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We investigate the traveling wave solutions for the ZK-BBM(m, ) equations u, + u, — a(u™), + (b(u"),, + k(u") y), = 0 by using
bifurcation method of dynamical systems. Firstly, for ZK-BBM(2, 2) equation, we obtain peakon wave, periodic peaT(on wave, and
smooth periodic wave solutions and point out that the peakon wave is the limit form of the periodic peakon wave. Secondly, for ZK-
BBM(3, 2) equation, we obtain some elliptic function solutions which include periodic blow-up and periodic wave. Furthermore,
from the limit forms of the elliptic function solutions, we obtain some trigonometric and hyperbolic function solutions which
include periodic blow-up, blow-up, and smooth solitary wave. We also show that our work extends some previous results.

1. Introduction

In recent years, many nonlinear wave equations have been
derived from solid state physics, plasma physics, chemical
physics, fluid mechanics, biology, and other fields. Thus, there
has been considerable attention to find exact solutions of
these problems. For this purpose, there have been many
methods, such as inverse scattering transform method [1],
Bécklund and Darboux transforms [2, 3], Jacobi elliptic func-
tion method [4, 5], F-expansion and extended F-expansion
method [6, 7], (G'/G)-expansion method [8, 9], and the
bifurcation method of dynamical systems [10-14].
Zakharov-Kuznetsov (ZK) equation [15]

u, + auu,, + (uxx + uxy)x =0 @

is a two-dimensional space generalization of the KdV equa-
tion. The nonintegrable ZK equation governs the behavior of
weakly nonlinear ion-acoustic waves in a plasma comprising
cold ions and hot isothermal electrons in the presence of a
uniform magnetic field [16, 17].

Benjamin-Bona-Mahony (BBM) equation [18]

U, + U, — a(uz)x ~bu,, =0 (2)

is an alternative model to KdV equation for small-amplitude,
surface waves of long wavelength in liquids, acoustic-gravity
waves in compressible fluids, hydromagnetic waves in cold
plasma, and acoustic waves in anharmonic crystals.

Combining the BBM equation with the sense of the ZK
equation, Wazwaz [19] considered the following ZK-BBM
equation:

U, +u, — a(uz)x - (E(u)xt + E(u)yt)x =0, (3)

and its generalized form
up +u, —a(u"), - (E(u")xt + E(u")yt)x =0. (4)

He presented a method called the extended tanh method
to seek exact explicit compactons, solitons, solitary patterns,
and plane periodic solutions of (3) and (4).

Wang and Tang [20] studied the following generalized
ZK-BBM equations:

u +u, —a(u™) + (b(u")xt + k(u”)yt)x =0. (5)
By using the bifurcation theory of planar dynamical systems,
they gave some exact explicit traveling wave solutions and the



sufficient conditions to guarantee the existence of smooth and
nonsmooth traveling wave solutions.

In the present paper, we continue to study the traveling
wave solutions for (5), which we denote by ZK-BBM(m, n)
equations for convenience. Our results are as follows: (i) for
ZK-BBM(2, 2) equation, we obtain peakon wave, periodic
peakon wave, and smooth periodic wave solutions and point
out that the peakon wave is the limit form of the periodic
peakon wave; (ii) for ZK-BBM(3, 2) equation, we obtain some
elliptic function solutions which include periodic blow-up
and periodic wave. From the limit forms of the elliptic func-
tion solutions, we obtain some trigonometric and hyperbolic
function solutions which include periodic blow-up, blow-
up, and smooth solitary wave. We also check the correctness
of these solutions by putting them back into the original
equation.

This paper is organized as follows. In Section 2, we state
our main results which are included in two propositions.
In Sections 3 and 4, we give the derivations for the two
propositions, respectively. A brief conclusion is given in
Section 5.

2. Main Results and Remarks

In this section we list our main results and give some remarks.
To begin with, let us recall some symbols. The symbols sn u
and cn u denote the Jacobian elliptic functions sine amplitude
u and cosine amplitude u. cosh u, sinh u, sech u, and csch u
are the hyperbolic functions. For the sake of simplification,
we only consider the case a > 0 (the other case a < 0
can be considered similarly). To relate conveniently, for given
constant wave speed c, let

E=x+y-—ct

_ 20-o
="y, )

~ \/80 1-¢?
927 \"820a
Via the following two propositions we state our main results.

Proposition 1. Consider ZK-BBM(2, 2) equation

U, +u, — a(uz)x + (b(uz)xt + k(uz)yt)x =0 7)
and its traveling wave equation

g+ —c)(p—a(p2 —2c(b+k)((p')2 —Zc(b+k)(p(p" =0.
(8)
There are the following results.

(1) Whenc(b+k) < 0,c#1,and g = g;, (7) has a peakon
wave solution

w @ = 207 (12 i), (9)
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where
- -a
=q|—. 10
" \/4c b+k) 1

(2) Whenc(b+k) < 0,c#1,and g, < g < 0,(7) hasa
periodic peakon wave solution

B . 2(1 —
aen 4 gem il %, forc<1,
a
u, (§) = (11)
. g, 2(0-0)
ae B 4 ey ——— for ¢ > 1,
3a
where
Ee[@-1)T,Ql+1)T),
o= c—1 1,
3a 2a
_c-1_[-g
"~ 3a 2a’ (12)
1=0,%1,%2,...,

T—\]4C(b+k)l \/4(1—c)2+18ag
B 2 3\-2ag-2(1-¢c)|

(3) Whenc¢(b + k) > 0,c#1,and g; < g, (7) has two
smooth periodic wave solutions

uy ®© = 25Dy cos 79).
(13)

u ® = 2Dy in (77%).

where
N
G \/4c b+k) (14)
_ \ 4(1 - C)2 + 18ag (15)
14 3a '

Remark 2. When c(b +k) < 0,c#1,andg — g, + 0, the
periodic peakon wave u, (&) becomes the peakon wave 1, (§);
the varying process is displayed in Figure 1.

Remark 3. Whenc(b+k) >0,c#1,and g — 0, the smooth
periodic wave u,(§) becomes

0= 1)) oo

which can be found in [20]; this implies that we extend the
previous result.
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FIGURE 1: The varying process for the periodic peakon wave u, (&) tends to the peakon wave u,(§) when g — g, + 0, wherea = 1,¢ = -1,
andb=k=1/2,and (@) g=g, +10 (b)) g=g, +10%5(c)g=g, +107*5(d) g =g, + 107°.
Proposition 4. Consider ZK-BBM(3, 2) equation %(Zam (1 - \/gi) (1-¢)+ (1 + \/31') 02/3) (24)
3 2 2 P2 = 6/4aQl/3 ’
up +uy —a(), + (b)), + k(w),,) =0 17) a

and its traveling wave equation 35 (ZaW(l " \/51) (1-c)+ (1 _ \/31) 02/3)

_ 25)

2 % ,
g+(l-c)p—ap’ —2c(b+k) ((p') ~2c(b+k)pp" = 0. ’ 6\/4aQ1/3
(18)
- 2 4 3 3 2
There are the following results. Q= \/7299 a* —80(1 -c)'a’ —27ga’. (26)

(1°) When ¢(b + k) > 0,¢c < 1,and g < —g,, (17) has two
elliptic periodic blow-up solutions

2A

S L R ey )
3571 (19)

@) =g +A - 24

T T e k)

where
A= \/(‘P1 - ¢2) (1 = 93), (20)
o4 21
’73‘\j5c(b+k)’ 2y
K= 2A1+20, -9, — 95 (22)
! 4A, ’

_2V/100a(c-1) - J10Q*? (23)

#1 6aQl/?

(2°) Whenc(b + k) > 0,c < 1,and —g, < g < g,, (17) has
two elliptic periodic blow-up solutions u,(§), ug(§) and two
symmetric elliptic periodic wave solutions (&), 1,,(&)

u; (&) = 93— (93 — ;) sn”? (’715) k,),

1 gozsnz (’71& kz)

_9
WO e ek

ug (&) = @5 — (93 — ¢,) sn’ (’125’ ky)

) — piksn’ (1,6, k)
1—kysn? (m;&,k,)

Uy (&) = L&

(27)



where
v _ |alos—91)
s 20c b+ k)’
k, = \j% ‘Pz'
P35~ ¢

(3°) Whenc(b + k) > 0,c < 1,and g > g,, (17) has two
elliptic periodic blow-up solutions

(28)

2A
= Aym—— 2,
u (§) =3 + A, 1—cn (728, k) 29
o (29)
2 Q) =95+ A = T T Y
where
A, = \/(‘P3 -9,) (93— ¢1),
o[ ey
5= \5c+ k)’ G0
oAt 20— -
3 4A2 .

(4°) When ¢(b + k) < 0,c < 1,and g > g,, (17) has two
elliptic periodic blow-up solutions

o 24
B N L)
Omppt— 2
s () = @3 = Ay + 1+cn(ns&, k3 )’
where
_ -aA,
5= \5cw+ k)’ o)

o= 2A, -2¢05+ 9, + ¢
3 44, '

(5°) Whenc(b + k) <0,c < 1,and —g, < g < g,, (17) has
two elliptic periodic blow-up solutions u,5(§), 1;¢(§) and two
symmetric elliptic periodic wave solutions u,(§), 1,5(§)

w5 (€)= ¢y + (93 — ) sn (1,8 k4)
@3 = @50 (1,6 k)

Uye (&) = 1 — sn2 (’7;& k4) (33
;&) =+ (9, - 1) sn’ (’7;5’ ky),
2 (p3kisn2 (n58.k,)
O e (k)
where
- _ \/‘a(‘Ps - ¢)
=\ 0c+k) "

k4 \](PZ (Pl
P -1
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(6°) Whenc(b+ k) <0,¢c < 1,and g < —g,, (17) has two
elliptic periodic blow-up solutions

o A 2A
U () = - A + 1+con (36 k)
© =g - Ay ”
U () = ¢ 1—Cn(’73gk )
where
= \scwrk) (36)

k= 2A, -2, + 9, + @5
! 44, '

Remark 5. When ¢(b + k) > 0,¢c < l,andg — -g,,
the periodic blow-up solutions u5(&) (or u,(&)) and ug(&) (or
ug(&)) tend to two trigonometric periodic blow-up solutions,
respectively,

_420- _ /
”21(5)_\/ 9a (1 3CSC( (b+k\/80a ))

(37)

N EIC _ /
”22(5)_\] 9a (1 3sec( (b+k\/80a ))

(38)

The symmetric elliptic periodic wave solutions u4(§) and

,0(&) become a trivial solution u,5(&) = v/5(1 - ¢)/9a.

Remark 6. When ¢(b + k) > 0,¢c < l,and g — g,
the periodic blow-up solution u,(§) (or u;;(£)) tends to a
hyperbolic blow-up solution

_ |50 -09 of [ a JJi-c¢
4 () = \j 9a <1+3C5Ch <\jc(b+k)\/80a5>>‘

(39)

The elliptic periodic wave solution u4(§) (or the elliptic
periodic blow-up solution u,(§)) tends to a hyperbolic
smooth solitary wave solution

_ 5(1-¢) B 2 a
tas () = \/ 9a <1 3sech <\/c(b+k) 80a£>)

(40)

For the varying process, see Figures 2, 3, and 4. The elliptic
solutions ug(&) and u;,() tend to a trivial solution u,4(&) =

—-4/(5(1 = ¢))/9a.

Remark 7 When ¢(b + k) < 0,¢c < l,and g — g,
the periodic blow-up solutions u,5(§) (or u;5(&)) and u,(&)
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FIGURE 2: The varying process for graphs of u,(§) when g — g, — 0, wherea=1,c=b=k=1/2,and(a) g=g,- 105 (b) g=g, - 1075
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FIGURE 3: The varying process for graphs of uy(§) when g — g, — 0, wherea=1,c=b=k=1/2,and(a) g=g,- 1075 (b) g =g, - 1075
(©)g=g,-10% () g=g,-107"
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FIGURE 4: The varying process for graphs of u,,(§) when g — g, + 0, wherea=1,c=b=k=1/2,and (a) g =g, +1/5;(b) g = g, + 1075

©g=9g,+ 1074 (d) g=g,+ 107°.

(or u;4(€)) tend to two trigonometric periodic blow-up

solutions, respectively,
80a E) >

_ 5(1-¢) B 2 —a
Uy, (&) = \/ o <1 3 sec <\/c(b 0
_ 5(1-¢) B 2 -a Jl-c
s () = = \j 9a <1 3esc <\jc(b+k)\/80a 5))

(41)

The symmetric elliptic periodic wave solutions u,,(§) and
u,5(§) become the trivial solution u,(&).

Remark 8. When ¢(b + k) < 0,¢ < l,andg — -g,,
the periodic blow-up solution u,5(§) (or uyy(&)) tends to a
hyperbolic blow-up solution

51 -0¢) 2 -a </1—c
uzg(E)—\j o <1+3csch (\/c(b+k) 80a€>>'

(42)

The elliptic periodic wave solution u,,(&) (or the elliptic
periodic blow-up solution u;4(£)) tends to a hyperbolic
smooth solitary wave solution

EREIC N 2 -a ,l-c
u30(f)—\j 9a (1 3sech (\]c(b+k)\/80a£>>'

(43)

The varying process is similar to those in Figures 2-4. The
elliptic solutions u,4(&) and u,4(&) tend to the trivial solution

Uys (E)

Remark 9. When g — 0, the solutions u,,(§) and u;4(&),

respectively, become
2of —2
10c (b + k)

€)= (J“;C) sn
. <]5(1-(:)
3a

%))
2
X<2_Sn2<\hoc(2+k)

X \/5(1 5£>>_1,

forc(b+k)>0,c<1,
uig(s)=<J5“3;C)s

)

—a

2
! (\/10c(b+k)
§ \]5(1
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X 2 4
T\ Toc+k
-1
)
3a 2

forc(b+k)<0,c<1,

(44)
which can be found in [20]; this implies that we extend the
previous results.

3. The Derivations for Proposition 1

In this section, we derive the precise expressions of the trav-
eling wave solutions for ZK-BBM(2, 2) equation. Substituting
u = @(&) with & = x + y — ct into (7), it follows that

(1-¢)¢' —2app’ —2¢c(b+k) (3g0'<p” + go(p") =0. (45)
Integrating (45) once, we have
g+(1-c)p-ag’ —2c(b+k)(<p')2 +2c(b+k)pp” =0,

where g is an integral constant.
Letting ¥ = ¢, we obtain the following planar system:

d(p_

d_g_w’ (47)
d_l// B g+(1—c)go—a(pz—2c(b+k)1//2
d& 2c(b+k)g ’

Under the transformation dé = 2¢(b + k)@dz, system (47)
becomes

d_q) =2c(b+k) oy,
p ! (48)
d—v/ =g+ -c)p—ap’—2c(b+k)y’
T
Clearly, system (47) and system (48) have the same first
integral

2c(b+k) o'y’ + §<p4 - yqﬁ -g¢’=h,  (49)
where h is an integral constant. Consequently, these two
systems have the same topological phase portraits except for
the straight line ¢ = 0. Thus, we can understand the phase
portraits of system (47) from those of system (48).
When the integral constant /i = 0, (49) becomes

2(1-¢)
Ee—

26(b+k)1//2+§(p2— 3

~g=0. (50

Solving equation (a/2)(p2 -(2(1-¢)/3)p — g =0, we get

two roots
. 2(l-0% \4(1 - ¢)? + 18ag

s 3 ; 51

Ry
where g > _A-o .
9a

On the other hand, solving equation g + (1 — c)¢ — ag?,
we obtain

o l-cx V(1 =) +4ag N (1-c¢)?
P, = 2a , Wwhere g = —T.
(52)

According to the qualitative theory, we obtain the phase
portraits of system (48) as shown in Figure 5.
When g = g,, on ¢ — y plane the orbit I', has expression

Ity
(21 -¢)
+ —
—’71( 34 P>
forc(b+k)<0,c<1,
0<(P<M
_ h 3a
- _ 2(1—c))
+ _
_’11<(P 3a ’ f
orc>1,b+k<0.
2029 _ <o
3a ¢=

(53)

Substituting (53) into dg/d¢ and integrating it along the
orbit I}, we obtain the peakon wave solution u, (&) as (9).

When g; < g < 0, on ¢ — y plane the orbit T, has
expression

Ly
M\ =9 (@2 =9) bRy <0, c<l,
3 0<p<o”
=1 \(9 = 97) (9 - 92), forc>1,b+k<0.
P, <9<0

(54)

Substituting (54) into d¢/d& and integrating it along the
orbit T,, we obtain the periodic peakon wave solution u,(&)
as (11), where

7oL J‘P* ds
0 (er =) (97 )

:\]4C(b+k)l \l4(1—c)2+18ag

“a  |3y2ag-2(1-0|

(55)

Ifg — g, +0, it follows thata — (c—1)/3a, 3 — 0 (or
a — 0,8 — (c—-1)/3a),and T — +oco. This implies that
the periodic peakon wave solution u,(§) tends to the peakon
wave solution u, (§).

When g, < gand ¢(b + k) > 0, on ¢ — ¥ plane the orbit
I; has expression

Loy =2n\(9g-9*) (9} -¢) ¢ <p<g¢]. (56)
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(@) c(b+k)<0,c<1l,g=g;
v v

(b) c(b+k)<0,c>1,g=g;

(c) c(b+k)<0,c<1,91<g<0
Y

ﬂ/\&«’

(d) c(b+k)<0,c>1,9,<g<0

(e) c(b+k)>0,c<1,9,<g<0

(g) cb+k)>0,c<1,g=0

17
I I3
APL=92=0 o] 9] 9 ¢ ¢- r=9f

(h) c(b+k)>0,c>1,g=0

Pr =P+ = ¢ P @ o—yi P

(i) cb+k)>0g>0

FIGURE 5: The phase portraits of system (48).

Substituting (56) into d¢/d& and integrating it along the
orbit 5, we obtain the smooth periodic wave solutions u5(&)
and 1, (&) as (13).

Hereto, we have completed the
Proposition 1.

derivations for

4. The Derivations for Proposition 4

In this section, we derive the explicit elliptic function solu-
tions and their limit forms for ZK-BBM(3, 2) equation.
Similar to the derivations in Section 3, substituting u = ¢(&)
with & = x + y — ¢t into (17) and integrating it, we have the
following planar system:

d
e
(57)
d_l// B g+(1—c)go—a(p 2c(b+k)1//
g 2c(b+k)g

Similarly, under the transformation d = 2¢(b + k)dr,
system (57) becomes

W e+ k) gy,
dr
p (59)
d—w =g+ -c)p—ap’ —2c(b+k)y’
T

which has the first integral

2(1—C) 3

2
L - ' —gpt=h  (59)

2¢(b+k) (pzwz +

When the integral constant i = 0, (59) becomes

1-c¢

—¢ - E(p3> =0.

3 5 (60)

c(b+k) o’y — ¢’ <§
Solving equation g/2+((1-c¢)/3)¢— (a/S)(p3 = 0, we get three
roots ¢, ¢,, and @5 as (23), (24), and (25). On the other hand,
solving equations

1//:0)

61
g+(1-c)p-ap’ -2c(b+k)y* =0, (D
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we get three equilibrium points (¢;",0) (i = 1,2, 3) of system
(58), where

. 2V18a(c-1)- V1203
o= PINE :

. 20293 (V3-3i) (1 c) + Va¥9 (1 + 3i) AP
$ = 12aAl/? ’
. 2a¥2¥3 (V3 +3i) (1 - o) + Va¥0 (1 - V3i) A
s = 12aA13 ’

A= \/81g2a4 +12(c - 1)°a® - 9ga”.
(62)

According to the qualitative theory, we obtain the phase
portraits of system (58) as shown in Figure 6.

Now using planar system (57) and the phase portraits in
Figure 6, we derive the explicit expressions of solutions for
the ZK-BBM(3, 2) equation respectively.

When ¢(b + k) > 0,¢c < 1l,and g < —g,, I, has the
expression

-
L:y= iJm\/(% -9)(9-9,) (9~ 93) 63)

¢ =< ¢

where ¢, and ¢, are complex numbers.
Substituting (63) into dg/dé = y and integrating it, we
have

J‘P ds lgl
o g -5 (- 92 - 9) o
(64)

. ds =
J-rp \/((pl -s)(s=9,) (s—¢3) B \/56 b+k) |El :

Completing the integrals in the above two equations and
noting that u = @(&), we obtain u5(£) and u4 (&) as (19).

When ¢(b+ k) > 0,c < 1,and —g, < g < g,, [, and I}
have the expressions

L:y= i\/ﬁ\/(% -9) (92— ¢) (93 - 9),

S )
=9 (65)

Iyiy =\ 5 V0= (=0 (05— 0).
PSP @se

Substituting (65) into dg/d& = y and integrating them, we
have

ds T a
&,
1= 9) (92 - 5) (95 ) s

e

(66)

J \/((Pl_s) S—S)(%—S):\/Em’
J I

¢ ds a
&,
P2 \/(5 ~91) (s—9,) (93 -5) \/SC ®+k)

95 s _
J \/(s_q)l ) (s=¢2) (5 =) \/SC(bek)lEl'

Completing the integrals in the above four equations and
noting that u = ¢(&), we obtain u;(§) (i = 7-10) as (27).
When c(b+k) > 0,¢ < 1,and g, < g, I has the expression

S
iy =g -9 - o-p)

P =3
where ¢, and ¢, are complex numbers.

Substituting (67) into d¢/d& = y and integrating it, we
have

&l

9 ds [a
L. Vo= G-0) -9 \woem

(68)

3 ds a
- &
L V(@5 =5) (s = 9) (s - 91) JSC“’*")

Completing the integrals in the above two equations and
noting that u = ¢(&), we obtain uy; (&) and u,,(&) as (29).
When ¢(b+k) < 0,¢ < 1,and g, < g, I, has the expression

-a
Liys= i\]m\/(gv—%) (9-92)(9-91) (69)

P =93
where ¢, and ¢, are complex numbers.

Substituting (69) into de/d§ = y and integrating it, we
have

j‘/’ ds :\j ;ak |§|,
(5= ) (s— @) (s—g,) VTR

J+oo ds :\/ ;a - |£|
¢ \/(5_‘/’3)(5_902)(5—‘1’1) Sc(b+k)

(70)

Completing the integrals in the above two equations and
noting that u = ¢(&), we obtain u,5(§) and u,(&) as (31).
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T
I, Iy
) 0 9 J'e /1 (o) 0 P27 g 1 P=h =0 ¥ @

(b) c(b+k)>0,c<1,-g,<g<0 (c) c(b+k)>0,c<1,g=0

10

Nt

@ cb+k)>0,c<1,g<-g,

<

v

T. 14
T,
\DV//—\ N /ﬂ \//I/\
mo 9; Ve NSRS 39

(d) c(b+k)>0,c<1,0<g< g,

14 14

9

(h) c(b+k)<0,c<1,0<g<g, (i) cb+k)<0,c<1,g=0

(8) cb+k)<0,c<l,g>g,

v

?1 o1 0 /fpz/qJ PN @ N =
o1 o] \ (P s (0 1 9
3= P2 NP3

(k) c(b+k)<0,c<1,g=-g, (1) c(b+k)<0,c<1,g<—g,

(G) cb+k)<0,c<1,-g,<g<0

FIGURE 6: The phase portraits of system (58).

When c(b + k) < 0,c < l,and —g, < g < g,, I, and [ Substituting (71) into dg/d¢ = y and integrating them,

have the expressions we have
-a
e e LA A T q) ) =
PO g ?fs=p) (-9 s-gs) VbR
-a
Iy 2y=i\jm\/(§03_([’) (‘Pz_‘P) ((P_(Pl)’ J,Jroo ds ) \/——a|§|
PP P =g ) (mgy)  VECFRT
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[ =
%@y -5) (@ -5) (s—g,) VPO FH

J“Pz ds :\j ;a - |€|
¢ 9= (g9 G-g) VFE+R

(72)

Completing the integrals in the above four equations and
noting that u = ¢(&), we obtain 1;(§) (i = 15-18) as (33).

When ¢(b + k) < 0,¢c < 1,and g < —g,, [y has the
expression

-a
T:y=ty——\(p- - - 93)s
91y +\/5C(b+k) \/(<P ¢1) (9 —92) (9 - 93) 73)
Pz
where ¢, and ¢; are complex numbers.

Substituting (73) into do/dé = y and integrating it, we
have

J‘P ds =\j -a |£|,
o \/(5_‘1’1)(5_4’2) (s - 9s) sc(b+k)

(74)

J-+oo ds =\j ;a - |£|
o s-p)-g)(s-g) 15CFH

Completing the integrals in the above two equations and
noting that u = (&), we obtain u,4(§) and u,,(&) as (35).
Hereto, we have finished the derivations for the solutions
u;(§) i = 5-20). In what follows, we will derive the limit
forms of these solutions.
Whenc(b + k) >0,c <1l,and g — —g,, it follows that

L 20(1-¢)
¢ o

5(1-¢)
P — on
A1—>\]5(1_C),
a
N a J1-¢ N —a J1-¢
I c(b+k)\/ 5a s _)\]c(b+k)\/80a’
ki — 0, k, — 0,

C
I

=(\: M)F ‘)

1

+ —a Jl1-c
sn(174§,k2) - sn( c(b+k)\/ 80a E’O)

“n( )

(75)

Thus we have

us(E)—>—\j20(9l_C) +\/5(1—c)
a a

B 24/5(1=¢)/a
1- cn(\/a/c (b +k)(1 ) /5a, 0)

:\j5(1—c)_ 24/5(1 =c¢)/a
9a l—cos(\/a/c(b+k)\"/(l —-0) /5a£)

B 5(1—c)_\/5(1—c)
a 9a a
2 a
rese <\/c(b+k) 80a£>

=ty (§) (see (37)),

20(1 - 5(1-
“6(5)—’—\j (9a C)+\/ (a 2

. 24/5(1 =¢)/a
1+ cn (Va/c (0 +k)J((1 - ¢) /5a)E,0)

=\j5(l_C)_ 24/5(1=¢)/a
9a 1+cos(\/a/c(b+k)\“/((1—c) /Sa)f)

|50 -0¢) 5(0-¢) L [ a .
_\j 9a _\/ a sec <\/c(b + k) 80aE>

= Uy, (§) (see (38)),

u7(5)_)\/5(19—c)_\]5(1—c)
a a
Sf [a JJi-¢
s (\/c(b+k)\/80af’0>
B 5(1—c)_\/5(1—c)
B 9a a
. =2 a 4
s (\/c(b+k) 80a£>

_Jsa-o _\/5(1—c)

9a a

of [a  Jf1-¢
xese <\/c(b+k)\/ 80a E)

=ty (§) (see (37)),
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20(1-c¢) 5(1-¢)
uS(E)_)<_\/ 9a _\] 9a
of [a Jfi-¢
- <\]c(b+k)\/80a&0>>
,( [ a Ji-¢
X<1_sn (\/c(b+k)\/80a E’O))
[ 20(1—c)_\/5(1—c)
B 9a 9a
L2 a J1—c
i <\/c(b+k) 80a 6))
x [ 1-sin? \/ a__yl-c :
c(b+k)\ 80a
B _\l5(1—6)+\]5(1—c)
B a 9a
5 a J1—c
% eos <\/c(b+k) 80a £>>
-1
) a J1—¢
X(“’S <\/c(b+k) 80a ’5))
_\/5(1—c)_ 5(1-¢)
- 9a a

5 a J1—c
X see (\/c(b+k) 80a E)

= 1y, (§) (see (38)).

Whenc(b+k)>0,c<1l,andg — g, it follows that

L 5(1-¢)
1 9a
_,_42d=9
2 9a
. 20(1-¢)
s 9a

AZ_)\jE,(l_C)’

a

- a </1—c
s cb+k)\ 80a’

k, —1, ky — 1,

+ —a Jl1-c
Sn(”4£’k2) _)SH( c(b+k)\/ 80a E’l)

—a  [l1-c
:tanh<\/c(b+k)\/ 80a E)’

1-¢

. —a, _
s \/c(b+k)\/ 50 1-cn (Vale 0+ DY -0 /506, 1)
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+ + 41_
en(n56,k3) — Cn(\/ﬁ\ Sacfal)
a J1—c
zseCh<\/c(b+k) 5a 5)

(77)

Thus we have

20(1 -c¢) 5(1-c¢)
u7(f)—>\/ 9a _\/ a
) a J1—c
xsn (\/c(b+k) soﬁ’l)
B 20(1—c)_\j5(1—c)
B 9a a
) a J1—c
x tanh <\/c(b+k) SOag)

__\/5(1—c) _\jS(l—c)
- 9a a

5 a J1—c
X csch <\/c(b+k) 80a E)

= 4 (&) (see (39)),

o () —> \jzo (91a— 0 \/5 (1a— 0

,( [a Ji-¢
xsn (\/c(b+k)\]80a£’l)
) 2()(1—c)_\j5(1—c)
B 9a a
,( [ a J1i-¢
x tanh (\/c(b+k)\j80a 5)
=_\j5(1—c)+\j5(1—c)
9a a
,( [ a J1i-¢
X sech (\/c(b+k)\/80a E)

= Ups (§) (see (40)),

yy (€) — JZO (91a_ 9, J 5<la‘ 9

2451 —=¢)/a

(76)

:5\j5(1—c)_<2\/5(1—c)>
9a a
a 1-c¢ B
x(l—sech( cb+k 5a ))
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5JM
9a
_<2\/5(1—c)+4\j5(1—c)
a a
o a[1=e
xsinh <\/c(b+k)VW§)>
— -1
L2 a J1—c
x 2sinh (\Jc(b+k)\/80a5>
_ 5(1—c)_ 5(1-¢)
a 9a a
,( a J1i-¢
xcsch <\/c(b+k)\/80af>

= ty, (&) (see (39)),
P e e
24/5(1=c¢)/a

1+en(Val (e + V- <) 5k 1)
5\]5 (1-0) (2\/5(1—c)>
a
1 + sech \/ \/(1 C)f i
b+k\ sa
5\]5(1—@
< 5(1—c) \/S(I—C)
 cosh* (\] (b+k) \/80a ))
R, -1
) a J1—c
8 (ZCOSh (\/c(b+k)\/ 80a 5))

_ 5(1—c)+ 5(1-¢)
B 9a a

2 a 4m
x sech (Vc(b+k)\/80_a£>

= U5 (&) (see (40)) .

(78)

The limit forms of the other solutions can be derived
similarly, so here we omit them. Hereto, we have completed

the derivations for Proposition 4.
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5. Conclusion

In this paper, we have investigated ZK-BBM(m, 2) (m = 2, 3)
equations. For ZK-BBM(2, 2) equation, we obtain peakon
wave, periodic peakon wave, and smooth periodic wave solu-
tions (see u;(§) (i = 1-4)). For ZK-BBM(3, 2) equation, we
obtain some elliptic function solutions (see u;(&) (i = 5-20)).
Furthermore, from the limit forms of these solutions, we
obtain some trigonometric and hyperbolic function solutions
(see Remarks 5-8 and the corresponding derivations). We
also showed that some previous results are our special cases
(see Remarks 3 and 9). We would like to study the ZK-
BBM(m, n) equations further.

Acknowledgment

This study is supported by the National Natural Science
Foundation (no. 11171115).

References

[1] M.]. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution
Equations and Inverse Scattering, vol. 149, Cambridge University
Press, Cambridge, UK, 1991.

[2] C.Rogersand W. K. Schief, Bicklund and Darboux Transforma-
tions, Geometry and Modern Applications in Soliton Theory,
Cambridge University Press, Cambridge, UK, 2002.

[3] V. B. Matveev and M. A. Salle, Darboux Transformations and
Solitons, Springer, Berlin, Germany, 1991.

[4] S.K.Liu,Z.T.Fu,S.D. Liu, and Q. Zhao, “Jacobi elliptic function
expansion method and periodic wave solutions of nonlinear
wave equations,” Physics Letters A, vol. 289, no. 1-2, pp. 69-74,
2001.

[5] G.T. Liu and T. Y. Fan, “New applications of developed Jacobi
elliptic function expansion methods,” Physics Letters A, vol. 345,
no. 1-3, pp. 161-166, 2005.

[6] M.L.Wangand Y. B. Zhou, “The periodic wave solutions for the
Klein-Gordon-Schrodinger equations,” Physics Letters A, vol.
318, no. 1-2, pp. 84-92, 2003.

[7] M. A. Abdou, “The extended F-expansion method and its appli-
cation for a class of nonlinear evolution equations,” Chaos,
Solitons and Fractals, vol. 31, no. 1, pp. 95-104, 2007.

M. L. Wang, X. Z. Li, and J. L. Zhang, “The G /G-expansion
method and travelling wave solutions of nonlinear evolution
equations in mathematical physics,” Physics Letters A, vol. 372,
no. 4, pp. 417-423, 2008.

o

9] M. Song and Y. L. Ge, “Application of the G /G-expansion
method to (3+1)-dimensional nonlinear evolution equations,”
Computers & Mathematics with Applications, vol. 60, no. 5, pp.
1220-1227, 2010.

—

[10] J. B. Liand Z. R. Liu, “Smooth and non-smooth traveling waves

in a nonlinearly dispersive equation,” Applied Mathematical
Modelling, vol. 25, pp. 41-56, 2000.

[11] Z.R. Liu, T. P. Jiang, P. Qin, and Q. F. Xu, “Trigonometric fun-
ction periodic wave solutions and their limit forms for the
KdV-like and the PC-like equations,” Mathematical Problems in
Engineering, vol. 2011, Article ID 810217, 23 pages, 2011.

[12] M. Song, S. Y. Li, and J. Cao, “New exact solutions for the

(2+1)-dimensional ~ Broer-Kaup-Kupershmidt  equations,”



14

(15]

(16]

(17]

(18]

(20]

Abstract and Applied Analysis, vol. 2010, Article ID 652649, 10
pages, 2010.

S.Y.Liand R. Liu, “Some explicit expressions and interesting bi-
furcation phenomena for nonlinear waves in generalized
Zakharov equations,” Abstract and Applied Analysis, vol. 2013,
Article ID 869438, 19 pages, 2013.

Z. S. Wen, “Bifurcation of traveling wave solutions for a two-
component generalized-equation,” Mathematical Problems in
Engineering, vol. 2012, Article ID 597431, 17 pages, 2012.

V. E. Zakharov and E. A. Kunznetsov, “Three-dimensional
solitons,” Soviet Physics, vol. 39, pp. 285-286, 1974.

S. Monro and E. J. Parkes, “The derivation of a modified
Zakharov-Kuznetsov equation and the stability of its solutions,”
Journal of Plasma Physics, vol. 62, pp. 305-317, 1999.

S. Monro and E. J. Parkes, “Stability of solitary-wave solutions
to amodified Zakharov-Kuznetsov equation,” Journal of Plasma
Physics, vol. 64, pp. 411-426, 2000.

S. Micu, “On the controllability of the linearized Benjamin-
Bona-Mahony equation,” SIAM Journal on Control and Opti-
mization, vol. 39, no. 6, pp. 1677-1696, 2001.

A. M. Wazwaz, “The extended tanh method for new compact
and noncompact solutions for the KP-BBM and the ZK-BBM
equations,” Chaos, Solitons and Fractals, vol. 38, no. 5, pp. 1505-
1516, 2008.

Z.]. Wang and S. Q. Tang, “Bifurcation of travelling wave solu-

tions for the generalized ZK-BBM equations,” Communications
in Nonlinear Science and Numerical Simulation, vol. 14, no. 7, pp.

2948-2955, 2009.

Journal of Applied Mathematics



Advances in Advances in Journal of Journal of
Operations Research lied Mathematics ability and Statistics

il
PR
S Rt
£ 2 §

\ ‘

The Scientific
\{\(orld Journal

International Journal of
Differential Equations

Hindawi

Submit your manuscripts at
http://www.hindawi.com

International Journal of

Combinatorics

Advances in

Mathematical Physics

%

Journal of : Mathematical Problems Abstract and Discrete Dynamics in
Mathematics in Engineering Applied Analysis Nature and Society

Journal of

Complex Analysis

International
Journal of
Mathematics and
Mathematical
Sciences

Journal of
'

al of Journal of

Function Spaces Stochastic Analysis Optimization

Journal of International Jo




