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The Exp-function method combined with 𝐹-expansion method is employed to investigate the 𝐾(𝑚, 𝑛) equation with 𝑡-dependent
coefficients. The solitary wave solutions and periodic wave solutions to the equation are constructed analytically under certain
circumstances. The results presented in this paper improve the previous results.

1. Introduction

The research work of nonlinear evolution equations in
applied mathematics and theoretical physics has been going
on for the past forty years. It is known that many physical
phenomena are often described by nonlinear evolution equ-
ations. Searching for exact traveling wave solutions of non-
linear evolution equations plays an important role in the
study of these nonlinear physical phenomena, for example,
the wave phenomena observed in fluid dynamics, elastic
media, optical fibers, and so forth. By dint of some new
methods for obtaining exact solutions of nonlinear evolution
equations, many new results have been published in this area
for a long time. Here, it is worth to mention that the two
methods, the Exp-function method [1–4] and 𝐹-expansion
method [5–8], can be combined to form one method [9–15].

In this paper, by using Exp-function method combined
with 𝐹-expansion method, we will study the generalized
𝐾(𝑚, 𝑛) equation having 𝑡-dependent coefficients [16]. Con-
sider

(𝑢
𝑙
)
𝑡
+ 2𝛽 (𝑡) 𝑢

𝑙
+ [𝛼 (𝑡) + 𝛽 (𝑡) 𝑥] (𝑢

𝑙
)
𝑥

+ 𝛿 (𝑡) 𝑢
𝑚
𝑢𝑥 + 𝛾 (𝑡) (𝑢

𝑛
)
𝑥𝑥𝑥

= 0,

(1)

where𝛼(𝑡) and𝛽(𝑡) are functions of the time variable 𝑡 related
to the linear decay or growth of the wave. The functions 𝛾(𝑡)
and 𝛿(𝑡) are the time-dependent nonlinear and dispersion
coefficients, respectively, with 𝑙, 𝑚, and 𝑛 being integers.
Generally, (1) is not integrable.

Specially, when 𝑙 = 𝑛 = 𝑚 = 1 and 𝛿(𝑡) = −3𝐴𝛾(𝑡) with𝐴

being a constant, (1) degenerates to the following generalized
KdV equation with variable coefficient:

𝑢𝑡 + 2𝛽 (𝑡) 𝑢 + [𝛼 (𝑡) + 𝛽 (𝑡) 𝑥] 𝑢𝑥

− 3𝐴𝛾 (𝑡) 𝑢𝑢𝑥 + 𝛾 (𝑡) 𝑢𝑥𝑥𝑥 = 0,

(2)

which has been solved by using the Jacobi elliptic function
expansion method and derived some new soliton-like solu-
tions in [17]. Yu and Tian [18] studied the variable coefficient
KdV equation (2) and obtained some new soliton-like solu-
tions including nonsymmetrical kink solutions, compacton
solutions, solitary pattern solutions, triangular function solu-
tion, and Jacobi and Weierstrass elliptic function solutions
using the auxiliary equation method.

In 2009, by using solitary wave ansatz in the form of sech𝑝
and tanh𝑝 functions, respectively, Triki and Wazwaz [16]
obtained exact bright and dark soliton solutions for (1) in the
cases 𝑙 = 𝑛 and 𝑚 > 𝑛 − 1. Besides, we have recently derived
some exact solutions of (1) by using Exp-function method
combined with 𝐹-expansion method in the cases 𝑙 = 𝑛 and
𝑚 ̸= 𝑛 − 1 [19].

In this paper, we further extend the worksmade in [16, 19]
by investigating (1). Using Exp-function method combined
with 𝐹-expansion method, we establish new solitary wave
solutions and periodic solutions of (1) in the cases𝑚 = 𝑛 − 1

and 𝑙 ̸= 𝑛, which is different from those presented in the pre-
vious works [16, 19]. It is shown that the variable coefficients
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𝛼(𝑡), 𝛽(𝑡), 𝛿(𝑡) and 𝛾(𝑡) and the exponents 𝑙,𝑚, and 𝑛 are the
main factors to cause the qualitative change in the physical
structures of the solutions.

2. Description of the Method

In this section, we review the combining of the Exp-function
method with 𝐹-expansion method [14, 15] at first.

Given a nonlinear partial differential equation, for
instance, in two variables, as follows:

𝑃 (𝑢, 𝑢𝑥, 𝑢𝑡, 𝑢𝑥𝑥, 𝑢𝑥𝑡, . . .) = 0, (3)

where 𝑃 is in general a nonlinear function of its variables,
we firstly use the Exp-function method to obtain new exact
solutions of the following Riccati equation:

𝜙

(𝜉) =

𝑑

𝑑𝜉
𝜙 (𝜉) = 𝐴 + ℎ𝜙

2
(𝜉) , (4)

where 𝐴 and ℎ are arbitrary constants, then using the Riccati
equation (4) as auxiliary equation and its exact solutions,
we obtain exact solutions of the nonlinear partial differential
equation (3).

Seeking for the exact solutions of (4), we introduce a com-
plex variable 𝜂, defined by

𝜂 = 𝜌𝜉 + 𝜉0, (5)

where 𝜌 is a constant to be determined later, 𝜉0 is an arbitrary
constant, and Riccati equation (4) converts to

𝜌𝜙

− 𝐴 − ℎ𝜙

2
= 0, (6)

where prime denotes the derivative with respect to 𝜂.
According to the Exp-function method, we assume that

the solution of (6) can be expressed in the following form:

𝜙 (𝜂) =
𝑎𝑒 exp(𝑒𝜂) + ⋅ ⋅ ⋅ + 𝑎−𝑑 exp(−𝑑𝜂)
𝑏𝑔 exp(𝑔𝜂) + ⋅ ⋅ ⋅ + 𝑏−𝑓 exp(−𝑓𝜂)

, (7)

where 𝑒, 𝑑, 𝑔, and 𝑓 are positive integers which are given
by the homogeneous balance principle, 𝑎𝑒, . . . , 𝑎−𝑑, 𝑏𝑔, . . . , 𝑏−𝑓
are unknown constants to be determined. To determine the
values of 𝑒 and 𝑔, we usually balance the linear term of the
highest-order in (6) with the highest-order nonlinear term.
Similarly, we can determine 𝑑 and 𝑓 by balancing the linear
term of the lowest-order in (6) with the lowest-order nonlin-
ear term we obtain 𝑒 = 𝑔, 𝑑 = 𝑓. For simplicity, we set
𝑒 = 𝑔 = 1 and 𝑑 = 𝑓 = 1; then (7) becomes

𝜙 (𝜂) =
𝑎1 exp (𝜂) + 𝑎0 + 𝑎−1 exp (−𝜂)
𝑏1 exp (𝜂) + 𝑏0 + 𝑏−1 exp (−𝜂)

. (8)

Substituting (8) into (6), equating to zero the coefficients of all
powers of exp(𝑛𝜂) (𝑛 = −2, −1, 0, 1, 2) yields a set of algebraic
equations for 𝑎1, 𝑎0, 𝑎−1, 𝑏1, 𝑏0, 𝑏−1, and 𝜌. Solving the system

of algebraic equations by using Maple, we obtain the new
exact solution of (4), which is read as follows:

𝜙1 = (−√−
𝐴

ℎ
𝑏1 exp(ℎ√−

𝐴

ℎ
𝜉 + 𝜉0)

+𝑎−1 exp(−ℎ√−
𝐴

ℎ
𝜉 − 𝜉0))

× (𝑏1 exp(ℎ√−
𝐴

ℎ
𝜉 + 𝜉0)

+
𝑎−1

√−𝐴/ℎ

exp(−ℎ√−
𝐴

ℎ
𝜉 − 𝜉0))

−1

,

(9)

where 𝑎−1, and 𝑏1 are free parameters.
Consider

𝜙2 = (

(ℎ𝑎
2

0
+ 𝐴𝑏
2

0
)

4ℎ√−𝐴/ℎ𝑏−1

exp(2ℎ√−
𝐴

ℎ
𝜉 + 𝜉0) + 𝑎0

+√−
𝐴

ℎ
𝑏−1 exp(−2ℎ√−

𝐴

ℎ
𝜉 − 𝜉0))

× (

(ℎ𝑎
2

0
+ 𝐴𝑏
2

0
)

4𝐴𝑏−1

exp(2ℎ√−
𝐴

ℎ
𝜉 + 𝜉0) + 𝑏0

+𝑏−1 exp(−2ℎ√−
𝐴

ℎ
𝜉 − 𝜉0))

−1

,

(10)

where 𝑎0, 𝑏0 and 𝑏−1 are free parameters.
By choosing properly values of 𝑎0, 𝑎−1, 𝑏0, 𝑏−1, we find

many kinds of hyperbolic function solutions and triangular
periodic solutions of (4), which are listed as follows.

(i) When 𝜉0 = 0, 𝑏1 = 1, 𝑎−1 = ±√−𝐴/ℎ, 𝐴/ℎ < 0, and
solution (9) becomes

𝜙 = −√−
𝐴

ℎ
tanh(ℎ√−

𝐴

ℎ
𝜉) ,

𝜙 = −√−
𝐴

ℎ
coth(ℎ√−

𝐴

ℎ
𝜉) .

(11)

(ii) When 𝜉0 = 0, 𝑏1 = 𝑖, 𝑎−1 = ∓√𝐴/ℎ, 𝐴/ℎ > 0, and
solution (9) becomes

𝜙 = √
𝐴

ℎ
tan(ℎ√𝐴

ℎ
𝜉) ,

𝜙 = −√
𝐴

ℎ
cot(ℎ√𝐴

ℎ
𝜉) .

(12)

(iii) When 𝜉0 = 0, 𝑏0 = 0, 𝑏−1 = 1, 𝑎0 = ±2√−𝐴/ℎ, 𝐴/ℎ <

0, and solution (10) becomes

𝜙 = −√−
𝐴

ℎ
[coth(2ℎ√−

𝐴

ℎ
𝜉) ± csch(2ℎ√−

𝐴

ℎ
𝜉)].

(13)
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(iv) When 𝜉0 = 0, 𝑏0 = 0, 𝑏−1 = 𝑖, 𝑎0 = ±2√−𝐴/ℎ, 𝐴/ℎ <

0, and solution (10) becomes

𝜙 = −√−
𝐴

ℎ
[tanh(2ℎ√−

𝐴

ℎ
𝜉) ± 𝑖sech(2ℎ√−

𝐴

ℎ
𝜉)].

(14)

(v) When 𝜉0 = 0, 𝑏0 = 0, 𝑏−1 = 1, 𝑎0 = ±2√𝐴/ℎ, 𝐴/ℎ > 0,
and solution (10) becomes

𝜙 = √
𝐴

ℎ
[tan(2ℎ√𝐴

ℎ
𝜉) ± sec(2ℎ√𝐴

ℎ
𝜉)]. (15)

(vi) When 𝜉0 = 0, 𝑏0 = 0, 𝑏−1 = 𝑖, 𝑎0 = ±2√𝐴/ℎ, 𝐴/ℎ > 0,
and solution (10) becomes

𝜙 = −√
𝐴

ℎ
[cot(2ℎ√𝐴

ℎ
𝜉) ∓ csc(2ℎ√𝐴

ℎ
𝜉)]. (16)

For simplicity, in the rest of the paper, we consider 𝜉0 = 0.

3. Application to the 𝐾(𝑚,𝑛) Equation with
𝑡-Dependent Coefficients

Balancing the order of the nonlinear term (𝑢
𝑙
)𝑡 with the term

(𝑢
𝑛
)𝑥𝑥𝑥 in (1), we obtain

𝑙𝑃 + 1 = 𝑛𝑃 + 3, (17)

so that

𝑃 =
2

𝑙 − 𝑛
. (18)

To get a closed-form solution, it is natural to use the transfor-
mation

𝑢 = V2/(𝑙−𝑛), (19)

and when𝑚 = 𝑛 − 1, (1) becomes

2𝑙(𝑙 − 𝑛)
2V4V𝑡 + 2(𝑙 − 𝑛)

3
𝛽 (𝑡) V5

+ 2𝑙(𝑙 − 𝑛)
2
[𝛼 (𝑡) + 𝛽 (𝑡) 𝑥] V4V𝑥 + 2(𝑙 − 𝑛)

2
𝛿 (𝑡) V2V𝑥

+ 𝛾 (𝑡) [2𝑛 (3𝑛 − 𝑙) (4𝑛 − 2𝑙) (V𝑥)
3

+ 6𝑛 (3𝑛 − 𝑙) (𝑙 − 𝑛) VV𝑥V𝑥𝑥

+2𝑛(𝑙 − 𝑛)
2V2V𝑥𝑥𝑥] = 0.

(20)

This means that all the evolution terms that satisfy the
condition𝑚 = 𝑛 − 1 contribute to the soliton formation.

In order to obtain new exact travelling wave solutions for
(20), we use

V (𝑥, 𝑡) = V (𝜉) , 𝜉 = 𝑘 (𝑡) 𝑥 + 𝜔 (𝑡) , (21)

where 𝑘(𝑡) and 𝜔(𝑡) are functions of 𝑡 to be determined later,
and substituting the (21) into (20), we obtain

2𝑙(𝑙 − 𝑛)
2V4V𝑡 + 2(𝑙 − 𝑛)

3
𝛽 (𝑡) V5

+ 2𝑙(𝑙 − 𝑛)
2
𝑘 (𝑡) [𝛼 (𝑡) + 𝛽 (𝑡) 𝑥] V4V

+ 2(𝑙 − 𝑛)
2
𝛿 (𝑡) 𝑘 (𝑡) V2V

+ 𝛾 (𝑡) [2𝑛 (3𝑛 − 𝑙) (4𝑛 − 2𝑙) 𝑘(𝑡)
3
(V)
3

+ 6𝑛 (3𝑛 − 𝑙) (𝑙 − 𝑛) 𝑘(𝑡)
3VVV

+2𝑛(𝑙 − 𝑛)
2
𝑘(𝑡)
3V2V] = 0.

(22)

Now, we assume that the solution of (22) can be expressed
in the following form:

V = V (𝜉) =
𝑁

∑

𝑗=0

𝑎𝑗 (𝑡) 𝜙
𝑗
(𝜉) +

𝑁

∑

𝑗=1

𝑏𝑗 (𝑡) 𝜙
−𝑗

(𝜉) , (23)

where𝑁 is a positive integer that is given by the homogeneous
balance principle, and 𝜙(𝜉) is a solution of (4). Balancing V4V

termwith V2V term in (22) gives𝑁 = 1.Therefore, we obtain

V = 𝑎0 (𝑡) + 𝑎1 (𝑡) 𝜙 (𝜉) +
𝑏1 (𝑡)

𝜙 (𝜉)
. (24)

Substituting (24) into (22) and using the Riccati equation
(4), collecting the coefficients of 𝜙(𝜉), we have

1

𝐷
[𝐶0 (𝑡) + 𝐶1 (𝑡) 𝜙 (𝜉) + 𝐶2 (𝑡) 𝜙

2
(𝜉) + ⋅ ⋅ ⋅

+ 𝐶11 (𝑡) 𝜙
11
(𝜉) + 𝐶12 (𝑡) 𝜙

12
(𝜉)] = 0.

(25)

Because the expresses to these coefficients 𝐷,𝐶0(𝑡), 𝐶1(𝑡),

𝐶2(𝑡), 𝐶3(𝑡), 𝐶4(𝑡), . . . , 𝐶11(𝑡), 𝐶12(𝑡) of 𝜙(𝜉) in (25) are too
lengthiness, so we omit them; setting the coefficients to zero
yields a set of algebraic equations as follows:

𝐶0 (𝑡) = 0, 𝐶1 (𝑡) = 0, 𝐶2 (𝑡) = 0, 𝐶3 (𝑡) = 0,

𝐶4 (𝑡) = 0, . . . , 𝐶11 (𝑡) = 0, 𝐶12 (𝑡) = 0.

(26)

Solving the algebraic equations obtained above, we can have
the following three sets of solutions.
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Case 1. Consider

𝑎0 (𝑡) = 0, 𝑎1 (𝑡) = 𝜆𝑒
((𝑛−𝑙)/𝑙) ∫ 𝛽(𝑡)𝑑𝑡

,

𝑏1 (𝑡) = 𝜇𝑒
((𝑛−𝑙)/𝑙) ∫ 𝛽(𝑡)𝑑𝑡

, 𝑘 (𝑡) = 𝐾𝑒
−∫𝛽(𝑡)𝑑𝑡

,

𝜔 (𝑡) = − ∫[
𝛿 (𝑡) 𝑙 + 𝛿 (𝑡) 𝑛

8𝜆𝑛2𝜇
𝑒
((2𝑙−2𝑛)/𝑙) ∫ 𝛽(𝑡)𝑑𝑡

+𝛼 (𝑡) ]𝐾𝑒
−∫𝛽(𝑡)𝑑𝑡

𝑑𝑡,

𝛾 (𝑡) =
𝜆(𝑙 − 𝑛)

2
𝛿 (𝑡)

16𝑛3𝜇𝐾2ℎ2
𝑒
2 ∫ 𝛽(𝑡)𝑑𝑡

,

𝐴 =
𝜇

𝜆
ℎ, 𝑚 = 𝑛 − 1,

(27)

where 𝜆, 𝜇 and𝐾 are arbitrary nonzero constants.

Case 2. Consider

𝑎0 (𝑡) = 𝐶𝜆𝑒
−(4/3) ∫ 𝛽(𝑡)𝑑𝑡

, 𝑎1 (𝑡) = 𝜆𝑒
−(4/3) ∫ 𝛽(𝑡)𝑑𝑡

,

𝑏1 (𝑡) = 0, 𝑘 (𝑡) = 𝐾𝑒
−∫𝛽(𝑡)𝑑𝑡

,

𝜔 (𝑡) = −∫[𝐾𝛼 (𝑡) 𝑒
−∫𝛽(𝑡)𝑑𝑡

+
𝐾𝛿 (𝑡)

4𝑛𝐶2𝜆2
𝑒
(5/3) ∫ 𝛽(𝑡)𝑑𝑡

] 𝑑𝑡,

𝛾 (𝑡) = −
𝛿 (𝑡)

𝑛𝐶2ℎ2𝐾2
𝑒
2 ∫ 𝛽(𝑡)𝑑𝑡

,

𝐴 = −𝐶
2
ℎ, 𝑚 = 𝑛 − 1, 𝑙 = −3𝑛,

(28)

where 𝐶, 𝜆 and𝐾 are arbitrary nonzero constants.

Case 3. Consider

𝑎0 (𝑡) = 𝜆𝑒
−2∫𝛽(𝑡)𝑑𝑡

, 𝑎1 (𝑡) = 0,

𝑏1 (𝑡) = 𝐶𝜆𝑒
−2 ∫𝛽(𝑡)𝑑𝑡

, 𝑘 (𝑡) = 𝐾𝑒
−∫𝛽(𝑡)𝑑𝑡

,

𝜔 (𝑡) = −∫ [𝐾𝛼 (𝑡) 𝑒
−∫𝛽(𝑡)𝑑𝑡

] 𝑑𝑡,

𝛾 (𝑡) = −
𝛿 (𝑡)

4𝑛𝐶2𝐾2ℎ2
𝑒
2 ∫ 𝛽(𝑡)𝑑𝑡

,

𝐴 = −𝐶
2
ℎ, 𝑚 = 𝑛 − 1, 𝑙 = −𝑛,

(29)

where 𝜆, 𝐶 and𝐾 are arbitrary nonzero constants.

Thus from (24), (27), (28), and (29) we obtain families of
exact solutions to (22) as follows:

V = 𝜆𝑒
((𝑛−𝑙)/𝑙) ∫ 𝛽(𝑡)𝑑𝑡

𝜙 (𝜉) + 𝜇𝑒
((𝑛−𝑙)/𝑙) ∫ 𝛽(𝑡)𝑑𝑡 1

𝜙 (𝜉)
,

V = 𝐶𝜆𝑒
−(4/3) ∫ 𝛽(𝑡)𝑑𝑡

+ 𝜆𝑒
−(4/3) ∫ 𝛽(𝑡)𝑑𝑡

𝜙 (𝜉) ,

V = 𝜆𝑒
−2∫𝛽(𝑡)𝑑𝑡

+ 𝐶𝜆𝑒
−2 ∫𝛽(𝑡)𝑑𝑡 1

𝜙 (𝜉)
,

(30)

where 𝜙(𝜉) is a solution of (4).

Substituting new solutions (9) and (10) of Riccati equation
into solutions (30), using the transformation (19), we have the
following several families of solutions to (1).

Family 1. Consider

𝑢1 (𝑥, 𝑡)

= {𝜆𝑒
((𝑛−𝑙)/𝑙) ∫ 𝛽(𝑡)𝑑𝑡

[(−√−
𝐴

ℎ
𝑏1 exp(ℎ√−

𝐴

ℎ
𝜉)

+𝑎−1 exp(−ℎ√−
𝐴

ℎ
𝜉))

× (𝑏1 exp(ℎ√−
𝐴

ℎ
𝜉)

+
𝑎−1

√−𝐴/ℎ

exp(−ℎ√−
𝐴

ℎ
𝜉))

−1

]

+ 𝜇𝑒
((𝑛−𝑙)/𝑙) ∫ 𝛽(𝑡)𝑑𝑡

[(𝑏1 exp(ℎ√−
𝐴

ℎ
𝜉)

+
𝑎−1

√−𝐴/ℎ

exp(−ℎ√−
𝐴

ℎ
𝜉))

× (−√−
A
ℎ
𝑏1 exp(ℎ√−

𝐴

ℎ
𝜉)

+𝑎−1 exp(−ℎ√−
𝐴

ℎ
𝜉))

−1

]}

2/(𝑙−𝑛)

,

(31)

where 𝜉 = 𝐾𝑒
−∫𝛽(𝑡)𝑑𝑡

𝑥 − ∫[((𝛿(𝑡)𝑙 + 𝛿(𝑡)𝑛)/8𝜆𝑛
2
𝜇)

𝑒
((2𝑙−2𝑛)/𝑙) ∫ 𝛽(𝑡)𝑑𝑡

+ 𝛼(𝑡)]𝐾𝑒
−∫𝛽(𝑡)𝑑𝑡

𝑑𝑡,

𝛾 (𝑡) =
𝜆(𝑙 − 𝑛)

2
𝛿 (𝑡)

16𝑛3𝜇𝐾2ℎ2
𝑒
2 ∫ 𝛽(𝑡)𝑑𝑡

,

𝐴 =
𝜇

𝜆
ℎ, 𝑚 = 𝑛 − 1.

(32)

If we set 𝑏1 = 1, 𝑎−1 = √−𝐴/ℎ, and 𝐴/ℎ < 0 in (31), we
obtain

𝑢1(1) (𝑥, 𝑡) = {𝜆𝑒
((𝑛−𝑙)/𝑙) ∫ 𝛽(𝑡)𝑑𝑡

√−
𝐴

ℎ
tanh(ℎ√−

𝐴

ℎ
𝜉)

+
𝜇𝑒
((𝑛−𝑙)/𝑙) ∫ 𝛽(𝑡)𝑑𝑡

√−𝐴/ℎ

coth(ℎ√−
𝐴

ℎ
𝜉)}

2/(𝑙−𝑛)

.

(33)

Setting 𝑏1 = 𝑖, 𝑎−1 = −√𝐴/ℎ, and 𝐴/ℎ > 0 in (31), we get

𝑢1(2) (𝑥, 𝑡) = {𝜆𝑒
((𝑛−𝑙)/𝑙) ∫ 𝛽(𝑡)𝑑𝑡

√
𝐴

ℎ
tan(ℎ√𝐴

ℎ
𝜉)

+
𝜇𝑒
((𝑛−𝑙)/𝑙) ∫ 𝛽(𝑡)𝑑𝑡

√𝐴/ℎ

cot(ℎ√𝐴

ℎ
𝜉)}

2/(𝑙−𝑛)

.

(34)
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Family 2. Consider

𝑢2 (𝑥, 𝑡)

= {𝜆𝑒
((𝑛−𝑙)/𝑙) ∫ 𝛽(𝑡)𝑑𝑡

[(

(ℎ𝑎
2

0
+ 𝐴𝑏
2

0
)

4ℎ√−𝐴/ℎ𝑏−1

exp(2ℎ√−
𝐴

ℎ
𝜉)+𝑎0

+√−
𝐴

ℎ
𝑏−1 exp(−2ℎ√−

𝐴

ℎ
𝜉))

× (

(ℎ𝑎
2

0
+ 𝐴𝑏
2

0
)

4𝐴𝑏−1

exp(2ℎ√−
𝐴

ℎ
𝜉)+𝑏0

+𝑏−1 exp(−2ℎ√−
𝐴

ℎ
𝜉))

−1

]

+ 𝜇𝑒
((𝑛−𝑙)/𝑙) ∫ 𝛽(𝑡)𝑑𝑡

× [(

(ℎ𝑎
2

0
+ 𝐴𝑏
2

0
)

4𝐴𝑏−1

exp(2ℎ√−
𝐴

ℎ
𝜉) + 𝑏0

+𝑏−1 exp(−2ℎ√−
𝐴

ℎ
𝜉))

× (

(ℎ𝑎
2

0
+ 𝐴𝑏
2

0
)

4ℎ√−𝐴/ℎ𝑏−1

exp(2ℎ√−
𝐴

ℎ
𝜉) + 𝑎0

+√−
𝐴

ℎ
𝑏−1 exp(−2ℎ√−

𝐴

ℎ
𝜉))

−1

]}

2/(𝑙−𝑛)

,

(35)

where 𝜉 = 𝐾𝑒
−∫𝛽(𝑡)𝑑𝑡

𝑥 − ∫[((𝛿(𝑡)𝑙 + 𝛿(𝑡)𝑛)/8𝜆𝑛
2
𝜇)

𝑒
((2𝑙−2𝑛)/𝑙) ∫ 𝛽(𝑡)𝑑𝑡

+ 𝛼(𝑡)]𝐾𝑒
−∫𝛽(𝑡)𝑑𝑡

𝑑𝑡, 𝛾(𝑡) = (𝜆(𝑙 − 𝑛)
2
𝛿(𝑡)/

16𝑛
3
𝜇𝐾
2
ℎ
2
)𝑒
2 ∫ 𝛽(𝑡)𝑑𝑡, and 𝐴 = (𝜇/𝜆)ℎ,𝑚 = 𝑛 − 1.

If we set 𝑏0 = 0, 𝑏−1 = 1, 𝑎0 = ±2√−𝐴/ℎ, and 𝐴/ℎ < 0 in
(35), we obtain

𝑢2(1) (𝑥, 𝑡)

= {𝜆𝑒
((𝑛−𝑙)/𝑙) ∫ 𝛽(𝑡)𝑑𝑡

√−
𝐴

ℎ

× [coth(2ℎ√−
𝐴

ℎ
𝜉) ± csch(2ℎ√−

𝐴

ℎ
𝜉)]

+ (𝜇𝑒
((𝑛−𝑙)/𝑙) ∫ 𝛽(𝑡)𝑑𝑡

)

× (√−
𝐴

ℎ
[coth(2ℎ√−

𝐴

ℎ
𝜉)

±csch(2ℎ√−
𝐴

ℎ
𝜉)])

−1

}

2/(𝑙−𝑛)

.

(36)

Setting 𝑏0 = 0, 𝑏−1 = 𝑖, 𝑎0 = ±2√−𝐴/ℎ, and 𝐴/ℎ < 0 in (35),
we get

𝑢2(2) (𝑥, 𝑡)

= {𝜆𝑒
((𝑛−𝑙)/𝑙) ∫ 𝛽(𝑡)𝑑𝑡

√−
𝐴

ℎ

× [tanh(2ℎ√−
𝐴

ℎ
𝜉) ± 𝑖sech(2ℎ√−

𝐴

ℎ
𝜉)]

+ (𝜇𝑒
((𝑛−𝑙)/𝑙) ∫ 𝛽(𝑡)𝑑𝑡

)

× (√−
𝐴

ℎ
[tanh(2ℎ√−

𝐴

ℎ
𝜉)

±𝑖sech(2ℎ√−
𝐴

ℎ
𝜉)])

−1

}

2/(𝑙−𝑛)

.

(37)

Setting 𝑏0 = 0, 𝑏−1 = 1, 𝑎0 = ±2√𝐴/ℎ, and 𝐴/ℎ > 0 in (35),
we have

𝑢2(3) (𝑥, 𝑡)

= {𝜆𝑒
((𝑛−𝑙)/𝑙) ∫ 𝛽(𝑡)𝑑𝑡

√
𝐴

ℎ

× [tan(2ℎ√𝐴

ℎ
𝜉) ± sec(2ℎ√𝐴

ℎ
𝜉)]

+
𝜇𝑒
((𝑛−𝑙)/𝑙) ∫ 𝛽(𝑡)𝑑𝑡

√𝐴/ℎ [tan(2ℎ√𝐴/ℎ𝜉)± sec(2ℎ√𝐴/ℎ𝜉)]

}

2/(𝑙−𝑛)

.

(38)

Setting 𝑏0 = 0, 𝑏−1 = 𝑖, 𝑎0 = ±2√𝐴/ℎ, and𝐴/ℎ > 0 in (35), we
have

𝑢2(4) (𝑥, 𝑡)

= {𝜆𝑒
((𝑛−𝑙)/𝑙) ∫ 𝛽(𝑡)𝑑𝑡

√
𝐴

ℎ

× [cot(2ℎ√𝐴

ℎ
𝜉) ∓ csc(2ℎ√𝐴

ℎ
𝜉)]

+
𝜇𝑒
((𝑛−𝑙)/𝑙) ∫ 𝛽(𝑡)𝑑𝑡

√𝐴/ℎ [cot(2ℎ√𝐴/ℎ𝜉)∓csc(2ℎ√𝐴/ℎ𝜉)]

}

2/(𝑙−𝑛)

.

(39)

Family 3. Consider

𝑢3 (𝑥, 𝑡)

= {𝐶𝜆𝑒
−(4/3) ∫ 𝛽(𝑡)𝑑𝑡

+ 𝜆𝑒
−(4/3) ∫ 𝛽(𝑡)𝑑𝑡

× [(−√−
𝐴

ℎ
𝑏1 exp(ℎ√−

𝐴

ℎ
𝜉)
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+𝑎−1 exp(−ℎ√−
𝐴

ℎ
𝜉))

× (𝑏1 exp(ℎ√−
𝐴

ℎ
𝜉)

+
𝑎−1

√−𝐴/ℎ
exp(−ℎ√−

𝐴

ℎ
𝜉))

−1

]}

2/(𝑙−𝑛)

,

(40)

where 𝜉 = 𝐾𝑒
−∫𝛽(𝑡)𝑑𝑡

𝑥 − ∫[𝐾𝛼(𝑡)𝑒
−∫𝛽(𝑡)𝑑𝑡

+ (𝐾𝛿(𝑡)/4𝑛𝐶
2
𝜆
2
)

𝑒
(5/3) ∫ 𝛽(𝑡)𝑑𝑡

]𝑑𝑡, 𝛾(𝑡) = −(𝛿(𝑡)/𝑛𝐶
2
ℎ
2
𝐾
2
)𝑒
2 ∫ 𝛽(𝑡)𝑑𝑡, and 𝐴 =

−𝐶
2
ℎ,𝑚 = 𝑛 − 1, 𝑙 = −3𝑛.
If we set 𝑏1 = 1, 𝑎−1 = ±√−𝐴/ℎ, and 𝐴/ℎ < 0 in (40), we

obtain

𝑢3(1) (𝑥, 𝑡) = {𝐶𝜆𝑒
−(4/3) ∫ 𝛽(𝑡)𝑑𝑡

−𝜆𝑒
−(4/3) ∫ 𝛽(𝑡)𝑑𝑡

√−
𝐴

ℎ
tanh(ℎ√−

𝐴

ℎ
𝜉)}

2/(𝑙−𝑛)

,

𝑢3(2) (𝑥, 𝑡) = {𝐶𝜆𝑒
−(4/3) ∫ 𝛽(𝑡)𝑑𝑡

−𝜆𝑒
−(4/3) ∫ 𝛽(𝑡)𝑑𝑡

√−
𝐴

ℎ
coth(ℎ√−

𝐴

ℎ
𝜉)}

2/(𝑙−𝑛)

.

(41)

Family 4. Consider

𝑢4 (𝑥, 𝑡)

= {𝐶𝜆𝑒
−(4/3) ∫ 𝛽(𝑡)𝑑𝑡

+ 𝜆𝑒
−(4/3) ∫ 𝛽(𝑡)𝑑𝑡

× [(

(ℎ𝑎
2

0
+ 𝐴𝑏
2

0
)

4ℎ√−𝐴/ℎ𝑏−1

exp(2ℎ√−
𝐴

ℎ
𝜉) + 𝑎0

+√−
𝐴

ℎ
𝑏−1 exp(−2ℎ√−

𝐴

ℎ
𝜉))

× (

(ℎ𝑎
2

0
+ 𝐴𝑏
2

0
)

4𝐴𝑏−1

exp(2ℎ√−
𝐴

ℎ
𝜉) + 𝑏0

+𝑏−1 exp(−2ℎ√−
𝐴

ℎ
𝜉))

−1

]}

2/(𝑙−𝑛)

,

(42)

where 𝜉 = 𝐾𝑒
−∫𝛽(𝑡)𝑑𝑡

𝑥 − ∫[𝐾𝛼(𝑡)𝑒
−∫𝛽(𝑡)𝑑𝑡

+ (𝐾𝛿(𝑡)/4𝑛𝐶
2
𝜆
2
)

𝑒
(5/3) ∫ 𝛽(𝑡)𝑑𝑡

]𝑑𝑡, 𝛾(𝑡) = −(𝛿(𝑡)/𝑛𝐶
2
ℎ
2
𝐾
2
)𝑒
2 ∫ 𝛽(𝑡)𝑑𝑡, and 𝐴 =

−𝐶
2
ℎ,𝑚 = 𝑛 − 1, 𝑙 = −3𝑛.

If we set 𝑏0 = 0, 𝑏−1 = 1, 𝑎0 = ±2√−𝐴/ℎ, and 𝐴/ℎ < 0 in
(42), we obtain

𝑢4(1) (𝑥, 𝑡)

= {𝐶𝜆𝑒
−(4/3) ∫ 𝛽(𝑡)𝑑𝑡

− 𝜆𝑒
−(4/3) ∫ 𝛽(𝑡)𝑑𝑡

√−
𝐴

ℎ

×[coth(2ℎ√−
𝐴

ℎ
𝜉) ± csch(2ℎ√−

𝐴

ℎ
𝜉)]}

2/(𝑙−𝑛)

.

(43)

Setting 𝑏0 = 0, 𝑏−1 = 𝑖, 𝑎0 = ±2√−𝐴/ℎ, and 𝐴/ℎ < 0 in
(42), we get

𝑢4(2) (𝑥, 𝑡)

= {𝐶𝜆𝑒
−(4/3) ∫ 𝛽(𝑡)𝑑𝑡

− 𝜆𝑒
−(4/3) ∫ 𝛽(𝑡)𝑑𝑡

√−
𝐴

ℎ

×[tanh(2ℎ√−
𝐴

ℎ
𝜉) ± 𝑖sech(2ℎ√−

𝐴

ℎ
𝜉)]}

2/(𝑙−𝑛)

.

(44)

Family 5. Consider

𝑢5 (𝑥, 𝑡)

= {𝜆𝑒
−2∫𝛽(𝑡)𝑑𝑡

+ 𝐶𝜆𝑒
−2 ∫𝛽(𝑡)𝑑𝑡

× [(𝑏1 exp(ℎ√−
𝐴

ℎ
𝜉)

+
𝑎−1

√−𝐴/ℎ

exp(−ℎ√−
𝐴

ℎ
𝜉))

× (−√−
𝐴

ℎ
𝑏1 exp(ℎ√−

𝐴

ℎ
𝜉)

+𝑎−1 exp(−ℎ√−
𝐴

ℎ
𝜉))

−1

]}

2/(𝑙−𝑛)

,

(45)

where 𝜉 = 𝐾𝑒
−∫𝛽(𝑡)𝑑𝑡

𝑥 − ∫[𝐾𝛼(𝑡)𝑒
−∫𝛽(𝑡)𝑑𝑡

]𝑑𝑡, 𝛾(𝑡) = −(𝛿(𝑡)/

4𝑛𝐶
2
𝐾
2
ℎ
2
)𝑒
2 ∫ 𝛽(𝑡)𝑑𝑡, 𝐴 = −𝐶

2
ℎ,𝑚 = 𝑛 − 1, and 𝑙 = −𝑛.

If we set 𝑏1 = 1, 𝑎−1 = ±√−𝐴/ℎ, and 𝐴/ℎ < 0 in (45), we
obtain

𝑢5(1) (𝑥, 𝑡) = {𝜆𝑒
−2∫𝛽(𝑡)𝑑𝑡

−
𝐶𝜆𝑒
−2 ∫𝛽(𝑡)𝑑𝑡

√−𝐴/ℎ

coth(ℎ√−
𝐴

ℎ
𝜉)}

2/(𝑙−𝑛)

,
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𝑢5(2) (𝑥, 𝑡) = {𝜆𝑒
−2∫𝛽(𝑡)𝑑𝑡

−
𝐶𝜆𝑒
−2 ∫𝛽(𝑡)𝑑𝑡

√−𝐴/ℎ

tanh(ℎ√−
𝐴

ℎ
𝜉)}

2/(𝑙−𝑛)

.

(46)

Family 6. Consider

𝑢6 (𝑥, 𝑡)

= {𝜆𝑒
−2∫𝛽(𝑡)𝑑𝑡

+ 𝐶𝜆𝑒
−2 ∫𝛽(𝑡)𝑑𝑡

× [(

(ℎ𝑎
2

0
+ 𝐴𝑏
2

0
)

4𝐴𝑏−1

exp(2ℎ√−
𝐴

ℎ
𝜉) + 𝑏0

+𝑏−1 exp(−2ℎ√−
𝐴

ℎ
𝜉))

× (

(ℎ𝑎
2

0
+ 𝐴𝑏
2

0
)

4ℎ√−𝐴/ℎ𝑏−1

exp(2ℎ√−
𝐴

ℎ
𝜉) + 𝑎0

+√−
𝐴

ℎ
𝑏−1 exp(−2ℎ√−

𝐴

ℎ
𝜉))

−1

]}

2/(𝑙−𝑛)

,

(47)

where 𝜉 = 𝐾𝑒
−∫𝛽(𝑡)𝑑𝑡

𝑥 − ∫[𝐾𝛼(𝑡)𝑒
−∫𝛽(𝑡)𝑑𝑡

]𝑑𝑡, 𝛾(𝑡) = −(𝛿(𝑡)/

4𝑛𝐶
2
𝐾
2
ℎ
2
)𝑒
2 ∫ 𝛽(𝑡)𝑑𝑡, 𝐴 = −𝐶

2
ℎ,𝑚 = 𝑛 − 1, and 𝑙 = −𝑛.

If we set 𝑏0 = 0, 𝑏−1 = 1, 𝑎0 = ±2√−𝐴/ℎ, and 𝐴/ℎ < 0 in
(47), we obtain

𝑢6(1) (𝑥, 𝑡)

= {𝜆𝑒
−2∫𝛽(𝑡)𝑑𝑡

− (𝐶𝜆𝑒
−2 ∫𝛽(𝑡)𝑑𝑡

)

× (√−
𝐴

ℎ
[coth(2ℎ√−

𝐴

ℎ
𝜉)

±csch(2ℎ√−
𝐴

ℎ
𝜉)])

−1

}

2/(𝑙−𝑛)

.

(48)

Setting 𝑏0 = 0, 𝑏−1 = 𝑖, 𝑎0 = ±2√−𝐴/ℎ, and 𝐴/ℎ < 0 in
(47), we get

𝑢6(2) (𝑥, 𝑡)

= {𝜆𝑒
−2∫𝛽(𝑡)𝑑𝑡

− (𝐶𝜆𝑒
−2 ∫𝛽(𝑡)𝑑𝑡

)

× (√−
𝐴

ℎ
[tanh(2ℎ√−

𝐴

ℎ
𝜉)

±𝑖sech(2ℎ√−
𝐴

ℎ
𝜉)])

−1

}

2/(𝑙−𝑛)

.

(49)

4. Conclusions

The Exp-function method combined with 𝐹-expansion
method is used to investigate the 𝐾(𝑚, 𝑛) equation with 𝑡-
dependent coefficients.We acquire the exact solutions of Exp-
function type of (1) in the cases𝑚 = 𝑛 − 1 and 𝑙 ̸= 𝑛. The soli-
tary wave solutions and periodic wave solutions of the equa-
tion are obtained under different circumstances. It is shown
that many solutions in this work are different from those pre-
sented in [16, 19]. These solutions may be useful to explain
some physical phenomena in genuinely nonlinear dynamical
systems that are described by the 𝐾(𝑚, 𝑛)-type models. The
approach applied may be employed in further works to find
new solutions for other types of nonlinear partial differential
equations.
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