔1 + 𝜕2𝑔2 = div (g) , g ∈ 𝐿𝑝 (Ω; 𝑅2) ,

g ⋅ n = 0 on 𝜕Ω,

(11)

endowed with the norm

‖V‖𝐺
𝑝
(Ω) = inf {g

𝐿𝑝(Ω) | V = div (g) , g ⋅ n = 0 on 𝜕Ω} .

(12)

For every 1 ≤ 𝑝 < ∞, the space𝐺𝑝(Ω) above can be iden-
tified with the space𝑊−1,𝑝(Ω), the dual space to the Sobolev
space 𝑊1,𝑞

0
(Ω) := {𝑢: ∇𝑢 ∈ 𝐿𝑞(Ω)

2
, 𝑢 ≡ 0 on 𝜕Ω}, where

1/𝑝 + 1/𝑞 = 1. In fact, the norm ‖V‖𝐺
𝑝
(Ω) is a dual norm to

the Sobolev norm ‖∇𝑢‖𝑞. And the space 𝐺(Ω) = 𝑊−1,∞(Ω)

which is the dual to the space𝑊1,1
0
(Ω). Moreover, if 𝑝 → ∞,

the spaces𝐺𝑝(Ω) approximate the space𝐺(Ω). By the Sobolev
imbedding theorems, we obtain that ‖V‖𝐺

𝑝
(Ω) ≤ 𝐶Ω‖V‖𝐺(Ω),

where 𝐶Ω is a constant which is independent of V but Ω. So,
for any 1 ≤ 𝑝 < ∞, these are larger spaces than 𝐺(Ω) and
allow for different choices of weaker norms for the oscillatory
component V.

For instance, consider the sequence of one-dimensional
functions V𝑛(𝑥) = cos(𝑛𝑥) defined on Ω = [0, 𝜋/2]. Then,
V𝑛(𝑥) = 𝑔

𝑛
(𝑥), where 𝑔𝑛(𝑥) = (1/𝑛) sin(𝑛𝑥) + 𝑐. It is easy to

check that

(1) ‖V𝑛‖𝐿2(Ω) = (∫
𝜋/2

0
cos2(𝑛𝑥)𝑑𝑥)

1/2

= (√𝜋/2) > 0;
(2) ‖V𝑛‖𝐺(Ω) = (1/𝑛) → 0 as 𝑛 → ∞;

(3) ‖V𝑛‖𝐺
𝑝
(Ω)

= (∫
𝜋/2

0
|𝑔𝑛(𝑥)|

𝑝
𝑑𝑥)
1/𝑝

=

((1/𝑛𝑝) ∫
𝜋/2

0
| sin(𝑛𝑥)|𝑝𝑑𝑥)

1/𝑝

≤ (𝜋/2)
1/𝑝
(1/𝑛) → 0

as 𝑛 → ∞.

This simple example demonstrates that an oscillatory
function has a small 𝐺-norm as well as 𝐺𝑝-norm which both
approach to zero as the frequency of oscillations increases,
but importantly, notwith a so small𝐿2-norm. So,𝐺-normand
𝐺𝑝-norm aremore suitable than𝐿2-norm tomeasure textures
in image decomposition. In addition, 𝐺𝑝-norm is weaker
than 𝐺-norm. So using 𝐺𝑝-norm to measure oscillatory
functions, we also can exactly capture the texture in the
energy minimization process.

For the space 𝐺𝑝(Ω), we have the following results which
will be used in what follows.

Proposition 7 (see [6]). If V ∈ 𝐺𝑝(Ω), then there exists g ∈

𝐿𝑝(Ω;R2) with V = div(g) and g ⋅ n = 0 on 𝜕Ω, such that
‖V‖𝐺

𝑝
(Ω) = ‖g‖𝐿𝑝(Ω).

Proposition 8. If V ∈ 𝐺𝑝(Ω), then ∫
Ω
V 𝑑x = 0. Indeed,

∫
Ω
V 𝑑x = ∫

Ω
div(g)𝑑x = ∫

𝜕Ω
g ⋅ n 𝑑𝑆 = 0.

Replacing 𝐺(Ω) with 𝐺𝑝(Ω) (𝑝 ≥ 1), Vese and Osher
introduce the following convex minimization problem; that is,
(𝐵𝑉, 𝐺𝑝, 𝐿

2) decomposition:

inf
𝑢∈𝐵𝑉(Ω),V∈𝐺𝑝(Ω)

{|𝑢|𝐵𝑉(Ω) + 𝜆
𝑓 − 𝑢 − V

2

𝐿2(Ω)
+ 𝜇‖V‖𝐺

𝑝
(Ω)} ,

(13)

where 𝜆, 𝜇 > 0 are tuning parameters. The first term insures
that 𝑢 ∈ 𝐵𝑉(Ω), the second gives us 𝑓 ≈ 𝑢 + V, while the third
term is a penalty on the norm in𝐺𝑝(Ω) of V. Clearly, if 𝜆 → ∞

and 𝑝 → ∞, this model is formally an approximation of the
(𝐵𝑉, 𝐺)model (2) originally proposed by Meyer in [15].

In what follows, to simplify the notations, we always
write 𝐵𝑉, 𝐺𝑝, and 𝐿

2 instead of 𝐵𝑉(Ω), 𝐺𝑝(Ω), and 𝐿
2(Ω),

respectively.

3. The Proposed Hierarchical Decomposition

3.1. Description of Hierarchical Decomposition. We firstly
modify the original (𝐵𝑉, 𝐺𝑝, 𝐿

2) decomposition presented in
(4) to a single parameter pattern with a constraint condition
∫
Ω
𝑢 = ∫
Ω
𝑓. The new decomposition is defined as

(𝑢𝜆, V𝜆)

= arg inf {𝐸𝜆 (𝑓, 𝜆; 𝑢, V) = |𝑢|𝐵𝑉 + 𝜆
𝑓 − 𝑢 − V

2

𝐿2

+‖V‖𝐺
𝑝

, ∫
Ω

𝑢 = ∫
Ω

𝑓} .

(14)

Here, the constraint condition ensures that the sum of texture
V and residual (noise) 𝑟 = 𝑓 − 𝑢 − V has zero mean. In this
study, the parameter 𝜆 in (14) is viewed as a scale factor which
can be used to measure the scale of the extracted cartoon,
especially texture. If the 𝜆 value is too small, then only the
small scale feature (coarser texture) is allocated in V𝜆, while
most of the large scale feature (smoother texture) is swept
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into the residual component 𝑟𝜆 = 𝑓 − (𝑢𝜆 + V𝜆). If 𝜆 is too
large, however, all the textures are extracted indiscriminately,
regardless of their distinct scales.

To achieve multiscale description of a textured image,
we here propose a hierarchical decomposition based on (14),
which enables us to effectively extract textures in different
scales.

For a given scale 𝜆, the minimizer of 𝐸𝜆(𝑓, 𝜆; 𝑢, V) is
interpreted as a decomposition, 𝑓 = 𝑢𝜆 + V𝜆 + 𝑟𝜆, such that
V𝜆 captures textures in the scale 𝜆, while the textures above
𝜆 remain unresolved in 𝑟𝜆. The residual 𝑟𝜆 still consists of
significant textures when viewed under a larger scale than 𝜆,
say 2𝜆:

𝑟𝜆 = 𝑢2𝜆 + V2𝜆 + 𝑟2𝜆, (15)

with

(𝑢2𝜆, V2𝜆) = arg inf {𝐸𝜆 (𝑟𝜆, 2𝜆; 𝑢, V) = |𝑢|𝐵𝑉

+ 2𝜆
𝑟𝜆 − 𝑢 − V

2

𝐿2

+‖V‖𝐺
𝑝

, ∫
Ω

𝑢 = ∫
Ω

𝑟𝜆} ,

(16)

where V2𝜆 captures textures in the scale 2𝜆, while the textures
above 2𝜆 remain unresolved in 𝑟2𝜆.The process of (15) can be
continued to capture the missing large scale textures.

The proposed hierarchical decomposition can be stated as
follows:

starting with an initial scale 𝜆 = 𝜆0,

𝑓 = 𝑢0 + V0 + 𝑟0, (17)

where

(𝑢0, V0) = arg inf {𝐸𝜆 (𝑓, 𝜆0; 𝑢, V)

= |𝑢|𝐵𝑉 + 𝜆0
𝑓 − 𝑢 − V

2

𝐿2
+ ‖V‖𝐺

𝑝

,

∫
Ω

𝑢 = ∫
Ω

𝑓} .

(18)

Proceeding with successive applications of the dyadic refine-
ment step (15), we have

𝑟𝑖 = 𝑢𝑖+1 + V𝑖+1 + 𝑟𝑖+1, 𝑖 = 0, 1, . . . , (19)

where

(𝑢𝑖+1, V𝑖+1) = arg inf {𝐸𝜆 (𝑟𝑖, 𝜆02
𝑖+1
; 𝑢, V) = |𝑢|𝐵𝑉

+𝜆02
𝑖+1𝑟𝑖 − 𝑢 − V

2

𝐿2
+ ‖V‖𝐺

𝑝

,

∫
Ω

𝑢 = ∫
Ω

𝑟𝑖} .

(20)

From (19), we obtain, after 𝑘 such steps, the hierarchical
decomposition of 𝑓 as follows:

𝑓 = 𝑢0 + V0 + 𝑟0

= 𝑢0 + 𝑢1 + V0 + V1 + 𝑟1 = ⋅ ⋅ ⋅

= 𝑢0 + 𝑢1 + ⋅ ⋅ ⋅ + 𝑢𝑘 + V0 + V1 + ⋅ ⋅ ⋅ + V𝑘 + 𝑟𝑘.

(21)

The partial sum, ∑𝑘
𝑖=0
(𝑢𝑖 + V𝑖), provides a multiscale repre-

sentation of 𝑓, in which ∑𝑘
𝑖=0

𝑢𝑖 lies in the intermediate scale
spaces between𝐿2 and𝐵𝑉, and∑𝑘

𝑖=0
V𝑖 lies in the intermediate

scale spaces between 𝐺𝑝 and 𝐿
2. Another application of this

hierarchical decomposition is multiscale texture extraction.
Indeed, ∑𝑘

𝑖=0
V𝑖 represents the textures in the scales ranging

from 𝜆0 to 𝜆02
𝑘.

3.2. Existence of Hierarchical Decomposition. The existence
of our hierarchical decomposition is directly derived from
the following result, actually, which can be used for original
(𝐵𝑉, 𝐺𝑝, 𝐿

2) decomposition by replacing 𝑟𝑖 with 𝑓, but Vese
and Osher did not give proof for it in their papers.

Theorem 9. For 𝑟𝑖 ∈ 𝐿2 (𝑖 = −1, 0, . . .), the following mini-
mization problem

inf {𝐸𝜆 (𝑟𝑖, 𝜆02
𝑖+1
; 𝑢, V)

= |𝑢|𝐵𝑉 + 𝜆02
𝑖+1𝑟𝑖 − 𝑢 − V

2

𝐿2
+ ‖V‖𝐺

𝑝

, ∫
Ω

𝑢 = ∫
Ω

𝑟𝑖}

(22)

has a solution (𝑢, V) such that 𝑢 ∈ 𝐵𝑉 and V ∈ 𝐺𝑝.

Proof. Since 𝐸𝜆(𝑟𝑖, 𝜆02𝑖+1; 𝑢, V) ≥ 0 for all 𝑢 ∈ 𝐵𝑉 and
V ∈ 𝐺𝑝, inf𝑢∈𝐵𝑉,V∈𝐺

𝑝

𝐸𝜆(𝑟𝑖, 𝜆02
𝑖+1; 𝑢, V) < +∞. We can find

a minimizing sequence {(𝑢𝑛, V𝑛)}𝑛≥1 ∈ (𝐵𝑉, 𝐺𝑝) such that
0 ≤ 𝐸𝜆(𝑟𝑖, 𝜆02

𝑖+1; 𝑢𝑛, V𝑛) ≤ 𝐶 and ∫
Ω
𝑢𝑛 = ∫Ω 𝑟𝑖 for all 𝑛. Then,

we have uniformly
𝑢𝑛

𝐵𝑉 ≤ 𝐶,

𝑟𝑖 − 𝑢𝑛 − V𝑛
𝐿2 ≤ 𝐶,

V𝑛
𝐺
𝑝

≤ 𝐶.

(23)

Here, the constant𝐶may be changed from line to line. By the
Sobolev-Poincare inequality, we have

𝑢𝑛 − 𝑢𝑛
𝐿2 ≤ 𝐶

𝑢𝑛
𝐵𝑉, 𝑢𝑛 =

1

|Ω|
∫
Ω

𝑢𝑛, (24)

where |Ω| is the volume of Ω. We thus obtain ‖𝑢𝑛 − 𝑢𝑛‖𝐿2 ≤
𝐶 by (23), which implies that 𝑢𝑛 is uniformly bounded in 𝐿2

since ∫
Ω
𝑢𝑛 = ∫

Ω
𝑟𝑖 for all 𝑛 ≥ 1. Because Ω is bounded, 𝑢𝑛 is

also uniformly bounded in 𝐿1. By (23), we thus have
𝑢𝑛

𝐵𝑉 =
𝑢𝑛

𝐿1 +
𝑢𝑛

𝐵𝑉 ≤ 𝐶. (25)
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By Theorem 3, there exists 𝑢 ∈ 𝐵𝑉 and a subsequence (still
denoted by 𝑢𝑛), such that 𝑢𝑛 converge to 𝑢 in 𝐵𝑉-weak∗
topology and weakly in 𝐿2. In particular, by lower semicon-
tinuity for the 𝐵𝑉-weak∗ topology (Theorem 4), we can
obtain

|𝑢|𝐵𝑉 ≤ lim
𝑛→+∞

𝑢𝑛
𝐵𝑉. (26)

Since 𝑢𝑛 is uniformly bounded in 𝐿2, by (23) we have that
V𝑛 is uniformly bounded in 𝐿2. Therefore, there exists V ∈ 𝐿2
such that (up to a subsequence) V𝑛 converges to V weakly in
𝐿2. By weak lower semicontinuity of 𝐿2-norm, we deduce the
following property:

𝑟𝑖 − 𝑢 − V
2

𝐿2
≤ lim
𝑛→+∞

𝑟𝑖 − 𝑢𝑛 − V𝑛

2

𝐿2
. (27)

For V𝑛 ∈ 𝐺𝑝, by Proposition 7, there exists g𝑛 =

(𝑔1,𝑛, 𝑔2,𝑛) ∈ (𝐿𝑝)
2 such that V𝑛 = div(g𝑛) ∈ D (D is

the distribution space) and ‖V𝑛‖𝐺
𝑝

= ‖g𝑛‖𝐿𝑝 , which implies
‖𝑔𝑖,𝑛‖𝐿𝑝 ≤ 𝐶 (𝑖 = 1, 2) due to ‖V𝑛‖𝐺

𝑝

≤ 𝐶.Therefore, there exist
g = (𝑔1, 𝑔2) ∈ (𝐿𝑝)

2, such that, up to a subsequence, 𝑔𝑖,𝑛 con-
verges to 𝑔𝑖 weak

∗ in 𝐿𝑝.
We next prove that V = div(g) ∈ 𝐺𝑝. Let 𝜑 ∈ D (D is the

test function space); then,

∫
Ω

V𝑛𝜑𝑑x = ∫
Ω

div (g𝑛) 𝜑 𝑑x = −∫
Ω

g𝑛 ⋅ ∇𝜑 𝑑x. (28)

Taking 𝑛 → ∞ (using weak 𝐿2 topology and weak∗ 𝐿𝑝
topology), we obtain

∫
Ω

V𝜑𝑑x = −∫
Ω

g ⋅ ∇𝜑 𝑑x = ∫
Ω

div (g) 𝜑 𝑑x. (29)

This implies V = div(g) ∈ D. And since V ∈ 𝐿2, V = div(g)
a.e. Therefore, V ∈ 𝐺𝑝 ∩𝐿

2. By weak∗ lower semicontinuity, it
follows that

‖V‖𝐺
𝑝

≤

√𝑔2
1
+ 𝑔2
2

𝐿𝑝
≤ lim
𝑛→+∞


√𝑔2
1,𝑛
+ 𝑔2
2,𝑛

𝐿𝑝

= lim
𝑛→+∞

V𝑛
𝐺
𝑝

.

(30)

By (26)–(30), we have

𝐸𝜆 (𝑟𝑖, 𝜆02
𝑖+1
; 𝑢, V) ≤ lim

𝑛→+∞

𝐸𝜆 (𝑟𝑖, 𝜆02
𝑖+1
; 𝑢𝑛, V𝑛) , (31)

which implies that (𝑢, V) is a solution for (22). The proof is
completed.

3.3. Nontrivial Property of Hierarchical Decomposition. In
this study, if the solution of (22) satisfies 𝑢 ̸= 0 or V ̸= 0, then
the decomposition𝑓 = 𝑢+V+𝑟 is called the nontrivial decom-
position. If 𝑟𝑖 = 𝑢𝑖+1+V𝑖+1+𝑟𝑖+1 (𝑟−1 = 𝑓) is nontrivial for any
𝑖 ∈ {−1, 0, 1, . . .}, then the hierarchical decomposition (21) is
called the nontrivial hierarchical decomposition. Conversely,
if the minimization problem (22) has only zero solution, that
is, (𝑢, V) = (0, 0), then the decomposition 𝑟𝑖 = 𝑢𝑖+1+V𝑖+1+𝑟𝑖+1

of 𝑟𝑖 is trivial, whichmakes no sense for image decomposition.
In what follows, we discuss the existence of the nontrivial
hierarchical decomposition in (21).

Firstly, similar to (but slightly different from) Definition
5.3 of [8], we here define a new quantity ‖ ⋅ ‖∗ to measure the
𝐿2-function, which will play a key role in our following study.

Definition 10. Let 𝜔 ∈ 𝐿2. Then, for any ℎ ∈ 𝐵𝑉 and 𝑔 ∈

𝐺𝑝 ∩ 𝐿
2, one defines

‖𝜔‖∗ = sup
ℎ∈𝐵𝑉,𝑔∈𝐺

𝑃
∩𝐿2

⟨𝜔, ℎ + 𝑔⟩


|ℎ|𝐵𝑉 +
𝑔
𝐺
𝑝

, |ℎ|𝐵𝑉 +
𝑔
𝐺
𝑝

̸= 0,

(32)

where ⟨⋅, ⋅⟩ denote 𝐿2 inner product.
By the definition of ‖ ⋅ ‖∗, we have the following results.

Proposition 11. Let 𝜔 ∈ 𝐿2. If ∫
Ω
𝜔𝑑x ̸= 0, then ‖𝜔‖∗ = +∞.

Proof. For any ℎ ∈ 𝐵𝑉, 𝑔 ∈ 𝐺𝑝 ∩ 𝐿
2, and 𝑐 ∈ R, replacing ℎ

with 𝑐 + ℎ and noting that |𝑐 + ℎ|𝐵𝑉 = |ℎ|𝐵𝑉, we have

⟨𝜔, 𝑐 + ℎ + 𝑔⟩


|ℎ + 𝑐|𝐵𝑉 +
𝑔
𝐺
𝑝

=


𝑐 ∫
Ω
𝜔𝑑x + ⟨𝜔, ℎ + 𝑔⟩
|ℎ|𝐵𝑉 +

𝑔
𝐺
𝑝

≥
|𝑐|

∫
Ω
𝜔𝑑x −

⟨𝜔, ℎ + 𝑔⟩


|ℎ|𝐵𝑉 +
𝑔
𝐺
𝑝

.

(33)

By ∫
Ω
𝜔𝑑x ̸= 0, we can deduce that

⟨𝜔, 𝑐 + ℎ + 𝑔⟩


|ℎ + 𝑐|𝐵𝑉 +
𝑔
𝐺
𝑝

→ +∞ as |𝑐| → ∞. (34)

By the definition of || ⋅ ||∗, we have

‖𝜔‖∗ = sup
⟨𝜔, ℎ + 𝑔⟩



|ℎ|𝐵𝑉 +
𝑔
𝐺
𝑝

= +∞. (35)

ByTheorem 9, the minimization problem (22) must have
solutions. Next, simulating hierarchical (𝐵𝑉, 𝐿2) decomposi-
tion proposed by Tadmor et al. [5], we show some properties
for these solutions, which will be used to demonstrate the
nontrivial property for our hierarchical decomposition.

Lemma 12. Let 𝑟𝑖 ∈ 𝐿2. If the minimization problem (22) has
a zero solution, then ‖𝑟𝑖‖∗ ≤ 1/𝜆02

𝑖+2.

Proof. Since (22) has a zero solution, then for any ℎ ∈ 𝐵𝑉 and
𝑔 ∈ 𝐺𝑝, we have

𝐸𝜆 (𝑟𝑖, 𝜆02
𝑖+1
; ℎ, 𝑔) ≥ 𝐸𝜆 (𝑟𝑖, 𝜆02

𝑖+1
; 0, 0) , (36)

and that is,

|ℎ|𝐵𝑉 + 𝜆02
𝑖+1𝑟𝑖 − ℎ − 𝑔


2

𝐿2
+
𝑔
𝐺
𝑝

≥ 𝜆02
𝑖+1𝑟𝑖


2

𝐿2
. (37)



6 Journal of Applied Mathematics

This inequality can be rewritten as

|ℎ|𝐵𝑉 − 𝜆02
𝑖+2

⟨𝑟𝑖, ℎ + 𝑔⟩ + 𝜆02
𝑖+1ℎ + 𝑔


2

𝐿2
+
𝑔
𝐺
𝑝

≥ 0.

(38)

Substituting ℎ by 𝜀ℎ and 𝑔 by 𝜀𝑔 in (38) and taking 𝜀 → 0+

and 𝜀 → 0−, respectively, we obtain

⟨𝑟𝑖, ℎ + 𝑔⟩
 ≤

1

𝜆02
𝑖+2

(|ℎ|𝐵𝑉 +
𝑔
𝐺
𝑝

) . (39)

By the definition of ‖ ⋅ ‖∗, we have ‖𝑟𝑖‖∗ ≤ 1/𝜆02
𝑖+2.

Lemma 13. Let 𝑟𝑖 ∈ 𝐿2. If ‖𝑟𝑖‖∗ > 1/𝜆02
𝑖+2, then the solution

(𝑢𝑖+1, V𝑖+1) of (22) is nonzero; that is, 𝑢𝑖+1 ̸= 0 or V𝑖+1 ̸= 0.
Furthermore, 𝑢𝑖+1, V𝑖+1 and 𝑟𝑖+1 = 𝑟𝑖 − 𝑢𝑖+1 − V𝑖+1 satisfy

𝑟𝑖+1
∗ =

1

𝜆02
𝑖+2
,

⟨𝑟𝑖+1, 𝑢𝑖+1 + V𝑖+1⟩ =
1

𝜆02
𝑖+2

(
𝑢𝑖+1

𝐵𝑉 +
V𝑖+1

𝐺
𝑝

) .

(40)

Proof. The first assertion is proved directly by Lemma 12.
Because (𝑢𝑖+1, V𝑖+1) is the solution of (22), for any ℎ ∈ 𝐵𝑉,

𝑔 ∈ 𝐺𝑝, and 𝜀 ∈ R, we have

𝑢𝑖+1 + 𝜀ℎ
𝐵𝑉 + 𝜆02

𝑖+1𝑟𝑖+1 − 𝜀 (ℎ + 𝑔)

2

𝐿2
+
V𝑖+1 + 𝜀𝑔

𝐺
𝑝

≥
𝑢𝑖+1

𝐵𝑉 + 𝜆02
𝑖+1𝑟𝑖+1


2

𝐿2
+
V𝑖+1

𝐺
𝑝

.

(41)

By the triangle inequality, we obtain

𝑢𝑖+1 + 𝜀ℎ
𝐵𝑉 + 𝜆02

𝑖+1𝑟𝑖+1 − 𝜀 (ℎ + 𝑔)

2

𝐿2
+
V𝑖+1 + 𝜀𝑔

𝐺
𝑝

≤ (
𝑢𝑖+1

𝐵𝑉 + |𝜀| |ℎ|𝐵𝑉) + 𝜆02
𝑖+1𝑟𝑖+1 − 𝜀 (ℎ + 𝑔)


2

𝐿2

+ (
V𝑖+1

𝐺
𝑝

+ |𝜀|
𝑔
𝐺
𝑝

) .

(42)

So, the inequality (41) is changed into

|𝜀| |ℎ|𝐵𝑉 + 𝜆02
𝑖+1𝑟𝑖+1 − 𝜀 (ℎ + 𝑔)


2

𝐿2
+ |𝜀|

𝑔
𝐺
𝑝

≥ 𝜆02
𝑖+1𝑟𝑖+1


2

𝐿2
.

(43)

Expanding the second term on left side of the last inequality,
we can obtain

|𝜀| |ℎ|𝐵𝑉 + 𝜀
2
𝜆02
𝑖+1(ℎ + 𝑔)


2

𝐿2
+ |𝜀|

𝑔
𝐺
𝑝

≥ 𝜀𝜆02
𝑖+2

⟨𝑟𝑖+1, ℎ + 𝑔⟩ .

(44)

Dividing both sides of the last inequality by 𝜀 > 0 and taking
𝜀 → 0+, we obtain

|ℎ|𝐵𝑉 +
𝑔
𝐺
𝑝

≥ 𝜆02
𝑖+2

⟨𝑟𝑖+1, ℎ + 𝑔⟩ . (45)

Dividing both sides of (44) by 𝜀 < 0 and taking 𝜀 → 0
−, we

also obtain

|ℎ|𝐵𝑉 +
𝑔
𝐺
𝑝

≥ −𝜆02
𝑖+2

⟨𝑟𝑖+1, ℎ + 𝑔⟩ . (46)

The inequalities (45) and (46) imply that

|ℎ|𝐵𝑉 +
𝑔
𝐺
𝑝

≥ 𝜆02
𝑖+2 ⟨𝑟𝑖+1, ℎ + 𝑔⟩

 . (47)

By definition of ‖ ⋅ ‖∗, we have

𝑟𝑖+1
∗ ≤

1

𝜆02
𝑖+2
. (48)

Let 𝜀 ∈ (−1, 1). Replacing (ℎ, 𝑔) with (𝑢𝑖+1, V𝑖+1) in the
inequality (41), we have

𝑢𝑖+1 + 𝜀𝑢𝑖+1
𝐵𝑉 + 𝜆02

𝑖+1𝑟𝑖+1 − 𝜀 (𝑢𝑖+1 + V𝑖+1)

2

𝐿2

+
V𝑖+1 + 𝜀V𝑖+1

𝐺
𝑝

= (1 + 𝜀)
𝑢𝑖+1

𝐵𝑉 + 𝜆02
𝑖+1𝑟𝑖+1 − 𝜀 (𝑢𝑖+1 + V𝑖+1)


2

𝐿2

+ (1 + 𝜀)
V𝑖+1

𝐺
𝑝

≥
𝑢𝑖+1

𝐵𝑉 + 𝜆02
𝑖+1𝑟𝑖+1


2

𝐿2
+
V𝑖+1

𝐺
𝑝

.

(49)

So,

𝜀
𝑢𝑖+1

𝐵𝑉 + 𝜀
2
𝜆02
𝑖+1𝑢𝑖+1 + V𝑖+1


2

𝐿2
+ 𝜀

V𝑖+1
𝐺
𝑝

≥ 𝜀𝜆02
𝑖+2

⟨𝑟𝑖+1, 𝑢𝑖+1 + V𝑖+1⟩ .
(50)

Dividing both sides of the last inequality by |𝜀| and then
taking 𝜀 → 0+ and 𝜀 → 0−, respectively, we obtain the
equality (40):

𝜆02
𝑖+2

⟨𝑟𝑖+1, 𝑢𝑖+1 + V𝑖+1⟩ =
𝑢𝑖+1

𝐵𝑉 +
V𝑖+1

𝐺
𝑝

. (51)

So,

𝜆02
𝑖+2 ⟨𝑟𝑖+1, 𝑢𝑖+1 + V𝑖+1⟩

 =
𝑢𝑖+1

𝐵𝑉 +
V𝑖+1

𝐺
𝑝

, (52)

which, due to 𝑢𝑖+1 ̸= 0 or V𝑖+1 ̸= 0, implies
⟨𝑟𝑖+1, 𝑢𝑖+1 + V𝑖+1⟩


𝑢𝑖+1

𝐵𝑉 +
V𝑖+1

𝐺
𝑝

=
1

𝜆02
𝑖+2
. (53)

By definition of ‖ ⋅ ‖∗ and (48), we have ‖𝑟𝑖+1‖∗ = 1/𝜆02
𝑖+2.

Theorem 14. Let 𝑓 ∈ 𝐿2 with ∫
Ω
𝑓𝑑x ̸= 0, and (𝑢𝑖+1, V𝑖+1) is

the solution of (22). Then, for any initial scale 𝜆0 > 0, the
decomposition 𝑟𝑖 = 𝑢𝑖+1 + V𝑖+1 + 𝑟𝑖+1 is nontrivial for any 𝑖 ∈
{−1, 0, 1, . . .}. In other words, any hierarchical decomposition of
𝑓 given in (21) is nontrivial.

Proof. Since ∫
Ω
𝑓𝑑x ̸= 0, we have ‖𝑓‖

∗
= +∞ by Proposition

11. By Lemma 13, the decomposition 𝑓 = 𝑟−1 = 𝑢0 + V0 + 𝑟0 is
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nontrivial, and ‖𝑟0‖∗ = 1/(2𝜆0). Because ‖𝑟0‖∗ = 1/(2𝜆0) >

1/(22𝜆0), again by Lemma 13, the decomposition 𝑟0 = 𝑢1 +

V1 + 𝑟1 is nontrivial, and ‖𝑟1‖∗ = 1/(22𝜆0) > 1/(23𝜆0) which
means such nontrivial decomposition can continue.

For the 𝑖th decomposition, by Lemma 13, we have
‖𝑟𝑖−1‖∗ = 1/(𝜆02

𝑖) > 1/(𝜆02
𝑖+1) which means the 𝑖th decom-

position 𝑟𝑖 = 𝑢𝑖+1 + V𝑖+1 + 𝑟𝑖+1 is nontrivial. In conclusion,
any hierarchical decomposition of𝑓 given in (21) is nontrivial
when ∫

Ω
𝑓𝑑x ̸= 0.

Remark 15. ByTheorems 9 and 14, we can deduce that for any
𝐿2-function 𝑓 with ∫

Ω
𝑓𝑑x ̸= 0, there must be a nontrivial

hierarchical decomposition. This result is much significant
for image hierarchical decomposition. In general, a digital
image 𝑓 is a nonnegative 𝐿2-function with ∫

Ω
𝑓𝑑x ̸= 0, so

any hierarchical (𝐵𝑉, 𝐺𝑝, 𝐿
2) decomposition of 𝑓 must be

nontrivial.

3.4. Convergence of Hierarchical Decomposition. For the hier-
archical decomposition given in (21), we have the following
convergence result (Theorem 17) in the 𝐿2 topology, which
is similar to the convergence result of hierarchical (𝐵𝑉, 𝐿2)
decomposition proposed by Tadmor, Nezzar, and Vese (see
Theorem 2.2 in [5] for details). To proveTheorem 17, we need
the following lemma.

Lemma 16. If 𝑟𝑖 ∈ 𝐿2, then there are �̂� ∈ 𝐵𝑉, and V̂ ∈

𝐿2 ⊂ 𝐺𝑝 so that 𝐸𝜆(𝑟𝑖, 𝜆02𝑖+1; �̂�, V̂) ≤ 𝐶, where 𝐶 is a constant
independent of 𝜆02𝑖+1.

Proof. By [19], there exists a unique solution for ROF model
(1), denoted by

(�̂�, V̂) = arg inf {𝐽 (𝑟𝑖; 𝑢, V) = |𝑢|𝐵𝑉 + ‖V‖𝐿2 , 𝑟𝑖 = 𝑢 + V}
(54)

such that �̂� ∈ 𝐵𝑉, V̂ ∈ 𝐿2 ⊂ 𝐺𝑝.Therefore, we can deduce that

𝐸𝜆 (𝑟𝑖, 𝜆02
𝑖+1
; �̂�, V̂) = |�̂�|𝐵𝑉 + 2

𝑖+1
𝜆0
𝑟𝑖 − �̂� − V̂

2

𝐿2
+ ‖V̂‖𝐺

𝑝

= |�̂�|𝐵𝑉 + ‖V̂‖𝐺
𝑝

≤ |�̂�|𝐵𝑉 + 𝐶1‖V̂‖𝐿2 = 𝐶,
(55)

where 𝐶 clearly does not depend on 𝜆02
𝑖+1.

Theorem 17. Let𝑓 ∈ 𝐿2.Then, the hierarchical decomposition
given in (21) satisfies



𝑓 −

𝑘

∑
𝑖=−1

(𝑢𝑖+1 + V𝑖+1)

𝐿2
=
𝑟𝑘+1

𝐿2 → 0, as 𝑘 → ∞.

(56)

In addition, the following “energy” estimate holds:
∞

∑
𝑖=−1

1

𝜆02
𝑖+1

(
𝑢𝑖+1

𝐵𝑉 +
V𝑖+1

𝐺
𝑝

)

+

∞

∑
𝑖=−1

(
𝑢𝑖+1 + V𝑖+1


2

𝐿2
) =

𝑓

2

𝐿2
.

(57)

Proof. By Lemma 16, there exist �̂� ∈ 𝐵𝑉 and V̂ ∈ 𝐺𝑝, such that
𝐸𝜆(𝑟𝑖, 𝜆02

𝑖+1; �̂�, V̂) ≤ 𝐶, where 𝐶 does not depend on 𝜆02
𝑖+1.

Since (𝑢𝑖+1, V𝑖+1) is a solution of (22), we have

𝐸𝜆 (𝑟𝑖, 𝜆02
𝑖+1
; 𝑢𝑖+1, V𝑖+1) ≤ 𝐸𝜆 (𝑟𝑖, 𝜆02

𝑖+1
; �̂�, V̂) ≤ 𝐶. (58)

Thus,

𝜆02
𝑖+1𝑟𝑖 − 𝑢𝑖+1 − V𝑖+1


2

𝐿2
≤ 𝐸𝜆 (𝑟𝑖, 𝜆02

𝑖+1
; 𝑢𝑖+1, V𝑖+1) ≤ 𝐶,

(59)

which, by 𝑟𝑖+1 = 𝑟𝑖 − 𝑢𝑖+1 − V𝑖+1, implies

𝑟𝑖+1

2

𝐿2
≤

𝐶

𝜆02
𝑖+1
, 𝑖 = −1, 0, 1, . . . . (60)

By 𝑟𝑘+1 = 𝑓 − ∑
𝑘

𝑖=−1
(𝑢𝑖+1 + V𝑖+1), we have



𝑓 −

𝑘

∑
𝑖=−1

(𝑢𝑖+1 + V𝑖+1)



2

𝐿2

=
𝑟𝑘+1


2

𝐿2
≤

𝐶

𝜆02
𝑘+1

,

𝑘 = −1, 0, 1, . . . .

(61)

Therefore, ‖𝑓 − ∑𝑘
𝑖=−1

(𝑢𝑖+1 + V𝑖+1)‖𝐿2 → 0 as 𝑘 → ∞. The
proof of the first assertion is completed.

Next, we prove the second assertion that is, (57). Since
𝑟𝑖 = 𝑟𝑖+1 + (𝑢𝑖+1 + V𝑖+1), we obtain

𝑟𝑖

2

𝐿2
=
𝑟𝑖+1


2

𝐿2
+
𝑢𝑖+1 + V𝑖+1


2

𝐿2
+ 2 ⟨𝑟𝑖+1, 𝑢𝑖+1 + V𝑖+1⟩ .

(62)

By (40), (62) can be rewritten as
𝑟𝑖

2

𝐿2
−
𝑟𝑖+1


2

𝐿2
−
𝑢𝑖+1 + V𝑖+1


2

𝐿2

= 2 ⟨𝑟𝑖+1, 𝑢𝑖+1 + V𝑖+1⟩

=
1

𝜆02
𝑖+1

(
𝑢𝑖+1

𝐵𝑉 +
V𝑖+1

𝐺
𝑝

) .

(63)

Since
𝑘

∑
𝑖=−1

(
𝑟𝑖

2

𝐿2
−
𝑟𝑖+1


2

𝐿2
−
𝑢𝑖+1 + V𝑖+1


2

𝐿2
)

=

𝑘

∑
𝑖=−1

(
𝑟𝑖

2

𝐿2
−
𝑟𝑖+1


2

𝐿2
) −

𝑘

∑
𝑖=−1

(
𝑢𝑖+1 + V𝑖+1


2

𝐿2
)

=
𝑟−1


2

𝐿2
−
𝑟𝑘+1


2

𝐿2
−

𝑘

∑
𝑖=−1

(
𝑢𝑖+1 + V𝑖+1


2

𝐿2
)

=
𝑓

2

𝐿2
−
𝑟𝑘+1


2

𝐿2
−

𝑘

∑
𝑖=−1

(
𝑢𝑖+1 + V𝑖+1


2

𝐿2
) ,

(64)
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(a) (b) (c) (d)

Figure 1: Test images. Left to right: (a) and (b) two synthetic textured images; (c) fingerprint image; (d) a portion of noisy Barbana image
which generated by adding Gaussian noise with standard deviation 20 to the clean data.

summing up both sides of (63), we obtain
𝑘

∑
𝑖=−1

1

𝜆02
𝑖+1

(
𝑢𝑖+1

𝐵𝑉 +
V𝑖+1

𝐺
𝑝

)

+

𝑘

∑
𝑖=−1

(
𝑢𝑖+1 + V𝑖+1


2

𝐿2
)

=
𝑓

2

𝐿2
−
𝑟𝑘+1


2

𝐿2
.

(65)

By lim𝑘→∞‖𝑟𝑘+1‖𝐿2 → 0, we have

∞

∑
𝑖=−1

1

𝜆02
𝑖+1

(
𝑢𝑖+1

𝐵𝑉 +
V𝑖+1

𝐺
𝑝

)

+

∞

∑
𝑖=−1

(
𝑢𝑖+1 + V𝑖+1


2

𝐿2
) =

𝑓

2

𝐿2
.

(66)

Equation (57) can be seen as the 𝐿2-energy decompo-
sition of 𝑓 in our hierarchical decomposition. In addition,
the multiscale nature of our hierarchical extraction can be
quantified in terms of this energy decomposition.

4. Numerical Implementation

In this section, we present the details of numerical implemen-
tation for our hierarchical (𝐵𝑉, 𝐺𝑝, 𝐿

2) decomposition:

(𝑢𝑘+1, V𝑘+1)

= arg inf {|𝑢|𝐵𝑉 + 𝜆02
𝑘+1𝑟𝑘 − 𝑢 − V

2

𝐿2
+ ‖V‖𝐺

𝑝

,

∫
Ω

𝑢 = ∫
Ω

𝑟𝑘} , 𝑘 = −1, 0, 1, . . . .

(67)

Taking V = div(g) = div(𝑔1, 𝑔2), we obtain the following
equivalent formulation of (67) in terms of 𝑢, 𝑔1, and 𝑔2:
(𝑢𝑘+1, [𝑔1]𝑘+1, [𝑔2]𝑘+1)

= arg inf { |𝑢|𝐵𝑉 + 𝜆02
𝑘+1 𝑟𝑘 − 𝑢 − div (g)

2

𝐿2

+
g
𝐿𝑝 , ∫
Ω

𝑢 = ∫
Ω

𝑟𝑘} ,

(68)

where g𝑘+1 = ([𝑔1]𝑘+1, [𝑔2]𝑘+1).

Minimizing the energy in (68) with respect to 𝑢, 𝑔1 and
𝑔2 yields the following Euler-Lagrange equations:

− div( ∇𝑢

|∇𝑢|
) − 𝜆02

𝑘+2
(𝑟𝑘 − 𝑢 −

𝜕

𝜕𝑥
𝑔1 −

𝜕

𝜕𝑦
𝑔2) = 0, (69)

𝜆02
𝑘+2 𝜕

𝜕𝑥
(𝑟𝑘 − 𝑢 −

𝜕

𝜕𝑥
𝑔1 −

𝜕

𝜕𝑦
𝑔2)

+ (

√𝑔2
1
+ 𝑔2
2

𝐿𝑝
)
1−𝑝

(√𝑔2
1
+ 𝑔2
2
)
𝑝−2

𝑔1 = 0,

(70)

𝜆02
𝑘+2 𝜕

𝜕𝑦
(𝑟𝑘 − 𝑢 −

𝜕

𝜕𝑥
𝑔1 −

𝜕

𝜕𝑦
𝑔2)

+ (

√𝑔2
1
+ 𝑔2
2

𝐿𝑝
)
1−𝑝

(√𝑔2
1
+ 𝑔2
2
)
𝑝−2

𝑔2 = 0.

(71)

If the exterior normal to the boundary 𝜕Ω is denoted by
(𝑛𝑥, 𝑛𝑦), then the associated boundary conditions for 𝑢, 𝑔1,
and 𝑔2 are

∇𝑢 ⋅ (𝑛𝑥, 𝑛𝑦) = 0, (72)

(𝑟𝑘 − 𝑢 −
𝜕

𝜕𝑥
𝑔1 −

𝜕

𝜕𝑦
𝑔2)𝑛𝑥 = 0, (73)

(𝑟𝑘 − 𝑢 −
𝜕

𝜕𝑥
𝑔1 −

𝜕

𝜕𝑦
𝑔2)𝑛𝑦 = 0. (74)

Equation (69) with boundary condition (72) implies that
∫
Ω
𝑢 = ∫
Ω
𝑟𝑘 holds. Indeed, by taking the integral for each side

of (69) and using the Gaussian formula, we obtain

∫
Ω

(𝑟𝑘 − 𝑢 − div (g)) = 0. (75)

Since V = div(g) ∈ 𝐺𝑝, by Proposition 8, we have ∫
Ω
div(g) =

0. Therefore, ∫
Ω
𝑢 = ∫
Ω
𝑟𝑘.

We solve (69)–(71) by the alternating algorithm. For each
equation, we adopt gradient decent method. To simplify the
presentation, we introduce the notation

𝐻(𝑔1, 𝑔2) = (

√𝑔2
1
+ 𝑔2
2

𝐿𝑝
)
1−𝑝

(√𝑔2
1
+ 𝑔2
2
)
𝑝−2

. (76)
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Figure 2: Hierarchical decomposition of a synthetic image for 7
steps.

The details are as follows:

(i) fixed (𝑔1, 𝑔2), find the solution 𝑢 of

𝜕𝑢

𝜕𝑡
= div( ∇𝑢

|∇𝑢|
) + 𝜆02

𝑘+2
(𝑟𝑘 − 𝑢 −

𝜕

𝜕𝑥
𝑔1 −

𝜕

𝜕𝑦
𝑔2) (77)

with the initial condition 𝑢(𝑥, 𝑦, 0) = 𝑟𝑘(𝑥, 𝑦),

(ii) fixed 𝑢, find the solution 𝑔1, 𝑔2 of

𝜕𝑔1

𝜕𝑡
= −𝜆02

𝑘+2 𝜕

𝜕𝑥
(𝑟𝑘 − 𝑢 −

𝜕

𝜕𝑥
𝑔1 −

𝜕

𝜕𝑦
𝑔2)

− 𝐻 (𝑔1, 𝑔2) 𝑔1,

𝜕𝑔2

𝜕𝑡
= −𝜆02

𝑘+2 𝜕

𝜕𝑦
(𝑟𝑘 − 𝑢 −

𝜕

𝜕𝑥
𝑔1 −

𝜕

𝜕𝑦
𝑔2)

− 𝐻 (𝑔1, 𝑔2) 𝑔2,

(78)

with the initial conditions 𝑔0
1
= −((1/(𝜆02

𝑘+2))(𝑟𝑘,𝑥/

|∇𝑟𝑘|)), 𝑔
0

2
= −((1/(𝜆02

𝑘+2))(𝑟𝑘,𝑦/|∇𝑟𝑘|)), respectively.

We use a simple explicit finite difference scheme to solve
(77)-(78). The image domain Ω is discretized by the space
steps Δ𝑥 and Δ𝑦. Then, the grid is defined as

(𝑥, 𝑦) = (𝑥𝑖, 𝑦𝑗) = (𝑖Δ𝑥, 𝑗Δ𝑦) ,

𝑖 = 0, 1, 2, . . . , 𝑚, 𝑗 = 0, 1, 2, . . . , 𝑛.

(79)

We denote the time step by Δ𝑡, and 𝑡𝑛 = 𝑛Δ𝑡 (𝑛 = 0, 1, 2, . . .).
Let 𝑢𝑛
𝑖,𝑗
be the value of 𝑢(𝑥, 𝑦, 𝑡) at the grid (𝑥𝑖, 𝑦𝑗, 𝑡𝑛). In order

to compute the right hand side of (77)-(78), we denote

Δ
𝑥

+
𝑢
𝑛

𝑖,𝑗
=
𝑢𝑛
𝑖+1,𝑗

− 𝑢𝑛
𝑖,𝑗

Δ𝑥
, Δ

𝑥

−
𝑢
𝑛

𝑖,𝑗
=
𝑢𝑛
𝑖,𝑗
− 𝑢𝑛
𝑖−1,𝑗

Δ𝑥
,

Δ
𝑦

+
𝑢
𝑛

𝑖,𝑗
=
𝑢𝑛
𝑖,𝑗+1

− 𝑢𝑛
𝑖,𝑗

Δ𝑦
, Δ

𝑦

−
𝑢
𝑛

𝑖,𝑗
=
𝑢𝑛
𝑖,𝑗
− 𝑢𝑛
𝑖,𝑗−1

Δ𝑦
,

Δ
𝑥

0
𝑢
𝑛

𝑖,𝑗
=
(Δ𝑥
+
+ Δ𝑥
−
) 𝑢𝑛
𝑖,𝑗

2
, Δ

𝑦

0
𝑢
𝑛

𝑖,𝑗
=
(Δ
𝑦

+ + Δ
𝑦

−) 𝑢
𝑛

𝑖,𝑗

2
.

(80)

Then, (77)-(78) can be approximated by the following dis-
cretizations (to remove the singularity when |∇𝑢| = 0 and
√𝑔2
1
+ 𝑔2
2
= 0, we introduce a regularity parameter 𝜀2):

𝑢
𝑛+1

𝑖,𝑗
= 𝑢
𝑛

𝑖,𝑗
+ Δ𝑡 [𝐾

𝑛

𝑖,𝑗
+ 𝜆02

𝑘+2

× ([𝑟𝑘]𝑖,𝑗 − 𝑢
𝑛

𝑖,𝑗
− Δ
𝑥

0
[𝑔1]
𝑛

𝑖,𝑗
− Δ
𝑦

0
[𝑔2]
𝑛

𝑖,𝑗
)] ,

(81)

with the initial condition

𝑢
0

𝑖,𝑗
= [𝑟𝑘]𝑖,𝑗, (82)



10 Journal of Applied Mathematics

1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Iteration number

×108
B
V

-e
ne

rg
y

(a)

1 2 3 4 5 6 7
0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Iteration number

×104

G
p

-e
ne

rg
y

(b)

1 2 3 4 5 6 7
0

2

4

6

8

10

12

Iteration number

×106

L
2
-e

ne
rg

y

(c)

Figure 3: Energy plots of three components. (a) The 𝐵𝑉-energy of 𝑢𝑖. (b) The 𝐺𝑝-energy of V𝑖. (c) The 𝐿2-energy of 𝑟𝑖.

where 𝐾𝑛
𝑖,𝑗

is the curvature of the level set of 𝑢 at the grid
(𝑥𝑖, 𝑦𝑗, 𝑛Δ𝑡), defined by

𝐾
𝑛

𝑖,𝑗
= Δ
𝑥

+
(

Δ𝑥
−
𝑢𝑛
𝑖,𝑗

√(Δ𝑥
−
𝑢𝑛
𝑖,𝑗
)
2

+ (Δ𝑥
−
𝑢𝑛
𝑖,𝑗
)
2

+ 𝜀2

)

+ Δ
𝑦

+
(

Δ
𝑦

−𝑢
𝑛

𝑖,𝑗

√(Δ𝑥
−
𝑢𝑛
𝑖,𝑗
)
2

+ (Δ𝑥
−
𝑢𝑛
𝑖,𝑗
)
2

+ 𝜀2

),

[𝑔1]
𝑛+1

𝑖,𝑗
= [𝑔1]

𝑛

𝑖,𝑗

− Δ𝑡 [𝜆02
𝑘+2

Δ
𝑥

0
([𝑟𝑘]𝑖,𝑗 − 𝑢

𝑛

𝑖,𝑗
− Δ
𝑥

0
[𝑔1]
𝑛

𝑖,𝑗

−Δ
𝑦

0
[𝑔2]
𝑛

𝑖,𝑗
) +𝐻
𝑛

𝑖,𝑗
[𝑔1]
𝑛

𝑖,𝑗
] ,

[𝑔2]
𝑛+1

𝑖,𝑗
= [𝑔2]

𝑛

𝑖,𝑗

− Δ𝑡 [𝜆02
𝑘+2

Δ
𝑦

0
([𝑟𝑘]𝑖,𝑗 − 𝑢

𝑛

𝑖,𝑗
− Δ
𝑥

0
[𝑔1]
𝑛

𝑖,𝑗

−Δ
𝑦

0
[𝑔2]
𝑛

𝑖,𝑗
) + 𝐻

𝑛

𝑖,𝑗
[𝑔2]
𝑛

𝑖,𝑗
] ,

(83)

with the initial condition

[𝑔1]
0

𝑖,𝑗
= −

1

𝜆02
𝑘+2

Δ𝑥
0
[𝑟𝑘]𝑖,𝑗

√(Δ𝑥
0
[𝑟𝑘]𝑖,𝑗)

2

+ (Δ𝑥
0
[𝑟𝑘]𝑖,𝑗)

2

+ 𝜀2

,

[𝑔2]
0

𝑖,𝑗
= −

1

𝜆02
𝑘+2

Δ
𝑦

0
[𝑟𝑘]𝑖,𝑗

√(Δ𝑥
0
[𝑟𝑘]𝑖,𝑗)

2

+ (Δ𝑥
0
[𝑟𝑘]𝑖,𝑗)

2

+ 𝜀2

,

(84)

where𝐻𝑛
𝑖,𝑗
= 𝐻([𝑔1]

𝑛

𝑖,𝑗
, [𝑔2]
𝑛

𝑖,𝑗
).
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Figure 4: Multiscale texture extraction using hierarchical decomposition of a synthetic image for 9 steps.

5. Numerical Results

We present four numerical examples in this section to
demonstrate the efficiency of multiscale texture extraction
and image representation using the proposed hierarchical
(𝐵𝑉, 𝐺𝑝, 𝐿

2) decomposition for textured images. Test images,
shown in Figure 1, are two synthetic images and two real
images. In all experiments, we take the time step Δ𝑡 = 0.05,
the space step Δ𝑥 = Δ𝑦 = 1, the initial scale 𝜆0 = 0.005, and
the regular parameter 𝜀2 = 10−9.

For the choice of 𝑝, by the theoretical analysis in Section
2, we have that 𝐺𝑝-norms are weaker than 𝐺-norm for any
1 ≤ 𝑝 < ∞. So, any choice of 𝑝 with 1 ≤ 𝑝 < ∞ is
suitable. Here, similar to what was done by Vese and Osher
in [6, 14], we tested the model (68) with different values of 𝑝;
our observation is that results are very similar, while the case
of 𝑝 = 1 yields faster calculations per iteration. Thus, we set
𝑝 = 1 in the following.We note in passing that some different
approaches based on duality principle have been proposed,
such as [21, 22], to solve (67) with 𝑝 = ∞. We here adopt the
method introduced by Vese and Osher because this study is
following their work in [6, 14].

(i) Image hierarchical (𝐵𝑉, 𝐺𝑝, 𝐿
2) decomposition: Figure

2 shows the hierarchical decomposition results for a synthetic
textured image for 7 steps.Thefirst column shows the cartoon

components of the initial image in different scales. We can
see that these cartoon components are very little different
visually. This phenomenon is compatible with the theory
of causality of scale space. The second column shows the
“textures+100” (plus a constant for illustration purposes) of
the image in different scales. It is clear that the textures can
be gently extracted by increasing the value of scale parameter
𝜆02
𝑖+1, because this image involves the textures of different

scales: coarser textures correspond to the smaller scales, while
smoother textures correspond to the larger scales. The third
column shows “residuals+100,” fromwhich we can clearly see
that some textures and edges are swept into these residual
components when the value of scale parameter 𝜆02

𝑖+1 is
smaller, and then, they are gradually swept out and absorbed
by 𝑢𝑖 and V𝑖 by increasing the value of the scale parameter
𝜆02
𝑖+1. Figure 3 shows the plots of the 𝐵𝑉-energy of 𝑢𝑖, 𝐺𝑝-

energy of V𝑖, and 𝐿
2-energy of 𝑟𝑖, respectively.

(ii) Multiscale texture extraction: Figure 4 shows the
results of multiscale texture extraction using hierarchical
decomposition for another synthetic textured image for 9
steps. The first two images show the initial and final cartoon
components which have little visual difference; this pheno-
menon is identical with the results of the first experiment.The
next nine images show the texture components in different
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Figure 5: Multiscale texture extraction and image representation using hierarchical decomposition of a fingerprint for 6 steps.

scales, which can be used as the results of multiscale texture
extraction for this synthetic textured image. We remark that
the larger scale textures are gradually resolved from the
residual in terms of the increasing scale.

(iii) Multiscale texture extraction and image representa-
tion: Figure 5 shows the results of multiscale texture extrac-
tion and image representation using hierarchical decomposi-
tion of a fingerprint for 6 steps. The second column of this
figure shows the extracted texture in different scales. The
∑
𝑘

𝑖=0
(𝑢𝑖+V𝑖)s are shown in the last columnof this figure, which

can be used as a multiscale representation of the original
image. We can clearly see that, from top to bottom of this

column, an additional amount of blurred texture is resolved
in terms of the refined scaling for edges.

(iv) Multiscale image representation for noisy textured
image: Figure 6 shows the hierarchical decomposition results
of a noisy Barbana for 6 steps. The last column of this figure
shows ∑𝑘

𝑖=0
(𝑢𝑖 + V𝑖)s which can be seen as restored images

in different scales. Clearly, when the value of 𝑘 is smaller,
such as 𝑘 = 0, 1, there are a few textures and noises in
the restored images, much of which is swept into residual
components. When 𝑘 = 2, 3, some textures of the image are
recovered on the headscarf of Barbana while removing the
smaller scale noises from the entire image. If we continue the
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Figure 6: Multiscale image representation using hierarchical decomposition of a noisy Barbana for 6 steps.

decomposition into smaller scales, then noise will reappear
in the∑𝑘

𝑖=0
(𝑢𝑖+V𝑖) components, since the refined scales reach

the same scales of the noise itself. From the last column of
this figure, we can obtain restored image from noisy Barbana
in different scales according to our requirements.

6. Conclusions

In this paper, in order to achievemultiscale image representa-
tion and texture extraction for textured image, we presented
a hierarchical (𝐵𝑉, 𝐺𝑝, 𝐿

2) decompositionmodel which com-
bines the idea of hierarchical decomposition introduced by

Tadmor et al. with the (𝐵𝑉, 𝐺𝑝, 𝐿
2) decomposition proposed

by Vese et al. In addition, we proved the existence and
the convergence of the hierarchical decomposition, and the
nontrivial property of this decomposition is also discussed.
But the uniqueness of this hierarchical decomposition has
not been proved in this paper. The authors will be concerned
about this problem in the successive research.
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