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We consider positive operators on the real line R with property of interpolation, and we show the weighted L ,-convergence of
the operators. We will construct an analogical operator of one which is studied by Knopfmacher (1986). Furthermore, we treat the

Shepard-type interpolatory operator (cf. Xie et al. (1998)).

1. Introduction

In this paper, we consider two interpolatory positive opera-
tors. For y > 1 and —oo < Xpy <00 < Xy, <00, weconstruct
an operator

Fuy [F1(2)

_ ZZ:I h (xk,n) wy—Z (xk,n) Aknf (xk,n) |Kn (x’ xk,n)|y (1)
ZZ:I h (xk,n) wV*Z (xk,n) Akn|I<n (X, xk,n)ly

The details will be stated later, and the result is written in
Section 2. Knopfmacher [1] studied the positive operator

ZZ:I /\knf (xk,n) IKn (x’ xk,n)|y
ZZ:I /\kann (x’ xk,n)ly

E, [flx) = )

and for 1 < y < 2, he obtained a certain weighted-
convergence theorem on the compact interval I ¢ R =
(00, 00). The operators (1) and (2) have the property of
Hermite-Fejér interpolation, that is,

Hn [f] (xk,n) = f (xk,n) >

' 3)
H,[f] (%) =0, k=12,...,n

We also treat the interpolatory positive operator of Shepard-
type. Let us define S, (f; x) for f € C(R) by

S S (3) 98 (i) e 3]
Sun (fi%) = " 02 )
Y O (xj,n) X=X, (4)
Az1, xeR.

The operator S, ,(f; x) is linear and positive, furthermore it
interpolates f(x) at the zeros {x;,};,. In fact, we see that

Sn,A (f’ xk,n)
= xl;f(n f (xk,n) ‘D;A_l)/z (xk,n)

k>

X — xk,n

3 f (%) 052 (x5)

jtk

-1 1
X |x - x]-’n| |x - xk)n|



| 0 )+ T 00 ()
j#k

Y 2
><|x - xj,n' |x - xk,nl

k=1,2,...,n

= f (xk,n) >
(5)

The related theorem is written in Section 4.
First we need the following definition from [2]. We say
that f: R — [0, 00) is quasi-increasing (quasi-decreasing)

if there exists C > 0 such that f(x) < Cf(y)(f(x) = Cf(»)),
0<x<y.

Definition 1. Let Q : R — [0, 0c0) be an even function and
satisfying the following properties.

(a) Q'(x) is continuous in R, with Q(0) = 0.
(b) Q" (x) exists and is positive in R \ {0}.

(c) lim, _, ,,Q(x) = oo.
(d) The function

_xQ (%)
Q(x)

T (x) : , x#0 (6)

is quasi-increasing in (0, co0), with

T(x)2A>1, xecR"\{0}. (7)

(e) There exists C; > 0 such that

|(é' ((j:))l <C |QQ((;C))|, ae x € R\ {0}. ®)

Then, we write w(x) = exp(—Q(x)) € F(CH). If there
also exist a compact subinterval /(3 0) of R and C, >
0 such that

Q' _ . [Qw
Q)] Q)

ae. x cR\J, 9)

then we write w(x) = exp(—Q(x)) € F(C*+).
Example 2. There are some typical examples of Q(x) satisty-
ingw = exp(-Q) € F(C*4).

(1) If T(x) is bounded, then the weight w = exp(-Q) is
the so-called the Freud-type weight. Then the typical
Freud-type example would be

Q(x) =Ix*, a>1 (10)
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(2) If T(x) is unbounded, then the weight w = exp(-Q)
is called the Erdos-type weight. Erdds-type examples
w =exp(-Q) € F(C*+) are as follows.

(a) (see [2, Example 1.2], [3, Theorem 3.1]) For « >
1,1=1,2,3,....

Q (x) = Q (x) = exp; (Ix|%) —exp, (0), (11)
where

exp; (x) = exp (exp (exp---expx)---) (I-times). (12)

More precisely, we define fora + m > 1,m > 0,1 > 1
and « > 0,

Qiam () 1= IxI™ (expy (IxI%) — «"exp; (0)), (13)

where a® = 0 if « = 0, otherwise ™ = 1 (but, note
that Q;,,, gives a Freud-type weight).

(b) (see [3, Theorem 3.5]) For & > 1, put Q,(x) :
1+ )M =1, @ > 1.

We construct the orthonormal polynomials p,(x)
pn(wz, x) of degree n for w?(x), that is,

jm Pn (wz,x) Pm (wz,x) w? (x)dx

=4

mn

(14)
(Kronecker delta) .

Let fw € L ,(R). The Fourier-type series of f is defined by

_7 (x) := Zak (wz,f) Dk (wz,x) R
k=0 (15)

a (wz,f) = JO:of(t) Dr (wz,t) w’ (t) dt.

We denote the partial sum of f(x) by

n—1
s, (fix):=s, (wz,f, x) = Zak (w2,f) Pk (wz,x) . (16)
k=0
If we use the Christoffel-Darboux formula, then we obtain

sy (fix) = JZ K, (x,t) f () w (t)dt. 17)

Here,

n—1
K, (x,£) = ) py (x) py (1)

k=0

_ bpn (.X) Pna (t) — Pa (t) Pn1 (X)
- Yn x—t

(18)
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where p,(x) = y,x" + - - -. The polynomials of degree < n are
denoted by &,. We define the Christoffel numbers A,,(w; x)

by

0 2
A, (w;x) = inf J M, (19)
Pe?, 1 J-o IP (X)l
then we have
1 1
A, (w;x) = = — .
Kx) Yoty 20

We denote the zeros of the orthonormal polynomial p,,(w?, x)
by x,,, < x < -+ < x1,. Then we define the Christoffel

n,n n-1,n
numbers Ay ., k= 1,2,...,nsuchas A, := A, (w, x; ).

2. Preliminaries and Theorems

We need the Mhaskar-Rakhmanov-Saff number a,;

2 (a,tQ (at
nhoa-e)
We define
o, 1-(fa)
¢, (x) =1 % \1-(|x|/a,) +3, (22)
RCHE a, < |x|,
1- m+6n, [x| < a,;
o,0=1 a (23)
S, a, < |x|,
where
8, ={uT (a,)}*” u>o. (24)

Moreover, we define a function y,(x) fory > 1and x € R

a7Vl N (x), 1<y<2

v, (x) = 3¢, (x)loga,, y=2; (25)
@, (x), y>2,
avert, 1<y<2;
1//; =1¢,logn, y=2; (26)
Gn> 2<y,

where ¢, := max{a,/n, a,5,}. For the Freud-type weight w we
suppose to hold y* — Oasn — oo.Ifw € F(C*+) is the
Erdos-type weight, then it always holds. So for the Freud-type
weight we need to limit slightly the weights.

To state our main result, we assume some conditions for
h(x) as follows.

(1) h(x) is even, positive, and quasi-decreasing on [0, 00).
(2) h(xy,,) ~ h(xpyy ) fork =1,2,...
3) h(x)CD;”/4(x) isboundedon R forn =1,2,....

,nandn=1,2,...

Let {x j,n}7:1 be the zeros of the orthonormal polynomial

p,(w?, x). Then we define the operator # nyf1(x) by (1) with
y > 1, h(x), and for each f € C(R) we define a pointwise
modulus of continuity w,(f;t) = Sup;,. i<, yerylf(X) -
f(»)l. When f e C(R) is uniformly continuous on R, we
set

Q(fit) =supw, (fit). (27)

x€R

Then our first theorem is as follows.

Theorem 3. Let w € F(C*+), and let v, — 0asn — oo.
Let y > 1. Then we have the following.

(a) For x,,,, < x < X1,

|Z 0y [£1 () = f ()] < Coo (fiw, () h" () @7 (),

(28)

and for |x| > x, ,
|Fny [F10) = f ()] < Caon (fi, () Ixl 9" (). (29)

(b) Let 0 < p < 00 and w” be an integrable function
satisfying the following condition:
* -1 -y/4
”w ()1~ (x) @, (")”LP<[xm,x1m])
(30)

+ |xv, ow” () | < 0.

Lp(Ix|2xy,,

Then one has for f(x) being uniformly continuous and
bounded on R

[ {Z0y 1= Y,y =C@OQF), @y

where v, are defined in (26).

We prepare some lemmas for the proof of the theorem.

Lemma 4. Let w = exp(-Q) € F(C).

(1) (see [2, Lemma 3.5 (3.27)-(3.29)]) For fixed L > 0 and
uniformly fort > 0,

are ~ T(ay)~T(a),
. . (32)
Q¥ (ay,) ~QY (a), j=0,1.
Moreover,
T (aLt) ~T (at) . (33)

(2) (see [2, Lemma 3.4 (3.18),(3.17), Lemma 3.8 (3.42)])

t\[T (a,
! TS PRA LG
T(at) %




and for x € [0,a,/2],

Q (x) ~ aﬁ(a—)m, (35)

n n

where A > 1 is defined in Definition 1(d).

(3) (see [2, Lemma 3.11 (a), (b)]) Given fixed 0 < «, one
has uniformly fort > 0,

(36)

(4) (see [2, Lemma 3.7 (3.38)]) For some 0 < & < 2, and
for large enough t,

T(a) < £, (37)
(5) (see [2, Lemma 3.8 (a)]) For x € [0, a,),

Q<ct 1

9 \1 - (x/at). (38)

Lemma 5 ([4, Theorem 2.7]). There exists C > 0 such that

sup |p, () w (x) ®," (x)| < Ca, 1" (39)

Lemma 6. Let w(x) = exp(-Q(x)) € F(C*+).

1 L@t Xin fe the zero of p,(x). Then forn 2 1 and 1 <
jsn—1,

xj,ﬂ - xj+1,ﬂ ~ Py (xj,n) > (40)

Pn (xj,n) ~ Pn (xj+1,n) . (41)

(2) Fornzlandl<j<n-1,

o, (xj,n) ~®, (xj+1,n) . (42)

Proof. (1) This follows from [2, Corollary 13.4, Theorem 5.7
(®)].

Journal of Applied Mathematics

(2) Recall the definition of @, (x) in (21). We have

X
T
@, (xj’") =1- +9,
ay,
'x'+1,n
=1
a,
Xin = Xjit1in
+08, - pn TR
an
ol P
j+1,n n j,n
LAall S S j
a?’l an
'x'+1,n
=1 s,
a

\
1 1- |xj,n/a2n|
Hence, if [xi s Xy 1.0] < hy2» then we see
®, (x;,) ~1- L l\jm +5, (44)

n
a, n a,

Here we see
@, (x;,)
C
=\, (x;,) {\/q’n (%) + ;} ~ @, (%),

because of \/®,(x;,) > C/\T(a,) > 1/n'™ > (1/n)(e > 0).
(see Lemma 4 (3), (4)). Therefore, we have

o, (xj,n) ~®, (xj+1,n) : (46)

Leta,, < |x;,|. Then we see

C
(Dn (xj,n) + ;
(45)

1/3
l 1- |xj,n/a2n < Cl (?’lT (an)) 5

n\/1—|xj)n|/an+8n\ n T(a,)

Therefore we see

8, (47)

|xj+1,n|

D, (xj,n) ~1 +6,=0, (xjﬂ’n). (48)

a,

O

Lemma 7 ([2, Theorem 13.3 (13.9)]). If x € [xp,1, Xpls
then

(lk,nw) (X) w71 (xk,n) + (lk+1,nw) (X) w71 (xk+,n) ~ L (49)

Lemma 8. Let w = exp(—Q) € F(C?*+). Then the following
results hold.
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(a) For |x| < a,(1 +9,),

n—1
K, (x,x) = Zpi (wz,x) = /\;12 (Wi x) ~ @ (W) w (x).

k=0
(50)

(b) For x e R
K, (x,x) < Co," (x)w? (x). (51)

Proof. From [2, Theorem 9.3], we have the following.
(1) Uniformly for n > 1 and |x| < a,(1 + #,,), we have

A, (w; x) ~ @, (x) w? (x). (52)
(2) Moreover, uniformly forn > 1 and x € R,
A, (w; x) = Co, (x) w (x). (53)

Since K,,(x,x) = 1/A,(w; x), we have the following results.

O

3. Proof of Theorem 3
To estimate the difference | F,, [ f1(x) — f(x)I, we split Yo
into two parts.

To prove the theorem we start the estimation of the
denominator for the operator #,, .. We will need it in Step 4.

Step 1. Let

Hn,]/ (X) = Zh (xk,n) w)kz (xk,n) Akann (X, xk,n)ly' (54)
k=1

Then we have the following.

Lemma 9. There exists C > 0 such that uniformly, for x €
[xn,n’ xl,n]’

H,, (x) > Ch(x) g, (x)w™ (x). (55)

Proof. By Lemma 7, if x € [Xp,1, Xp,]s X1, = 0, k 2> 1,
then

(lk,nw) (x) w_l (xk,n) + (lk+1,nw) (x) w_l (xk+1,n) ~ L (56)

Since I ,(x) = Ay, K, (x, x;.,,), we see

/\k,n = (x) Kn (X, xk,n)
w ('xk,n) (57)
w (x)
L T R S

( 3 )Kn (X, xk+1,n) ~1
+1,n

and this implies that
0<C

< (Aan

w (xk,n) |Kn (x’ xk,n)l

+/\k+1,n

&)) |Kn (x’ xk+1,n)|)

w (xk+1,n

An )
= (w,; Ei]fj)w (xk,n) |Kn (X’ xk,n)|

Asraw (X) (58)

wix K X, X n
2( . l’n) ( k+1,n)| n( k+1, )l)
)Lknw (X)

w? (xk,n)

(w (xk,n) |Kn (X, xk,n)l

+w (xk+1,n) lKn (x’ xk+1,n)|)
AW (x)

<C
w? (xk,n)

(|Kn (x’ xk,n) w (xk,n)ly

1/
+|Kn (X, xk+1,n) w (xk+1,n)|y) y'

Therefore, from (41) and (52) we can obtain

@, () w” (x)

Akn o -y
~(w2 (xk,,») v

g C ZA’kn
w (xk,n)

(59)

(|Kn (x’ xk,n) w (xk,n)ly

+|Kn (x’ xk+1,n) w (xk+1,n)|y) .

Using the fact h(xy,,) ~ h(x) ~ h(x,,,) (see the definition
of h(x)), we have by (41) and (52)

H,, (x)

Z h ('xk,n) Ak,nu)y_z (xk,n) lKn ('x> xk,n)|y

+h (xk+1,n) /\k+1,nu)y_2 ('xk+1,n) |Kn (X, xk+1,n)|y

e (60)

w? (xk,n)

> Ch(x) (1K (6 %) w ()

+|Kn (x’ xk+1,n) w (xk+1,n)|y)
>Ch(x) e, (x)w™ (x).

In another case, that is, when x;,,, < 0, we also have the
same result. O

Step 2. Let |x — x| < ¢,(x). Let f(x) be uniformly
continuous and bounded on R, and let y > 1. Then we have

|f (%) = f ()] < 0y (fi, (%)) (61)



Now, let
1 _
Z = H (x) Z h (xk,n) w' ? (xk,n) /\kn
1 wy |X*xk,n|<¢n()€)
x |f (x) - f (xk,n)| IKn (x’ xk,n)ly'
(62)
We have the following estimation.
Lemma 10. For x € R,
Y <o (fig, (). (63)
1
Proof. By (61),
1
<w, (fie, (x)
25l g

)

o= | <0 (%)

<, (fign (%)),

h (xk,n) w}’—2 (xk,n) /\kn|Kn (x’ 'xk,n)|y

(64)
because we know from the definition of Hn,y(x) in (54) that

Z h (xk,n) w}’—z (xk,n) /\anKn (x’ xk,n)|y S Hn,y (x) .

| |0 (x)

(65)
O

Step 3. Next, we estimate )., 1., (- Let |x —x; .| > ¢,(x)
and let |x - x,, .| = min{|x — x; .|,k = 1,2,...,n}. To do so,
we prepare the following. By Lemma 6,

|K (x X )| < Ca |pn (x)pn—l (xk,n)l

|x - xk,nl
<Cw™ (x)w™ () 0, (%) (66)

1

x @, (x ) P
N

From the property of the modulus of continuity we have,
for |x — x| > @, (% ,)s

'f (x) - f(xk,n)| < C(|x - xk,nl 1/’;1 (x) + l)wx (f’ Y (X)) >
(67)

where v, (x) is defined in (25) as y,,(x) — 0 uniformly in R
asn — ©o.

We have the following estimate.
Lemma11. Forany x € R,

h (xk,n) wY*Z (xk,n) Ak,n|1<n (x’ xk,n)|y’

(68)

B, i (x) :=

H,, (x)
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Then
Z Bn,k (.x) < 1. (69)

| %=X | > ()

Proof.

Y By

|x=6|>a(x)

h (xk,n) wy—Z (xk,n) )Lkn

1
" H,, (%) |x_xkz (70)

] >Pn(%)
Y
X |Kn (x’ xk,n)l
< 1)
because we know from the definition of H,,(x)in (54) that

Z h (xk,n) wY72 (xk,n) Akn|Kn (x’ xk,n)ly < Hn,y (x) .

|22 >0 ()

(71)
O

Step 4. Let |x — x| > ¢,(x). Using the result of Step 1, we
have the following estimate.

Lemma 12. For any x € R, one sets

1 _
Cn,k (X) = H—(X)h (xk,n) w' ’ (xk,n) /lk,n

oy (72)

x| = x| |1 Ky (3, 1)
Then for x € [x,,,,, X} ],
Y GO @O @y, g
| x| > ()
and for |x| > x1,,

> G <2]x].

=10 | >0 (x)

(74)

Proof. First, let x € [x,,,x;,]. Then using (52), (66), and
Lemma 9, we have

Cn,k (X) < Ch (xk,n) Pu (xk,n) (D;Y/‘l

xh™ (x) ! (x).

From the fact that h(x)CDZVM(x) is bounded (recall the
definition of h(x)), we can continue as

Pn (xk,n)

Cpu () < CH' () 07 (x) 92" (%) =

(76)
|x — xk’n
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Then by (25) and (40),
Y G
|x—x,m I >, (x)
<C GV (x) ;" (x) 9l (x)

[0 >0 () e = x|

<Ch ' ()@ (x) 9! (x)

2_
a’?,

1<y<2;
x 1loga,, y=2
cpify (x), y>2,

<Ch ()@ (), (x).

(77)
Next, suppose x > x; .. Then since
1 -
Cn,k (X) <2 |x| H (X) h (xk,n) w}’ 2 (xk,n) Ak,n
Y (78)

X |Kn (X, xk,n)ly’
we have from Lemma 11,

Y G <2yl 79)
|x7xk,n|>¢n(x)
O

Step 5. Using (67) and Lemmas 11 and 12, we can estimate the
Part X, |5q, (v as follows:

s-( 3

2 X=Xk > ()

h ('xk,n) w}kz (xk,n) Akn
x |f (x) - f (xk,n)l |Kn (X, xk,n)ly>

n -1
X < Zh (xk,n) wy*Z (xk,n) Akn|I<n (x’ xk,n)|y> .
k=1
(80)

Then for x € [x,,,,, x; ,]

Y <Cu, (fiy, (%)
2

X ( Y B+, (x)
[x =1 | >, (x)
x )

(81)
Cn,k (x) >
[x=2. | >, (x)

< Cw, (i () (1+ 47 (x) 0, (x))

< Ca, (fiy, OV H (x) 0,7 (%),

and for |x| > x,

Y < Ca, (fi v, ()
2

X < Z B, (x) + 1//;1 (x)
|x7xk,n|>‘Pn(x)
)

(82)
Cn,k (X) )
|2 | >, ()

< Coo, (fiw, () (1+ Ixlw," (%))
< Ca, (9, (0) Ixly," ().
Therefore, with Lemma 10 we have the following result.

Lemma 13. Forx, , < x < X1,

nn

9 : [f] (x) f (x) g wa (f, ll/n (x)) h 1 (x) CDn)’/4 (x)

and for |x| > x, ,
|F 0y 1 0) = £ (0] < Cooy (Fiwy (0)) Il 9, (). (84)
Proof of Theorem 3. (a) follows from Lemma 13. We will show

(b). Let 0 < p < 0o. Then since we know that ¢(x) < C¢, and
so y,(x) < Cy,, forall x € R, we have

| v (3+3)

w’ (gn,y[f] - f)"LI,([R) =0

L,®)
=0MQ(fiy,)-
(85)
O
Example 14. Let h(x) = ®"*(x) and
. "2 (x)
- , , 6
w” (x) L Bp>1 (86)
where
1
0] = .
Y rewT® )

Then the condition (30) is satisfied.

4. Shepard-Type Operator
Let us define the positive interpolatory operator (4) for f €
C(R) and the zeros {xj,n}y=1 of the orthonormal polynomial

pa(w?, x).
Let

1
1+ Q)T (%)

D (x): (88)



Lemma 15 ([5, Lemma 3.3]). For x € R, one has

D(x) <CP,(x), nzl.
(89)
Assumption 1. We suppose that, for each € > 0,
T(a, <C(e)n°, n=123,..., (90)

where C(¢) is a constant depending only on «.

Remark 16. Let w = exp(-Q) € F(C*+), and let us define

Q" (x)/Q' (x)

=1 _—
TN AW /Qk)
(91)
b lim me” ()/Q (x)
© Q (x)/Q(x)

If v = y, then we say that the weight w is regular. The regular
weights satisfy the condition (90) (see [6, Corollry 5.5]). All
weights in Example 2 are regular weights.

Lemma 17 ([3, Theorem 1.6]). Let w = exp(-Q) € F(C*+),

and let a,, be defined by (21). Then there exists C > 0 such that
foreveryn >0

a, <Cn'%, 92)
where A > 1 is defined in Definition 1 (d). In particular, for the
weight w, one has A = «. Furthermore, if w is an Erdos-type,

then for any 1 > 0, there exists C(1) > 0 such that, for every
n>0,

a, <C(n)n'. (93)

For each 3/2 < A < 3 let us set

. A/3
a,I"" (a,)
W, 2<A< 3;
A/3
_ J]a, 77" (a,)logn s 4
Un 3 T, A = 2, (9 )
A/3
a,T"" (a,) 3
o 7 A<2.

Our second theorem is as follows.

Theorem 18. Let f € C(R) be uniformly continuous on R
and let 3/2 < A < 3. Assume U(x) is a nonnegative and
decreasing function with U(x) < co®-v/ 2(x). Then one has
for the Erdds-type weights,

U ) (S (f5x) = f O, _ e

where y,, is defined in (94).

CQ(fim), (95

Journal of Applied Mathematics

For the Freud weights we have the following. For A > 3,
let us set (3/2)(1 + (1/A)) < A < 3(1 = (1/A)) and

1 \ 1)
T %< <3<1_X)’
1
T2 1A )L = 2;
P = 0PN (96)
1 3 1
OETE=YIY §<1+X)<A<2

(note (92) and (94)).

Corollary 19. Let A > 3, where A is defined in Definition 1
(d), and let (3/2)(1 + (1/A)) < A < 3(1 = (1/A)). Then, for the
Freud-type weights, (95) holds with u,, ,. In particular, when
w(x) = exp(—|x|%), one can take A = «.

Remark 20. For the Freud-type weights we seelim,, _, (4, » =
0. If we assume (90), then for the Erdos-type weights, from

Lemma 17 (93), we also have lim, _, .y, = 0.

Proof of Theorem 18. Let 3/2 < A < 3. We see that

Spn (fix) = f (x)
T () - F@F OV () [ - ’
A M| RN
(97)

Let (X410 + X 0)/2 < X <
X, - Then, we see

Xy OF (X + X0 1)/2 < X <

|f (xm,n) - f(x)| S Wy (f’ Ixm,n - xl)
Co, (fign (x) < Co(fipm,),

(98)

where y,, is defined in (94). If j # m, then we have

|f (xj) = £ (0] < @ (filx = x;)

(99)
S (|x - xj,n| M;l + 1) Q (f’#n)

Let

)
_ Zj#mq)()l_l)/z( ]

- Zjlq))t 1/2( ) |

s

(100)

]#m

2 ZJ lq)A 2 (xj,,)
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Then we see that 0 < ), < 1. Now, we will estimate ) ,. We
see that

; ~ Z Pn (xs,n)

|x - xj,n' js<ssm+1 or
m—1<s<j
-1
_n 1_|xs,n|/a2n
a,\ . 1/2
n\ jsssm+l or(l - |Xs)n| /an + (Sn)
m—1<s<j

n -1/3
> —(}’lT (an)) ' Z (1 - |x5,n| /a2n)

a, jsssm+1 or

m—1<s<j
! 1

> .

anT1/3 (an) |m - ]l

(101)

Hence we have

n

2.0 (x;)

=

X=X,

'—A

Y (A-1)/2 1
*(arimgay) Zoe "o

JA
jEm m — j|

2/3 A
n (A-1/2 1
> — D x;
(anTl/3 (an)> <, /2 ! ( J’n)

m—ji* (02)
j#Em
(i) L

>2C| —————~ —
1/3 A

anT (an) |xj,n|<“n/2lm _]I

jtm

2/3 A .

S n 1, A>1;
a, T3 (a,) logn, A=1.

Usingfor1 < j<n

(103)

we see that

-1

~ Z Pn (‘xs,n)

|x - xj,n| j<s<m+1 or
m—1<s<j

I- |xs,n| /aZn

ay, jSssm+1 or(l - |x5,n| /an + 6n)1/2
m—1<s<j

SCaﬁ Z (1- |xs,n|/an+6n)1/2
n js<ssm+1 or
m—1<s<j
<CZ (@, () + 0, (x,,,)) ——-
a, ! ! o ll’}’l - J|
(104)
Therefore, we have
_ —-(A-1)
2 U@ O () [ = x5
jEm
n \ML N
< c(-) Y (U)o, (x)
an jEm
x OV (x,)+U (x))
« 1
A
= (105)

1< A<
Then, with (102) we see

Ux)) (%)
2

YiemU @) OV () |x - xj,n|7(H)

B @ (50) b= x|

A
<C a,1'" (a,) < n )Al
= n2/3 a,
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(1, 2<A;
logn, A=2

X«nZ_A, 1<A<2

2-1
S, A=1,
L logn
1, 2< A
logn, A=2
a, " (a,) |22, 1<a<2;
g ) Int T ;
BESYE o
n
, A=1
logn
(106)
Hence, using y,, in (94), we have that, for 3/2 < A < 3,
‘U(x)Z(x) < Cu,,. (107)
2

Consequently, with 0 < )’} < 1 we have

U (x)[Soa (fix) = f )| <CQ(fim,).  (108)
O
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