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Nonsmooth mechanical systems, which are mechanical systems involving dry friction and rigid unilateral contact, are usually
described as differential inclusions (DIs), that is, differential equations involving discontinuities. Those DIs may be approximated
by ordinary differential equations (ODEs) by simply smoothing the discontinuities. Such approximations, however, can produce
unrealistic behaviors because the discontinuous natures of the original DIs are lost. This paper presents a new algebraic procedure to
approximate DIs describing nonsmooth mechanical systems by ODEs with preserving the discontinuities. The procedure is based
on the fact that the DIs can be approximated by differential algebraic inclusions (DAIs), and thus they can be equivalently rewritten
as ODEs. The procedure is illustrated by some examples of nonsmooth mechanical systems with simulation results obtained by the

fourth-order Runge-Kutta method.

1. Introduction

Mechanical systems involving dry friction and rigid unilat-
eral contact are usually described as differential inclusions
(DIs). Conventional approaches for simulating those nons-
mooth systems can be broadly categorized into two types: reg-
ularization approaches and hard-constraint approaches [1, 2].

In regularization approaches, also referred to as penalty-
based approaches [3, 4], the discontinuous force laws of
dry friction and rigid unilateral contact are approximated
by using continuous functions. For example, some previous
friction models [5-9] and contact models [10-13] can be
viewed as approximations of dry friction and rigid unilateral
contact, respectively. Physical meanings of such approxima-
tions can be usually interpreted as relaxation of constraints,
that is, compliance that replaces rigid constraints between
force and motion. By employing those models, the equations
of motion of nonsmooth systems can be written by ODEs.
As aresult, discontinuous natures of the systems are lost, and
consequently, some unrealistic behaviors can be produced.
For examples, Dahl model [5] and LuGre model [6] can
produce positional drift in the static friction state.

In hard-constraint approaches, rigid bodies are consid-
ered strictly impenetrable to each other. One major way

of this approach is to discretize the equation of motion
by backward Euler-like methods. The discretized equation
is regarded as an algebraic equation, which is then solved
numerically [14-22] or analytically ([23, Section IILA], [24,
Section 1.4.3.2], and [25]). Another type of approach (e.g.,
[26]) is to describe a system as an ODE in every period
between discontinuous events such as transitions between
static and kinetic friction states. It is easy to see that such a
scheme is not suitable when too many discontinuous events
occur.

This paper introduces a new method to approximately
describe nonsmooth mechanical systems by ODEs. This
method is derived based on the observations that DIs describ-
ing nonsmooth mechanical systems can be approximated
by differential algebraic inclusions (DAIs) and that those
DAIs are equivalently rewritten as ODEs. In contrast to
conventional regularization methods, this method preserves
the intrinsic nature of discontinuity in those systems. This
method is illustrated by some examples, of which simulation
results are obtained through the fourth-order Runge-Kutta
(RK4) method.

The rest of this paper is organized as follows. Section 2
gives some mathematical preliminaries to be used in subse-
quent sections. Section 3 overviews previous approximation
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F1GURE 1: The graphs of relevant functions introduced in Section 2.

methods for dry friction and rigid unilateral contact.
Section 4 gives the main contribution of the work. Section 5
provides two example applications of the new method.
Finally, concluding remarks are given in Section 6.

2. Mathematical Preliminaries

For the discussion throughout this paper, this section intro-
duces three functions: sgn, sat, and dio. Some theorems
regarding those functions are also presented. In the rest of this
paper, R denotes the set of all real numbers and R, denotes
the set of all nonnegative real numbers. The symbol 0 denotes
the zero vector of an appropriate dimension.

First, let us define the signum function sgn : R” — R”
and the unit saturation function sat : R, x R" — R"as

follows:
x if x| 0
sgn (x) E [l (1)
{zeR" ||zl <1} if [Ix] =0,
ZX i sl > 2
sat (Z,x) = 4 Il (2)
x if x| <2,

where x € R", Z € R,, and ||- || denotes the vector two-norm.
If n = 1, the sgn(x) and sat(Z, x) can be depicted as Figures
1(a) and 1(b), respectively. The following theorem is useful to
rewrite the DIs involving sgn as ODEs involving sat.

Theorem 1. For x,y € R" and Z € R, the following relation
holds true [27, 28]:

yeZsgn(x-y) = y=sat(Z,x). (3)
Proof. A proof can be given as follows:

y € Zsgn(x-y)

= (=T nwty Jvir=2abl£2)
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O
Next, let us define the “diode” function dio : R, — R,
as follows:
. . |0 ifx>0
dio (x) £ {R+ ifx =0, (5)

where x € R,. The following theorem is useful to rewrite DIs
involving dio by ODEs.

Theorem 2. For x € R and y € R, the following relation
holds true:

y € dio (x+ y) & y = max(0,-x). (6)

Proof. A proof can be given as follows:

y € dio(x+y)

= (y=0Ax+y>0)V(y=0Ax+y=0)
= (y=0Ax>0)V(y>0Ay=-x) @
& y = max (0, —x). 0

The graphs of dio(x) and max(0,—x) are illustrated as
Figures 1(c) and 1(d), respectively.

It must be noted that Theorems 1 and 2 are special cases of
the following relation, which has been used in, for example,
[24, Appendix A.3], [29, equation (2)], and [30, equation (4)]:

x—y € Ng(y) & y = prox (S, x). (8)

Here,x € R", y € S ¢ R", Sisaclosed convex set, Ny(y) is the
normal cone to the set S at y, and prox(S, x) is the “proximal
point” function defined as follows:
prox (S, x) £ argmin|z — x| )
z€S

Theorems 1 and 2 can be obtained by using the relation (8)
with S ={z e R" | ||lz]| < Z} and S = R, respectively.

3. Previous Approaches

3.1. Dry Friction. Let us consider the situation where a rigid
mass M > 0, of which the position is p € R” (r € {1,2}), is
sliding on a fixed surface. Let us assume that it is subject to
the dry friction force f € R" and an external force f, € R".
Then, the equation of motion of the mass is described as the
following DI:

Mp=f.~f (10)
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where

f € Fsgn(p) 1)

and F > 0 is the magnitude of kinetic friction force.
(Common definitions of dry friction assume that the static
friction force can be larger than the kinetic friction force. This
paper leaves this out of consideration and assumes that the
maximum static friction force is equal to the kinetic friction
force.) The direct integration of (10) and (11) is difficult since
the value of sgn(p) is not determined at p = 0, according to
the definition (1) of sgn.

Some previous friction models can be viewed as approx-
imations of (11). One simple way is to employ a threshold
velocity [8, 31] below which the velocity is considered zero.
This method may be useful to avoid the discontinuity in
(11), but the nonphysical threshold can produce unrealistic
artifacts. Another way is to employ a new state variable
which usually can be interpreted as the displacement of a
viscoelastic element. For example, LuGre friction model [6]
without Stribeck effect can be described as follows:

azp_%, (12a)
f=Ka+B(p—%>+Dp, (12b)

where a € R is the new state variable, K > 0 is a sufficiently
large constant, and B, D > 0 are constants appropriately
chosen to suppress the oscillation in p. Dahl friction model
[5] is a special case of LuGre friction model with D = B = 0.
A disadvantage of those two models is that they produce
unbounded positional drift in the static friction state under
oscillatory external force even smaller than the maximum
static friction force [23, 32].

Other types of regularized friction models are proposed
by Kikuuwe et al. [23, Section IIL.C] and Bastien and
Lamarque [33] based on Backward-Euler method and by
Kikuuwe and Yamamoto [34] based on a modified Runge-
Kutta method. A downside of their models is that they restrict
the choice of methods for time integration.

In hard-constraint approaches, the equations of motion
are discretized along time by Euler-like methods. Those
discretized equations are usually formulated into comple-
mentarity problems, which are then numerically solved. The
literature includes some complementarity formulations of
dry friction in one-dimensional space [16, 22] and in mul-
tidimensional space [15, 17-19]. One exception is Kikuuwe
et al’s approach [23, Section III.A], in which the discretized
equation in a very simple case is analytically solved by the
application of Theorem 1 in the present paper.

3.2. Rigid Unilateral Contact. Let us consider that the one-
dimensional system is composed of a rigid mass M, of which
the position is p € R, and a fixed rigid wall whose position
coincides with the origin. The rigid mass is subject to an

external force f, € R. Then, the equation of motion of the
rigid mass is described as the following DI:

Mp=fo+f (13)

where

f edio(p). (14)

The integration of (13) and (14) is also difficult due to dio(p),
whose value is not determined at p = 0.

One of the trivial methods to approximately realize the
contact force f in (14) is as follows [24, 34, 35]:

-Kp-Bp iftp<0
fz{ p-Bp ifp

0 if p>0, (15)

where K is a sufficiently large positive constant and B is a
positive constant large enough to dampen the oscillation in
p- This force law can be viewed as a linear viscoelastic contact
model with the stiffness K and the viscosity B. As pointed
out in [13, 25], one drawback of (15) is that it produces an
unnatural sucking force toward the wall. This drawback may
be overcome by using the following slightly different one:

fe {maX(O, ~Kp-Bp) if p<0

0 if p>0. as)

However, both (15) and (16) are discontinuous with respect to
p and p. Thus, they are not suitable for the use with common
ODE solvers.

As another example, the nonlinear viscoelastic contact
model proposed by Hunt and Crossley [13] can also be viewed
as an approximation of rigid unilateral contact. This model
was extended in [11, 12, 36] and empirically validated in
[10, 37, 38]. This model is continuous with respect to p and
D, but it can also produce unnatural sucking force when p is
large.

In hard-constraint approaches for rigid unilateral contact,
the equations of motion are usually discretized by Euler-like
methods and then solved numerically [14, 16, 17, 22, 39]. A
different approach is in [24, Section 1.4.3.2] and [25] where
the discretized equations in very simple cases are solved
analytically. Those methods can be used only with Euler-like
methods.

4. New Method

In this section, new ODE approximations are introduced for
((10), (11)) and ((13), (14)). Based on those simple approxi-
mations, a general procedure is presented for approximating
nonsmooth mechanical systems involving many rigidunilat-
eral and dry-frictional contacts.

4.1. Dry Friction. The new approach for approximating (11) is
motivated by Kikuuwe et al’s work [23]. Their work (specif-
ically, model-C in [23]) provides an idea to approximate (11)
by the following DAI:

0cK(a+pa)-Fsgn(p-a), (17a)

f=K(a+pa). (17b)
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Here, a € R’ is a state variable newly introduced,
K > 0 is a sufliciently large constant, and § > 0 is a
constant appropriately chosen to suppress the oscillation in
p. A physical interpretation of the approximation ((17a) and
(17b)) can be illustrated as Figure 2. A friction force described
by Fsgn(p — a) acts on a massless object whose velocity is
P — a, and a viscoelastic element with the stiffness K and
the viscosity Kf3 produces the force f in (17b), which exactly
balances the friction force.

In Kikuuwe et al’s method, (17a) is discretized by
Backward-Euler method; for example, 4 is replaced by (g, —
a;_;)/T, where T denotes the timestep size and the subscripts
denote time indices, and then it is analytically solved with
respect to a;, by using Theorem 1. In Bastien and Lamarque’s
model [33], a set of inclusions and equations with similar
form to ((17a) and (17b)) are also discretized by Backward-
Euler method and then analytically solved.

The observation that motivated the new approach is that
((17a) and (17b)) can be solved without using the Backward-
Euler method. By the direct application of Theorem 1, ((17a)
and (17b)) can be equivalently rewritten as the following
ODE:

;e (sat(F/K, a+ Bp) - a))

3 (18a)

f=Ksat<£, a+ﬁp>. (18b)

As far as the authors are aware, the literature includes
no computational methods making use of the equivalence
between DAISs of the form of ((17a) and (17b)) and ODEs of
the form of ((18a) and (18b)).

After replacing (11) by (18b) and appending (18a) to the
state-space model, the system (10) and (11) is approximated
by the following ODE:

(f, - Ksat(F/K, a+ Bp))

d|? M
3P| ° p . (9
a (sat(F/K, a+ Bp) —a)

B

Figure 3 shows the simulation result by using the ODE (19)
with RK4. To illustrate the advantage of this method, it
also presents the result of LuGre model ((12a) and (12b))
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FIGURE 3: Simulation of the system (10); (a) provided external force
f. described as (20); (b) simulation results by RK4 with the timestep
size 0.001s. The parameters are chosen as M = 1kg, F = 0.5N,
K = 5x 10°N/m, and 8 = 2 x 107 s. The initial conditions are
p=0mand p=0m/s.

combined with (10). In the simulation, an external force f,
was chosen as

7= {min (0.52,0.8t) N ift<2s
=

20
0.336 + 0.144 cos (100t) N otherwise, (20)

which is, after ¢t = 25, oscillatory below the static friction
level F = 0.5N. As shown in Figure 3(b), LuGre model
produces unrealistic positional drift, which has been known
in the literature (e.g., [23, 32]), while the presented method
(19) does not. This implies that ((18a) and (18b)) is a better
approximation of (11) than ((12a) and (12b)).

It should be mentioned that ((18a) and (18b)) is derived
by relaxing the rigid constraint between f and p in (11) by
introducing an auxiliary variable a that has its own dynamics.
In this sense, the proposed method may be viewed to be
similar to Baumgart’s method [40], in which constraints are
relaxed to improve the numerical stability of the solutions of
ODEs. One of the concerns about DIs is the existence and
uniqueness of their solutions, as discussed by Bastien and
Lamarque [33]. As for the case of ((17a) and (17b)), on the
other hand, it is clear because ((17a) and (17b)) is equivalent
to the ODE ((18a) and (18b)).

4.2. Rigid Unilateral Contact. The new approach for approx-
imating (14) is a modification of the work by Kikuuwe and
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FIGURE 4: A physical interpretation of ((21a) and (21b)).

Fujimoto [25]. In their approach, (14) is approximated by the
following DALI:

0€K(e+pe)—dio(p+e)
f=K(e+pe),

where K and f3 are appropriate positive constants and e € R
is a state variable newly introduced. A physical interpretation
of ((21a) and (21b)) is illustrated as Figure 4. Here, a massless
object whose position is p + e is connected to the mass
through a viscoelastic element with the stiffness K and the
viscosity Kf3. Due to the contact, the contact force dio(p + e)
acts on the massless object and it balances the force f from
the viscoelastic element. In Kikuuwe and Fujimoto’s work,
((21a) and (21b)) was discretized by Backward-Euler method
and then analytically solved by the application of Theorem 2.
Unfortunately, ((21a) and (21b)) cannot be rewritten into an
ODE because é cannot be obtained explicitly.

The new approach presented here is to add another term
aé to the argument of dio(-), which yields the following DAI:

(21a)

(21b)

0€K(e+pe)—dio(p+e+ae), (22)
f=K(e+pe), (23)

where « > 0 is another appropriate constant. By using
Theorem 2, ((22) and (23)) can be equivalently rewritten as
the following ODE:

. _E _p+e
e—max( ﬁ’ " ), (24)
fszax(O,e—@). (25)

The equivalence between DAIs of the form of ((22) and (23))
and ODE:s of the form of ((24) and (25)) has not been pointed
out in the literature either. One can see that ((24) and (25))
is continuous with respect to p, p, and e, and it does not
produce sucking force because the right-hand side of (25) is
always positive. This features in contrast to the conventional
methods (15) and (16), which are discontinuous, and to Hunt
and Crossley’s model [11-13], which produces a sucking force.
It is also easy to see that ((22) and (23)), or equivalently ((24)
and (25)), has a unique solution.

One possible interpretation of ((22) and (23)) and its
equivalent expression ((24) and (25)) can be explained by

defining € = e+aé. By using &, ((22) and (23)) can be rewritten
as follows:

063_1[ M —dio(p+€)], (26a)
(1+as)

fog [Q[K(“ﬁé)]], (26b)

1+as

where Z denotes the Laplace transform. By noting the
similarity between ((26a) and (26b)) and ((21a) and (21b)),
one can see that force f in (26b) can be interpreted as a low-
pass filtered viscoelastic force although it does not exist in
the real world. When o = 3, ((26a) and (26b)) is equivalent
to ((21a) and (21b)) with 8 = 0, which produces a perfectly
elastic force. To preserve the effect of the viscous force, it is
presumable that « should be set smaller than f3, although any
tuning guidelines are not obtained yet.

By replacing (14) by (25) and appending (24) to the state-
space model, the system (13) and (14) is approximated by the
following ODE:

(fe + Kmax (0,e - B(p +e) /o))

1') M
d M - b . @)
e pte
maX<—B, — o >

A set of numerical simulation of the ODE (27) was
performed with different o values and a fixed  value.
Figure 5 shows that the bouncing motion becomes smaller
as o decreases. This is consistent with the interpretation
based on ((26a) and (26b)), which implies that a smaller «
strengthens the viscous effect in a high-frequency region.
Detailed analysis on the relation between the parameter
values and the achieved coeflicient of restitution is left outside
the scope of this paper. What can be said is that the coefficient
of restitution can be adjusted by appropriate choices of « and
B on a trial-and-error basis.

4.3. Dry-Frictional, Rigid Unilateral Contact. The methods in
Sections 4.1 and 4.2 can be easily combined to describe a rigid
unilateral contact involving dry friction. Let us consider a
rigid mass M of which the position is p € R’ and a rigid
frictional surface perpendicular to the z-axis and including
the origin. Then, the state-space model of the system can be
described as the following DI:

p p
all . .
ar €| 1 [-udio(p)sgn(py)] |, @28
Pl dio (p.)
where p = [pz}”pz]T’ Pxy € R? and y is the friction

coeflicient between the mass and the surface.
It must be noticed that (28) includes a multiplication of
dio(-) and sgn(-). To approximate this, one must replace dio(-)
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FIGURE 5: Simulation of the system (27) by RK4 with the timestep
size 0.001s. The parameters are chosen as M = 1kg, f, = -9.8N,
K = 10°N/m, B = 0.01s, and & = 0.01s (gray dashed), 0.007 s
(black dashed), 0.005s (gray solid), and 0.001s (black solid). The
initial conditions are p = 1 m, and p = 0m/s.

first and then replace sgn(-) because the replacement of sgn(-)
involves its multiplicative factor (F in (11) ) while that of dio(-)
can be done independently. In conclusion, the DI (28) can be
approximated by the following ODE:

P p
1 [—fxy (Pas By a)]
N R I T G AT
al | max(-z,-@) @
e ﬁl [
(fo (Por brypesa) K, —a)
Lal | B, ]
where
fz<pz,e)éz<lmax(o,e—W),
(30)

uf. (p..e)

K2 ’/32ny +t1),

fxy (pz’ pxy’ 6 (Il) 2 K2 sat (
and the parameters «, f3;, 3,, K;, and K, are appropriate
positive constants. This ODE is obtained by replacing dio(p,)

in (28) by f,(p;.e) and then replacing f(p,,e) sgn(p,,) by
fxy(pz’ ny’ 6 a)'

4.4. General Procedure. Now we are in a position to present
the main contribution of the work. A mechanical system can
be generally described by a DI in the following form:

x €D (x), (31)
where x € R” is the state vector of the system. Here, @ is a
function that contains dio(-) and sgn(:) in several places and
may also contain single valued functions. Let us assume that,
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in @, m different arguments, denoted as y;(x), i € {1,...,m},
are used for dio(-) and that [ different arguments, denoted as
0,(x),i € {1,...,1}, are used for sgn(-). Here, y; : R" — R,
and 0, : R" — R, r € {1,2}, are continuous functions.

By applying the methods introduced in Sections 4.1 and
4.2, O(x) can be approximated by the following procedure.

(1) First, replace dio (y;(x)) by Kg; max (0, e;—B4; (w;(x)+
e;)/«;), where Ky;, B4;> and «; are appropriate positive
constants.

(2) Next, let y;(x) denote the multiplicative factors
of sgn(6;(x)), which are nonnegative continuous
functions.  Then, replace  y;(x)sgn(6;) by
K sat (x;(x)/K;, Bi0;(x) + a;), where K and
B,; are appropriate positive constants.

(3) Finally, append ¢; = max (—¢;/ B4 —(y;(x) + €;)/et;),
ie{l,...,m},and g; = (sat (y;(x)/Kg, a;+ B;0;(x)) -
a;)/ B> i €1{1,...,1}, to the state-space model.

With this procedure, the nonsmooth system (31) is
approximated by the following ODE:

- [ D (X, €15 sy Apsenns ) 1
max(—e—l,—% (x) +e )
€ Ba &
d : max(—e—m,——wm (x)+em)
a en = /D’dm o >
(sat (1 () /Ko a1 + By 6y (%) —ay)
% ﬁsl
a (sat (x; () /Ky + By (x)) — @)
L le -
(32)
where ®(x,e,,...,e,,4d;,...,a) is the function ®(x) in

which the aforementioned replacements are made.

The presented procedure cannot apply if the function
®(x) includes a sgn(-) whose multiplicative factor involves
discontinuous functions other than dio(:) and if y;(x) are
not guaranteed to be nonnegative. The authors, however, are
not aware of nonsmooth mechanical systems that must be
described by such ®(x) functions.

5. Examples

5.1. Example I: A Rolling Sphere with Collision and Slip. The
presented approach is now illustrated by an example problem.
Let us consider a system in which a spherical object with
a uniform mass density falls onto a fixed rigid surface, as
shown in Figure 6. The surface includes the origin and is
perpendicular to the z-axis. This example is also introduced
in [34] and a similar example is employed in [11]. Let p € R?
be the position of the gravity center of the object, g be the
unit quaternion representing the attitude of the object, and
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FIGURE 6: Example I: a rolling sphere with collision and slip. In the
simulation, the parameters are chosen as M = 1kg, R = 0.5m,
and 4 = 0.1 and the initial conditions are p = [5.5,0,0]" m/s,
p=10,0, 2R]T, and w = [0, O,O]Trad/s.

w € R be the angular velocity of the object. Let R and M be
the radius and the mass of the object, respectively, and let u
be the friction coefficient between the object and the surface.
Then, the equations of motion of the object can be described
as the following DI:

P
dl P
= [
1 [-udio(p, - R)sgn(v(pw))] ]
M dio (p, - R) 7
p
S (d ) [—ydio (p, - R)sgn (V(P’w))D ’
2MR? dio (p, - R)
i Q(w.q) ]
(33)
where
v(pw) 2 [px—w},R,f)y+wa]T’ (34)

Q : R* x R* — R* denotes an appropriate function that
transforms w into the quaternion rate g, d £ [0,0,-R]”, and
g2100,0,9.8]" m/s%.

According to the procedure presented in Section 4.4, the
DI (33) can be approximated by an ODE in the following
procedure. First, one should replace dio(p, — R) by

w(pz,e)éKlmax<0,e—M>, (35)

o

where e € R and K;, f3;, and « are appropriate pos-
itive constants. Then pdio(p, — R)sgn(v(p,w)) becomes

py(p,,e) sgn(v(p, w)). Next, py(p,, e)sgn(v(p, w)) should be
replaced by

uy (p,.e)
KZ

ﬂ+mwnw)
(36)

0(p,v(pw),ea) éKzsat<

where a € R* and K, and 3, are positive constants appropri-
ately chosen. Finally, ODEs defining the behaviors of e and
a should be appended to (33). Then, (33) is approximated by
the following ODE:

s [ i[—e(pz,V(P,w))e,a)]_g ]
,,,,,, M v (p..e)
r p
5 o [0(pov(pw),e.a)
d|@|_|2MR (d [ v (pee) D
dt . Q(w,q)
e e+p,—R
. max( ﬂl, oc )
i (0(p,,v(pw),ea) /K, -a)
- - L ﬁz e

(37)

Figure 7 shows the result of the simulation by using (37)
with RK4. Here, K, and K, are set as high as possible to
achieve small penetrations during collisions, and f;, f3,, and
« are chosen based on some trials and errors. Figures 7(a)
and 7(b) show bouncing motion in the z direction while
Figures 7(c) and 7(d) show a transition from pure translation
(slipping in contact) to pure rolling.

In Figure 7(e), one can find small penetrations produced
by the approximation. Moreover, in Figure 7(f), one can see
impulse oscillations after collisions, which are also conse-
quences of the approximation. Despite these small artifacts,
the overall shapes of the graphs in Figures 7(a) to 7(d) are
close to the expected behaviors of the original DI (33).

5.2. Example II. Multiple Frictional-Unilateral Contacts.
Next example is the application of the presented method to
a system involving many frictional contacts interacting with
one another. Let us consider a planar system illustrated in
Figure 8, which consists of a conveyor moving at a constant
velocity u, a spring with the stiffness K, two rigid objects
M, and M,, and a rigid vertical wall. The object M, can
move freely in the horizontal direction and is subject to the
elastic force from a spring K, in the vertical direction. It is
assumed that the objects do not rotate. The coefficients of
friction between the wall and M, between M, and M,, and
between M, and the conveyor are y,, y,, and s, respectively.
T
= ]

The state vector is defined as x 2 [p’, pT] € R® where
P = [Pro Pry> oo P2y )" inwhich [y 11" and [y, py, )"
denote the positions of M; and M,, respectively. The object

M, is regarded as being at [0,0]” when it is in contact with
the wall and the spring balances the gravity. The object M,

is regarded as being at [0,0]” when it is in contact with
the conveyor and the object M, being at its [0,0]”. Then,
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FIGURE 7: Simulation results of Example I by using (37) integrated by RK4 with the timestep size 0.001s. The parameters are chosen as
K, =K, =1x 10° N/m, Bi=B=4x 107°s,and o = 2.8 X 107> s. Graphs (e) and (f) are enlarged views of graphs (a) and (d), respectively.

the state-space model of the system can be described as the
following DI:

B p —
....... dio (py,) — dio (P, — P1xc)
M,
-0, (x) = Q, (x) -
M, ’
dt i
s (x,u) + dio (pyy — prx)
M,
0, (x) + dio (ps,)
M,

Kslply

(38)

where O, (x) = p,dio(py,) sgn(py,), Q(x) = pydio(py, -
P10 sgn(pyy — pay), and Qs (x, ) 2 padio(py,) sgn(pay + ).

According to the procedure presented in Section 4.4,
the DI (38) is approximated by an ODE in the following
procedure. First, one should replace dio(p, ), dio(p,, — p1)
and dio(p,,) by

B (pix te1) ) ’ (39)

o)
) ., (40)

) , (4D

¥y (x,€;) = Ky max (0’ e
B (Pax —Pre t 62)
7]

Bs (sz + 63)

a3

¥, (x,e,) £ K, max (0, e,

5 (x, €5) = K3 max <O,e3 -
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respectively, where K;, f3;, and «; (i € ({1, 2,3}) are
appropriate positive constants. Then, Q,(x), Q,(x), and
Q3(x,u) are found to be replaced by v, (x,e;) sgn(py,)s
s (X, e;) sgn(py, — py,), and pzys(x, e3) sgn(py, + u),
respectively. Next, they should be replaced by 0,(x,e;,a,),
0,(x, e5,a,), and 0;(x, u, e5, a;), respectively, where

X, e .
0, (x.e,a) = Ky sat (%’al + ﬁ4p1y> , (42)
4

0, (x,e5,a,) = Ky sat (M
Ks

» @ + s (P1y - sz)> >
(43)

05 (x,u,e5,a;) = K sat

X, e .
(B9 5,0
6

(44)
and K; and f3; (i € {4, 5, 6}) are appropriate constants.
Finally, the differential equations defining the behaviors of ¢;

and a; (i € {1, 2, 3}) should be appended to (38). Then, (38)
is approximated by the following ODE:

p _ b -
vy (x,e) =y, (x,e5)
M,
-Kp1, -6, (x.e,a,) = 0, (x,€3,0,)
M,
P 05 (x,u,e5,a;) + v, (x,¢,)
M,
0, (x, €5, a) + 95 (. €5) 3
...... M,
max [ — L _(P1x+61)
i €| /31’ &
dt
( e, (Poc—Pixte) )
max| -—=, —————— =%
€ B, 493
+e
max(-‘f_s, _(p”_S)>
es Bs a3
0, ('x’el’al) /Ky —a
a Bs
0, (x, ‘32»5‘2) /K5 —a,
% Bs
0, (x, 63’5‘3) /Kg —ay
L Be J
| a3 |

(45)

A numerical simulation was performed by using the
ODE (45) with RK4. The results are shown in Figure 9.
Here, again, K; are set as high as possible to achieve small
penetrations during collisions, and f3; and «; are chosen based
on some trials and errors. The time periods indicated by

—

:
=

Z
e M,
z
-17 M,
-z -7 (Plx’ply)
~ (P2x> P2y)
U &——

FIGURE 8: Example II: multiple frictional-unilateral contacts. In the
simulation, the parameters were chosen as yt; = 4, = 3 = 0.5, M, =
0.5kg, M, = 1kg, K, = 100N/m, and u = 1m/s, and the initial
conditions are p = [0, 0.25,0.05, O]T m, and p = [0,0,0, O]T m/s.

the gray regions are those in which the objects M, and M,
are in contact to each other. Figures 9(a) and 9(b) show the
horizontal bouncing motion of M, and M,, which eventually
converges. Figure 9(c) shows the vertical motion of M,
which exhibits nonsmooth changes in the velocity during the
contact with M,, being influenced by the friction force. The
vertical position of M, does not converge to zero because of
the static friction forces from the wall and M,. Figure 9(d)
shows the vertical motion of M,, which determines the
normal force from the conveyor to M,. It properly shows the
influence on the normal force from the friction force acting
on the side face.

Also in this simulation, one can observe small pene-
trations at the time of collisions in Figures 9(a) and 9(d).
In addition, in Figure 9(b), one can find some impulsive
responses in p, ., which are also caused by the approximation.
Despite these artifacts, one can see that the approximation
(45) appropriately simulates the overall behavior of the
original DI (38).

5.3. Example III: Periodic Motion. This section shows the
application of the proposed method to a system exhibiting
periodic motion. Let us consider the system illustrated by
Figure 10, which has been investigated by Awrejcewicz et al.
[41]. Figure 10 shows that a mass M, of which the position is
denoted as p € R, rests on a conveyor rolling with a constant
velocity u € R. The mass is subjected to a nonlinear spring
force Fi(p) and a rate-dependent friction force F.(p — u).
Then, the system is described as the following equation:

Mﬁ+Ps(P)_Fc(p_u):0' (46)

Here, let us assume that F,(p) and F.(p — u) are defined as
follows:

F (p) 2 ~k,p +k,p°,
(47)

F(p-u)= |sgn(P—u))

B F
V+|p—u
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FIGURE 9: Simulation results of Example IT by using (45) integrated by RK4 with timestep size 0.001 s. The gray regions indicate the time periods
in which the objects M, and M, are in contact with each other. The parameters are chosen as K, = 5x10° N/m, 3, = 2x107 s (Vi € {1,...,6}),

ando; = 1.6 x 107 s (Vi € {1,2,3}).

where ky, k,, F, and V are positive constants. By using a new
variable w 2 u — p, one can rewrite (46) into the following
DI:

P u-—-w

. (48)

1 F
dt — 3 - )
w M (kzp kip Vet sgn (w)

According to the procedure presented in Section 4.4, (48)
is approximated as follows:

p
dlw
dt ......

a

u-w

1
M<k2p3—k1p—sat<

,Ka+ K/Sw))

V + |w|

1 F a
BS&t(m,ﬂ‘l’ﬁW) - B

>

(49)

where a is a new state variable and K and f are positive
parameters. In contrast, Awrejcewicz et al. [41] used the
following equation to approximate (48):

p u-—-—w

— =11
M (kzp3 —kip-

F sat (e, w) > ,
(V + max (Jw|, €)) e
(50)

where 0 < € < V is a parameter. This approximation
was obtained by simply replacing the discontinuity by a
linear function of a constant slope in the region |w| < e.
Awrejcewicz et al. [41] has shown that this approximation
does reproduce periodic motion appropriately.

Figure 11 shows the simulation results of the proposed
approximation (49) and the simple smoothing (50). It shows
that the proposed approximation (49) also provides periodic
solution, and it is very close to that of the simple smoothing
(50). Considering that the result of (50) has been analytically
validated through Tikhonov theorem in [41], one can see that
the result of the new approximation (49) is also valid.
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FIGURE 10: Example III: periodic motion. In the simulation, the
parameters were chosen as F = 02N, M = 1kg, k; = 1N/m,
k,=1 N/m3, u = 1m/s,and V = 1m/s, and the initial conditions
are p = 1.19149m, and w = O m/s.
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FIGURE 11: Simulation results of Example III by using (49) and (50)
integrated by RK4 with timestep size 0.001s. The parameters in (49)
are chosen as K = 1 x 10° N/m and = 0.5s. The parameter in (50)
is chosen as € = 107> m/s.

6. Conclusion

This paper has introduced a new method to approximate
DIs describing nonsmooth mechanical systems involving
dry friction and rigid unilateral contact by ODEs. A main
difference of the new method from conventional regular-
ization methods is that the resultant ODEs are equivalent
to DAIs that are approximations of DIs. As a consequence,

1

the approximated ODEs preserve important features of the
original DIs such as static friction and always-repulsive
contact force. An algebraic procedure for yielding the ODE
approximations has been presented and has been illustrated
by using some examples.

Future research should address the theoretical and
numerical studies on the influence of the chosen parameters
(K, o, ) on the system behavior. Currently there are no
guidelines for the choice of the parameter values; thus they
have been chosen through trial and error in the presented
examples. In particular, the choice of « and S strongly
influences the realized coefficient of restitution. Theoretical
or empirical relations between the parameter values and the
coeflicient of restitution must be sought in the future study.

One limitation of the presented approach is that it is only
for “lumped” contacts. In some situations, the contact force
may be distributed across a contact area. It is unclear whether
the presented approach is applicable or not to such situations.
Anisotropic friction force and elastic contact, such as those
seen in vehicle tires, would demand further extension of the
presented approach.
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