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We analyze the best approximation𝐴𝑁 (in the Frobenius sense) to the identitymatrix in an arbitrarymatrix subspace𝐴𝑆 (𝐴 ∈ R𝑛×𝑛

nonsingular, 𝑆 being any fixed subspace of R𝑛×𝑛). Some new geometrical and spectral properties of the orthogonal projection 𝐴𝑁
are derived. In particular, new inequalities for the trace and for the eigenvalues of matrix𝐴𝑁 are presented for the special case that
𝐴𝑁 is symmetric and positive definite.

1. Introduction

The set of all 𝑛 × 𝑛 real matrices is denoted by R𝑛×𝑛, and
𝐼 denotes the identity matrix of order 𝑛. In the following,
𝐴
𝑇 and tr(𝐴) denote, as usual, the transpose and the trace

of matrix 𝐴 ∈ R𝑛×𝑛. The notations ⟨⋅, ⋅⟩
𝐹
and ‖ ⋅ ‖

𝐹
stand

for the Frobenius inner product and matrix norm, defined
on the matrix space R𝑛×𝑛. Throughout this paper, the terms
orthogonality, angle, and cosine will be used in the sense of
the Frobenius inner product.

Our starting point is the linear system

𝐴𝑥 = 𝑏, 𝐴 ∈ R
𝑛×𝑛

, 𝑥, 𝑏 ∈ R
𝑛

, (1)

where 𝐴 is a large, nonsingular, and sparse matrix. The
resolution of this system is usually performed by iterative
methods based on Krylov subspaces (see, e.g., [1, 2]). The
coefficient matrix 𝐴 of the system (1) is often extremely
ill-conditioned and highly indefinite, so that in this case,
Krylov subspace methods are not competitive without a
good preconditioner (see, e.g., [2, 3]). Then, to improve the
convergence of these Krylov methods, the system (1) can
be preconditioned with an adequate nonsingular precondi-
tioning matrix 𝑁, transforming it into any of the equivalent
systems

𝑁𝐴𝑥 = 𝑁𝑏,

𝐴𝑁𝑦 = 𝑏, 𝑥 = 𝑁𝑦,

(2)

the so-called left and right preconditioned systems, respec-
tively. In this paper, we address only the case of the right-hand
side preconditioned matrices 𝐴𝑁, but analogous results can
be obtained for the left-hand side preconditioned matrices
𝑁𝐴.

The preconditioning of the system (1) is often performed
in order to get a preconditioned matrix 𝐴𝑁 as close as
possible to the identity in some sense, and the preconditioner
𝑁 is called an approximate inverse of𝐴. The closeness of𝐴𝑁
to 𝐼may bemeasured by using a suitablematrix norm like, for
instance, the Frobenius norm [4]. In this way, the problem
of obtaining the best preconditioner 𝑁 (with respect to the
Frobenius norm) of the system (1) in an arbitrary subspace
𝑆 of R𝑛×𝑛 is equivalent to the minimization problem; see, for
example, [5]

min
𝑀∈𝑆

‖𝐴𝑀 − 𝐼‖
𝐹
= ‖𝐴𝑁 − 𝐼‖

𝐹
. (3)

The solution 𝑁 to the problem (3) will be referred to as
the “optimal” or the “best” approximate inverse of matrix 𝐴
in the subspace 𝑆. Since matrix𝐴𝑁 is the best approximation
to the identity in subspace 𝐴𝑆, it will be also referred to
as the orthogonal projection of the identity matrix onto the
subspace 𝐴𝑆. Although many of the results presented in this
paper are also valid for the case thatmatrix𝑁 is singular, from
now on, we assume that the optimal approximate inverse 𝑁
(and thus also the orthogonal projection𝐴𝑁) is a nonsingular
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matrix. The solution 𝑁 to the problem (3) has been studied
as a natural generalization of the classical Moore-Penrose
inverse in [6], where it has been referred to as the 𝑆-Moore-
Penrose inverse of matrix 𝐴.

The main goal of this paper is to derive new geometrical
and spectral properties of the best approximations𝐴𝑁 (in the
sense of formula (3)) to the identity matrix. Such properties
could be used to analyze the quality and theoretical effective-
ness of the optimal approximate inverse𝑁 as preconditioner
of the system (1). However, it is important to highlight
that the purpose of this paper is purely theoretical, and we
are not looking for immediate numerical or computational
approaches (although our theoretical results could be poten-
tially applied to the preconditioning problem). In particular,
the term “optimal (or best) approximate inverse” is used in
the sense of formula (3) and not in any other sense of this
expression.

Among the many different works dealing with practical
algorithms that can be used to compute approximate inverses,
we refer the reader to for example, [4, 7–9] and to the
references therein. In [4], the author presents an exhaustive
survey of preconditioning techniques and, in particular,
describes several algorithms for computing sparse approxi-
mate inverses based on Frobenius norm minimization like,
for instance, the well-known SPAI and FSAI algorithms. A
different approach (which is also focused on approximate
inverses based on minimizing ‖𝐴𝑀 − 𝐼‖

𝐹
) can be found

in [7], where an iterative descent-type method is used to
approximate each column of the inverse, and the iteration
is done with “sparse matrix by sparse vector” operations.
When the system matrix is expressed in block-partitioned
form, some preconditioning options are explored in [8]. In
[9], the idea of “target” matrix is introduced, in the context
of sparse approximate inverse preconditioners, and the gen-
eralized Frobenius norms ‖𝐵‖2

𝐹,𝐻
= tr(𝐵𝐻𝐵𝑇) (𝐻 symmetric

positive definite) are used, for minimization purposes, as an
alternative to the classical Frobenius norm.

The last results of our work are devoted to the special case
that matrix 𝐴𝑁 is symmetric and positive definite. In this
sense, let us recall that the cone of symmetric and positive
definite matrices has a rich geometrical structure and, in this
context, the angle that any symmetric and positive definite
matrix forms with the identity plays a very important role
[10]. In this paper, the authors extend this geometrical point
of view and analyze the geometrical structure of the subspace
of symmetric matrices of order 𝑛, including the location of all
orthogonal matrices not only the identity matrix.

This paper has been organized as follows. In Section 2,
we present some preliminary results required to make the
paper self-contained. Sections 3 and 4 are devoted to obtain
new geometrical and spectral relations, respectively, for the
orthogonal projections 𝐴𝑁 of the identity matrix. Finally,
Section 5 closes the paper with its main conclusions.

2. Some Preliminaries

Now, we present some preliminary results concerning the
orthogonal projection 𝐴𝑁 of the identity onto the matrix

subspace𝐴𝑆 ⊂ R𝑛×𝑛. For more details about these results and
for their proofs, we refer the reader to [5, 6, 11].

Taking advantage of the prehilbertian character of the
matrix Frobenius norm, the solution 𝑁 to the problem (3)
can be obtained using the orthogonal projection theorem.
More precisely, the matrix product 𝐴𝑁 is the orthogonal
projection of the identity onto the subspace𝐴𝑆, and it satisfies
the conditions stated by the following lemmas; see [5, 11].

Lemma 1. Let 𝐴 ∈ R𝑛×𝑛 be nonsingular and let 𝑆 be a linear
subspace of R𝑛×𝑛. Let 𝑁 be the solution to the problem (3).
Then,

0 ≤ ‖𝐴𝑁‖
2

𝐹
= tr (𝐴𝑁) ≤ 𝑛, (4)

0 ≤ ‖𝐴𝑁 − 𝐼‖
2

𝐹
= 𝑛 − tr (𝐴𝑁) ≤ 𝑛. (5)

An explicit formula for matrix𝑁 can be obtained by ex-
pressing the orthogonal projection𝐴𝑁 of the identity matrix
onto the subspace 𝐴𝑆 by its expansion with respect to an
orthonormal basis of 𝐴𝑆 [5]. This is the idea of the following
lemma.

Lemma 2. Let 𝐴 ∈ R𝑛×𝑛 be nonsingular. Let 𝑆 be a linear
subspace of R𝑛×𝑛 of dimension 𝑑 and {𝑀

1
, . . . ,𝑀

𝑑
} a basis of 𝑆

such that {𝐴𝑀
1
, . . . , 𝐴𝑀

𝑑
} is an orthogonal basis of 𝐴𝑆. Then,

the solution𝑁 to the problem (3) is

𝑁 =

𝑑

∑

𝑖=1

tr (𝐴𝑀
𝑖
)

𝐴𝑀𝑖


2

𝐹

𝑀
𝑖
, (6)

and the minimum (residual) Frobenius norm is

‖𝐴𝑁 − 𝐼‖
2

𝐹
= 𝑛 −

𝑑

∑

𝑖=1

[tr (𝐴𝑀
𝑖
)]
2

𝐴𝑀𝑖


2

𝐹

. (7)

Let us mention two possible options, both taken from [5],
for choosing in practice the subspace 𝑆 and its corresponding
basis {𝑀

𝑖
}
𝑑

𝑖=1
. The first example consists of considering the

subspace 𝑆 of 𝑛×𝑛matrices with a prescribed sparsity pattern,
that is,

𝑆 = {𝑀 ∈ R
𝑛×𝑛

: 𝑚
𝑖𝑗
= 0 ∀ (𝑖, 𝑗) ∉ 𝐾} ,

𝐾 ⊂ {1, 2, . . . , 𝑛} × {1, 2, . . . , 𝑛} .

(8)

Then, denoting by𝑀
𝑖,𝑗
, the 𝑛 × 𝑛matrix whose only nonzero

entry is 𝑚
𝑖𝑗

= 1, a basis of subspace 𝑆 is clearly {𝑀
𝑖,𝑗

:

(𝑖, 𝑗) ∈ 𝐾}, and then {𝐴𝑀
𝑖,𝑗

: (𝑖, 𝑗) ∈ 𝐾} will be a basis
of subspace 𝐴𝑆 (since we have assumed that matrix 𝐴 is
nonsingular). In general, this basis of 𝐴𝑆 is not orthogonal,
so that we only need to use the Gram-Schmidt procedure
to obtain an orthogonal basis of 𝐴𝑆, in order to apply the
orthogonal expansion (6).

For the second example, consider a linearly independent
set of 𝑛 × 𝑛 real symmetric matrices {𝑃

1
, . . . , 𝑃

𝑑
} and the

corresponding subspace

𝑆


= span {𝑃
1
𝐴
𝑇

, . . . , 𝑃
𝑑
𝐴
𝑇

} , (9)
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which clearly satisfies

𝑆


⊆ {𝑀 = 𝑃𝐴
𝑇

: 𝑃 ∈ R𝑛×𝑛 𝑃𝑇 = 𝑃}

= {𝑀 ∈ R𝑛×𝑛 : (𝐴𝑀)
𝑇

= 𝐴𝑀} .

(10)

Hence, we can explicitly obtain the solution 𝑁 to the
problem (3) for subspace 𝑆, from its basis {𝑃

1
𝐴
𝑇

, . . . , 𝑃
𝑑
𝐴
𝑇

},
as follows. If {𝐴𝑃

1
𝐴
𝑇

, . . . , 𝐴𝑃
𝑑
𝐴
𝑇

} is an orthogonal basis of
subspace 𝐴𝑆, then we just use the orthogonal expansion (6)
for obtaining𝑁. Otherwise, we use again the Gram-Schmidt
procedure to obtain an orthogonal basis of subspace𝐴𝑆, and
thenwe apply formula (6).The interest of this second example
stands in the possibility of using the conjugate gradient
method for solving the preconditioned linear system, when
the symmetric matrix 𝐴𝑁 is positive definite. For a more
detailed exposition of the computational aspects related to
these two examples, we refer the reader to [5].

Now, we present some spectral properties of the orthog-
onal projection 𝐴𝑁. From now on, we denote by {𝜆

𝑖
}
𝑛

𝑖=1
and

{𝜎
𝑖
}
𝑛

𝑖=1
the sets of eigenvalues and singular values, respectively,

of matrix𝐴𝑁 arranged, as usual, in nonincreasing order, that
is,

𝜆1
 ≥

𝜆2
 ≥ ⋅ ⋅ ⋅ ≥

𝜆𝑛
 > 0,

𝜎
1
≥ 𝜎
2
≥ ⋅ ⋅ ⋅ ≥ 𝜎

𝑛
> 0.

(11)

The following lemma [11] provides some inequalities
involving the eigenvalues and singular values of the precon-
ditioned matrix 𝐴𝑁.

Lemma 3. Let 𝐴 ∈ R𝑛×𝑛 be nonsingular and let 𝑆 be a linear
subspace of R𝑛×𝑛. Then,

𝑛

∑

𝑖=1

𝜆
2

𝑖
≤

𝑛

∑

𝑖=1

𝜆𝑖


2

≤

𝑛

∑

𝑖=1

𝜎
2

𝑖
= ‖𝐴𝑁‖

2

𝐹

= tr (𝐴𝑁) =

𝑛

∑

𝑖=1

𝜆
𝑖
≤

𝑛

∑

𝑖=1

𝜆𝑖
 ≤

𝑛

∑

𝑖=1

𝜎
𝑖
.

(12)

The following fact [11] is a direct consequence of
Lemma 3.

Lemma 4. Let 𝐴 ∈ R𝑛×𝑛 be nonsingular and let 𝑆 be a linear
subspace of R𝑛×𝑛. Then, the smallest singular value and the
smallest eigenvalue’s modulus of the orthogonal projection 𝐴𝑁
of the identity onto the subspace 𝐴𝑆 are never greater than 1.
That is,

0 < 𝜎
𝑛
≤
𝜆𝑛

 ≤ 1. (13)

The following theorem [11] establishes a tight connection
between the closeness of matrix 𝐴𝑁 to the identity matrix
and the closeness of 𝜎

𝑛
(|𝜆
𝑛
|) to the unity.

Theorem 5. Let 𝐴 ∈ R𝑛×𝑛 be nonsingular and let 𝑆 be a linear
subspace of R𝑛×𝑛. Let 𝑁 be the solution to the problem (3).
Then,

(1 −
𝜆𝑛

)
2

≤ (1 − 𝜎
𝑛
)
2

≤ ‖𝐴𝑁 − 𝐼‖
2

𝐹

≤ 𝑛 (1 −
𝜆𝑛



2

) ≤ 𝑛 (1 − 𝜎
2

𝑛
) .

(14)

Remark 6. Theorem 5 states that the closer the smallest
singular value 𝜎

𝑛
of matrix 𝐴𝑁 is to the unity, the closer

matrix 𝐴𝑁 will be to the identity, that is, the smaller
‖𝐴𝑁 − 𝐼‖

𝐹
will be, and conversely. The same happens with

the smallest eigenvalue’s modulus |𝜆
𝑛
| of matrix𝐴𝑁. In other

words, we get a good approximate inverse 𝑁 of 𝐴 when 𝜎
𝑛

(|𝜆
𝑛
|) is sufficiently close to 1.

To finish this section, let us mention that, recently, lower
and upper bounds on the normalized Frobenius condition
number of the orthogonal projection 𝐴𝑁 of the identity
onto the subspace 𝐴𝑆 have been derived in [12]. In addition,
this work proposes a natural generalization (related to an
arbitrary matrix subspace 𝑆 of R𝑛×𝑛) of the normalized
Frobenius condition number of the nonsingular matrix 𝐴.

3. Geometrical Properties

In this section, we present some new geometrical properties
for matrix 𝐴𝑁, 𝑁 being the optimal approximate inverse of
matrix 𝐴, defined by (3). Our first lemma states some basic
properties involving the cosine of the angle between matrix
𝐴𝑁 and the identity, that is,

cos (𝐴𝑁, 𝐼) =
⟨𝐴𝑁, 𝐼⟩

𝐹

‖𝐴𝑁‖
𝐹
‖𝐼‖
𝐹

=
tr (𝐴𝑁)

‖𝐴𝑁‖
𝐹
√𝑛

. (15)

Lemma 7. Let 𝐴 ∈ R𝑛×𝑛 be nonsingular and let 𝑆 be a linear
subspace of R𝑛×𝑛. Let 𝑁 be the solution to the problem (3).
Then,

cos (𝐴𝑁, 𝐼) =
tr (𝐴𝑁)

‖𝐴𝑁‖
𝐹
√𝑛

=
‖𝐴𝑁‖

𝐹

√𝑛
=
√tr (𝐴𝑁)

√𝑛
, (16)

0 ≤ cos (𝐴𝑁, 𝐼) ≤ 1, (17)

‖𝐴𝑁 − 𝐼‖
2

𝐹
= 𝑛 (1 − cos2 (𝐴𝑁, 𝐼)) . (18)

Proof. First, using (15) and (4) we immediately obtain (16).
As a direct consequence of (16), we derive that cos(𝐴𝑁, 𝐼) is
always nonnegative. Finally, using (5) and (16), we get

‖𝐴𝑁 − 𝐼‖
2

𝐹
= 𝑛 − tr (𝐴𝑁) = 𝑛 (1 − cos2 (𝐴𝑁, 𝐼)) (19)

and the proof is concluded.

Remark 8. In [13], the authors consider an arbitrary approxi-
mate inverse𝑄 of matrix𝐴 and derive the following equality:

‖𝐴𝑄 − 𝐼‖
2

𝐹
= (‖𝐴𝑄‖

𝐹
− ‖𝐼‖
𝐹
)
2

+ 2 (1 − cos (𝐴𝑄, 𝐼)) ‖𝐴𝑄‖
𝐹
‖𝐼‖
𝐹
,

(20)
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that is, the typical decomposition (valid in any inner product
space) of the strong convergence into the convergence of
the norms (‖𝐴𝑄‖

𝐹
− ‖𝐼‖
𝐹
)
2 and the weak convergence (1 −

cos(𝐴𝑄, 𝐼))‖𝐴𝑄‖
𝐹
‖𝐼‖
𝐹
. Note that for the special case that 𝑄

is the optimal approximate inverse𝑁 defined by (3), formula
(18) has stated that the strong convergence is reduced just
to the weak convergence and, indeed, just to the cosine
cos(𝐴𝑁, 𝐼).

Remark 9. More precisely, formula (18) states that the closer
cos(𝐴𝑁, 𝐼) is to the unity (i.e., the smaller the angle ∠(𝐴𝑁, 𝐼)

is), the smaller ‖𝐴𝑁 − 𝐼‖
𝐹
will be, and conversely. This gives

us a new measure of the quality (in the Frobenius sense) of
the approximate inverse 𝑁 of matrix 𝐴, by comparing the
minimum residual norm ‖𝐴𝑁 − 𝐼‖

𝐹
with the cosine of the

angle between 𝐴𝑁 and the identity, instead of with tr(𝐴𝑁),
‖𝐴𝑁‖

𝐹
(Lemma 1), or 𝜎

𝑛
, |𝜆
𝑛
| (Theorem 5). So for a fixed

nonsingular matrix 𝐴 ∈ R𝑛×𝑛 and for different subspaces
𝑆 ⊂ R𝑛×𝑛, we have

tr (𝐴𝑁) ↗ 𝑛 ⇐⇒ ‖𝐴𝑁‖
𝐹
↗ √𝑛 ⇐⇒ 𝜎

𝑛
↗ 1 ⇐⇒

𝜆𝑛
 ↗ 1

⇐⇒ cos (𝐴𝑁, 𝐼) ↗ 1 ⇐⇒ ‖𝐴𝑁 − 𝐼‖
𝐹
↘ 0.

(21)

Obviously, the optimal theoretical situation corresponds to
the case

tr (𝐴𝑁) = 𝑛 ⇐⇒ ‖𝐴𝑁‖
𝐹
= √𝑛 ⇐⇒ 𝜎

𝑛
= 1 ⇐⇒ 𝜆

𝑛
= 1

⇐⇒ cos (𝐴𝑁, 𝐼) = 1 ⇐⇒ ‖𝐴𝑁 − 𝐼‖
𝐹
= 0

⇐⇒ 𝑁 = 𝐴
−1

⇐⇒ 𝐴
−1

∈ 𝑆.

(22)

Remark 10. Note that the ratio between cos(𝐴𝑁, 𝐼) and
cos(𝐴, 𝐼) is independent of the order 𝑛 of matrix 𝐴. Indeed,
assuming that tr(𝐴) ̸= 0 andusing (16), we immediately obtain

cos (𝐴𝑁, 𝐼)

cos (𝐴, 𝐼)
=

‖𝐴𝑁‖
𝐹
: √𝑛

tr (𝐴) : ‖𝐴‖
𝐹
√𝑛

= ‖𝐴𝑁‖
𝐹

‖𝐴‖
𝐹

tr (𝐴)
. (23)

The following lemma compares the trace and the Frobe-
nius norm of the orthogonal projection 𝐴𝑁.

Lemma 11. Let 𝐴 ∈ R𝑛×𝑛 be nonsingular and let 𝑆 be a linear
subspace of R𝑛×𝑛. Let 𝑁 be the solution to the problem (3).
Then,

tr (𝐴𝑁) ≤ ‖𝐴𝑁‖
𝐹
⇐⇒ ‖𝐴𝑁‖

𝐹
≤ 1 ⇐⇒ tr (𝐴𝑁) ≤ 1

⇐⇒ cos (𝐴𝑁, 𝐼) ≤
1

√𝑛
,

(24)

tr (𝐴𝑁) ≥ ‖𝐴𝑁‖
𝐹
⇐⇒ ‖𝐴𝑁‖

𝐹
≥ 1 ⇐⇒ tr (𝐴𝑁) ≥ 1

⇐⇒ cos (𝐴𝑁, 𝐼) ≥
1

√𝑛
.

(25)

Proof. Using (4), we immediately obtain the four leftmost
equivalences. Using (16), we immediately obtain the two
rightmost equivalences.

The next lemma provides us with a relationship between
the Frobenius norms of the inverses of matrices𝐴 and its best
approximate inverse𝑁 in subspace 𝑆.

Lemma 12. Let 𝐴 ∈ R𝑛×𝑛 be nonsingular and let 𝑆 be a linear
subspace of R𝑛×𝑛. Let 𝑁 be the solution to the problem (3).
Then,


𝐴
−1
𝐹


𝑁
−1
𝐹

≥ 1. (26)

Proof. Using (4), we get

‖𝐴𝑁‖
𝐹
≤ √𝑛 = ‖𝐼‖

𝐹
=

(𝐴𝑁) (𝐴𝑁)

−1
𝐹

≤ ‖𝐴𝑁‖
𝐹


(𝐴𝑁)
−1
𝐹

⇒

(𝐴𝑁)
−1
𝐹

≥ 1,

(27)

and hence

𝐴
−1
𝐹


𝑁
−1
𝐹

≥

𝑁
−1

𝐴
−1
𝐹

=

(𝐴𝑁)
−1
𝐹

≥ 1, (28)

and the proof is concluded.

The following lemma compares the minimum residual
norm ‖𝐴𝑁 − 𝐼‖

𝐹
with the distance (with respect to the

Frobenius norm) ‖𝐴−1 − 𝑁‖
𝐹
between the inverse of 𝐴 and

the optimal approximate inverse 𝑁 of 𝐴 in any subspace
𝑆 ⊂ R𝑛×𝑛. First, note that for any two matrices 𝐴, 𝐵 ∈ R𝑛×𝑛

(𝐴 nonsingular), from the submultiplicative property of the
Frobenius norm, we immediately get

‖𝐴𝐵 − 𝐼‖
2

𝐹
=

𝐴 (𝐵 − 𝐴

−1

)


2

𝐹

≤ ‖𝐴‖
2

𝐹


𝐵 − 𝐴

−1


2

𝐹

.

(29)

However, for the special case that 𝐵 = 𝑁 (the solution to
the problem (3)), we also get the following inequality.

Lemma 13. Let 𝐴 ∈ R𝑛×𝑛 be nonsingular and let 𝑆 be a linear
subspace of R𝑛×𝑛. Let 𝑁 be the solution to the problem (3).
Then,

‖𝐴𝑁 − 𝐼‖
2

𝐹
≤ ‖𝐴‖

𝐹


𝑁 − 𝐴

−1
𝐹
. (30)

Proof. Using the Cauchy-Schwarz inequality and (5), we get

⟨𝐴
−1

− 𝑁,𝐴
𝑇

⟩
𝐹


≤

𝐴
−1

− 𝑁
𝐹


𝐴
𝑇
𝐹

⇒

tr ((𝐴−1 − 𝑁)𝐴)


≤

𝐴
−1

− 𝑁
𝐹


𝐴
𝑇
𝐹

⇒

tr (𝐴 (𝐴

−1

− 𝑁))

≤

𝑁 − A−1𝐹‖𝐴‖𝐹

⇒ |tr (𝐼 − 𝐴𝑁)| ≤

𝑁 − 𝐴

−1
𝐹
‖𝐴‖
𝐹

⇒ 𝑛 − tr (𝐴𝑁) ≤

𝑁 − 𝐴

−1
𝐹
‖𝐴‖
𝐹

⇒ ‖𝐴𝑁 − 𝐼‖
2

𝐹
≤ ‖𝐴‖

𝐹


𝑁 − 𝐴

−1
𝐹
.

(31)
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The following extension of the Cauchy-Schwarz inequal-
ity, in a real or complex inner product space (𝐻, ⟨⋅, ⋅⟩), was
obtained by Buzano [14]. For all 𝑎, 𝑥, 𝑏 ∈ 𝐻, we have

|⟨𝑎, 𝑥⟩ ⋅ ⟨𝑥, 𝑏⟩| ≤
1

2
(‖𝑎‖ ‖𝑏‖ + |⟨𝑎, 𝑏⟩|) ‖𝑥‖

2

. (32)

Thenext lemmaprovides uswith lower and upper bounds
on the inner product ⟨𝐴𝑁, 𝐵⟩

𝐹
, for any 𝑛 × 𝑛 real matrix 𝐵.

Lemma 14. Let 𝐴 ∈ R𝑛×𝑛 be nonsingular and let 𝑆 be a linear
subspace of R𝑛×𝑛. Let 𝑁 be the solution to the problem (3).
Then, for every 𝐵 ∈ R𝑛×𝑛, we have

⟨𝐴𝑁, 𝐵⟩
𝐹

 ≤
1

2
(√𝑛‖𝐵‖

𝐹
+ |tr (𝐵)|) . (33)

Proof. Using (32) for 𝑎 = 𝐼, 𝑥 = 𝐴𝑁, 𝑏 = 𝐵, and (4), we get

⟨𝐼, 𝐴𝑁⟩
𝐹
⋅ ⟨𝐴𝑁, 𝐵⟩

𝐹

 ≤
1

2
(‖𝐼‖
𝐹
‖𝐵‖
𝐹
+
⟨𝐼, 𝐵⟩𝐹

) ‖𝐴𝑁‖
2

𝐹

⇒
tr (𝐴𝑁) ⋅ ⟨𝐴𝑁, 𝐵⟩

𝐹



≤
1

2
(√𝑛‖𝐵‖

𝐹
+ |tr (𝐵)|) ‖𝐴𝑁‖

2

𝐹

⇒
⟨𝐴𝑁, 𝐵⟩

𝐹

 ≤
1

2
(√𝑛‖𝐵‖

𝐹
+ |tr (𝐵)|) .

(34)

The next lemma provides an upper bound on the arith-
metic mean of the squares of the 𝑛2 terms in the orthogonal
projection 𝐴𝑁. By the way, it also provides us with an upper
bound on the arithmetic mean of the 𝑛 diagonal terms in
the orthogonal projection 𝐴𝑁. These upper bounds (valid
for any matrix subspace 𝑆) are independent of the optimal
approximate inverse𝑁, and thus they are independent of the
subspace 𝑆 and only depend on matrix 𝐴.

Lemma 15. Let 𝐴 ∈ R𝑛×𝑛 be nonsingular with tr(𝐴) ̸= 0 and
let 𝑆 be a linear subspace of R𝑛×𝑛. Let𝑁 be the solution to the
problem (3). Then,

‖𝐴𝑁‖
2

𝐹

𝑛2
≤

‖𝐴‖
2

𝐹

[tr (𝐴)]2
,

tr (𝐴𝑁)

𝑛
≤

𝑛‖𝐴‖
2

𝐹

[tr (𝐴)]2
.

(35)

Proof. Using (32) for 𝑎 = 𝐴
𝑇, 𝑥 = 𝐼, and 𝑏 = 𝐴𝑁, and the

Cauchy-Schwarz inequality for ⟨𝐴𝑇, 𝐴𝑁⟩
𝐹
and (4), we get


⟨𝐴
𝑇

, 𝐼⟩
𝐹

⋅ ⟨𝐼, 𝐴𝑁⟩
𝐹



≤
1

2
(

𝐴
𝑇
𝐹
‖𝐴𝑁‖

𝐹
+

⟨𝐴
𝑇

, 𝐴𝑁⟩
𝐹


) ‖𝐼‖
2

𝐹

⇒ |tr (𝐴) ⋅ tr (𝐴𝑁)|

≤
𝑛

2
(‖𝐴‖
𝐹
‖𝐴𝑁‖

𝐹
+

⟨𝐴
𝑇

, 𝐴𝑁⟩
𝐹


)

≤
𝑛

2
(‖𝐴‖
𝐹
‖𝐴𝑁‖

𝐹
+

𝐴
𝑇
𝐹
‖𝐴𝑁‖

𝐹
)

= 𝑛‖𝐴‖
𝐹
‖𝐴𝑁‖

𝐹

⇒ |tr (𝐴)| ‖𝐴𝑁‖
2

𝐹
≤ 𝑛‖𝐴‖

𝐹
‖𝐴𝑁‖

𝐹

⇒
‖𝐴𝑁‖

𝐹

𝑛
≤

‖𝐴‖
𝐹

|tr (𝐴)|

⇒
‖𝐴𝑁‖

2

𝐹

𝑛2
≤

‖𝐴‖
2

𝐹

[tr (𝐴)]2
⇒

tr (𝐴𝑁)

𝑛
≤

𝑛‖𝐴‖
2

𝐹

[tr (𝐴)]2
.

(36)

Remark 16. Lemma 15 has the following interpretation in
terms of the quality of the optimal approximate inverse𝑁 of
matrix 𝐴 in subspace 𝑆. The closer the ratio 𝑛‖𝐴‖

𝐹
/| tr(𝐴)|

is to zero, the smaller tr(𝐴𝑁) will be, and thus, due to (5),
the larger ‖𝐴𝑁 − 𝐼‖

𝐹
will be, and this happens for any matrix

subspace 𝑆.

Remark 17. By the way, from Lemma 15, we obtain the
following inequality for any nonsingular matrix 𝐴 ∈ R𝑛×𝑛.
Consider any matrix subspace 𝑆 s.t. 𝐴−1 ∈ 𝑆. Then,𝑁 = 𝐴

−1,
and using Lemma 15, we get

‖𝐴𝑁‖
2

𝐹

𝑛2
=
‖𝐼‖
2

𝐹

𝑛2
=
1

n
≤

‖𝐴‖
2

𝐹

[tr (𝐴)]2

⇒ |tr (𝐴)| ≤ √𝑛‖𝐴‖
𝐹
.

(37)

4. Spectral Properties

In this section, we present some new spectral properties
for matrix 𝐴𝑁, 𝑁 being the optimal approximate inverse
of matrix 𝐴, defined by (3). Mainly, we focus on the case
that matrix 𝐴𝑁 is symmetric and positive definite. This has
beenmotivated by the following reason.When solving a large
nonsymmetric linear system (1) by using Krylov methods,
a possible strategy consists of searching for an adequate
optimal preconditioner 𝑁 such that the preconditioned
matrix𝐴𝑁 is symmetric positive definite [5].This enables one
to use the conjugate gradientmethod (CG-method), which is,
in general, a computationally efficient method for solving the
new preconditioned system [2, 15].

Our starting point is Lemma 3, which has established that
the sets of eigenvalues and singular values of any orthogonal
projection 𝐴𝑁 satisfy

𝑛

∑

𝑖=1

𝜆
2

𝑖
≤

𝑛

∑

𝑖=1

𝜆𝑖


2

≤

𝑛

∑

𝑖=1

𝜎
2

𝑖

=

𝑛

∑

𝑖=1

𝜆
𝑖
≤

𝑛

∑

𝑖=1

𝜆𝑖
 ≤

𝑛

∑

𝑖=1

𝜎
𝑖
.

(38)

Let us particularize (38) for some special cases.
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First, note that if 𝐴𝑁 is normal (i.e., for all 1 ≤ 𝑖 ≤ 𝑛:
𝜎
𝑖
= |𝜆
𝑖
| [16]), then (38) becomes

𝑛

∑

𝑖=1

𝜆
2

𝑖
≤

𝑛

∑

𝑖=1

𝜆𝑖


2

=

𝑛

∑

𝑖=1

𝜎
2

𝑖

=

𝑛

∑

𝑖=1

𝜆
𝑖
≤

𝑛

∑

𝑖=1

𝜆𝑖
 =

𝑛

∑

𝑖=1

𝜎
𝑖
.

(39)

In particular, if 𝐴𝑁 is symmetric (𝜎
𝑖
= |𝜆
𝑖
| = ±𝜆

𝑖
∈ R), then

(38) becomes
𝑛

∑

𝑖=1

𝜆
2

𝑖
=

𝑛

∑

𝑖=1

𝜆𝑖


2

=

𝑛

∑

𝑖=1

𝜎
2

𝑖

=

𝑛

∑

𝑖=1

𝜆
𝑖
≤

𝑛

∑

𝑖=1

𝜆𝑖
 =

𝑛

∑

𝑖=1

𝜎
𝑖
.

(40)

In particular, if 𝐴𝑁 is symmetric and positive definite (𝜎
𝑖
=

|𝜆
𝑖
| = 𝜆
𝑖
∈ R+), then the equality holds in all (38), that is,

𝑛

∑

𝑖=1

𝜆
2

𝑖
=

𝑛

∑

𝑖=1

𝜆𝑖


2

=

𝑛

∑

𝑖=1

𝜎
2

𝑖

=

𝑛

∑

𝑖=1

𝜆
𝑖
=

𝑛

∑

𝑖=1

𝜆𝑖
 =

𝑛

∑

𝑖=1

𝜎
𝑖
.

(41)

The next lemma compares the traces of matrices 𝐴𝑁 and
(𝐴𝑁)
2.

Lemma 18. Let 𝐴 ∈ R𝑛×𝑛 be nonsingular and let 𝑆 be a linear
subspace of R𝑛×𝑛. Let 𝑁 be the solution to the problem (3).
Then,

(i) for any orthogonal projection 𝐴𝑁

tr ((𝐴𝑁)
2

) ≤ ‖𝐴𝑁‖
2

𝐹
= tr (𝐴𝑁) , (42)

(ii) for any symmetric orthogonal projection 𝐴𝑁

(𝐴𝑁)
2
𝐹

≤ tr ((𝐴𝑁)
2

) = ‖𝐴𝑁‖
2

𝐹
= tr (𝐴𝑁) , (43)

(iii) for any symmetric positive definite orthogonal projec-
tion 𝐴𝑁


(𝐴𝑁)
2
𝐹

≤ tr ((𝐴𝑁)
2

) = ‖𝐴𝑁‖
2

𝐹
= tr (𝐴𝑁) ≤ [tr (𝐴𝑁)]

2

.

(44)

Proof. (i) Using (38), we get
𝑛

∑

𝑖=1

𝜆
2

𝑖
≤

𝑛

∑

𝑖=1

𝜎
2

𝑖
=

𝑛

∑

𝑖=1

𝜆
𝑖
. (45)

(ii) It suffices to use the obvious fact that ‖(𝐴𝑁)
2

‖
𝐹

≤

‖𝐴𝑁‖
2

𝐹
and the following equalities taken from (40):

𝑛

∑

𝑖=1

𝜆
2

𝑖
=

𝑛

∑

𝑖=1

𝜎
2

𝑖
=

𝑛

∑

𝑖=1

𝜆
𝑖
. (46)

(iii) It suffices to use (43) and the fact that (see, e.g., [17,
18]) if 𝑃 and 𝑄 are symmetric positive definite matrices then
tr(𝑃𝑄) ≤ tr(𝑃) tr(𝑄) for 𝑃 = 𝑄 = 𝐴𝑁.

The rest of the paper is devoted to obtain new properties
about the eigenvalues of the orthogonal projection𝐴𝑁 for the
special case that this matrix is symmetric positive definite.

First, let us recall that the smallest singular value and the
smallest eigenvalue’s modulus of the orthogonal projection
𝐴𝑁 are never greater than 1 (see Lemma 4). The following
theorem establishes the dual result for the largest eigenvalue
of matrix 𝐴𝑁 (symmetric positive definite).

Theorem 19. Let 𝐴 ∈ R𝑛×𝑛 be nonsingular and let 𝑆 be a
linear subspace of R𝑛×𝑛. Let 𝑁 be the solution to the problem
(3). Suppose thatmatrix𝐴𝑁 is symmetric and positive definite.
Then, the largest eigenvalue of the orthogonal projection𝐴𝑁 of
the identity onto the subspace 𝐴𝑆 is never less than 1. That is,

𝜎
1
= 𝜆
1
≥ 1. (47)

Proof. Using (41), we get

𝑛

∑

𝑖=1

𝜆
2

𝑖
=

𝑛

∑

𝑖=1

𝜆
𝑖
⇒ 𝜆
2

𝑛
− 𝜆
𝑛
=

𝑛−1

∑

𝑖=1

(𝜆
𝑖
− 𝜆
2

𝑖
) . (48)

Now, since 𝜆
𝑛
≤ 1 (Lemma 4), then 𝜆2

𝑛
− 𝜆
𝑛
≤ 0. This implies

that at least one summand in the rightmost sum in (48) must
be less than or equal to zero. Suppose that such summand is
the 𝑘th one (1 ≤ 𝑘 ≤ 𝑛 − 1). Since 𝐴𝑁 is positive definite,
then 𝜆

𝑘
> 0, and thus

𝜆
𝑘
− 𝜆
2

𝑘
≤ 0 ⇒ 𝜆

𝑘
≤ 𝜆
2

𝑘
⇒ 𝜆

𝑘
≥ 1 ⇒ 𝜆

1
≥ 1 (49)

and the proof is concluded.

InTheorem 19, the assumption that matrix𝐴𝑁 is positive
definite is essential for assuring that |𝜆

1
| ≥ 1, as the following

simple counterexample shows. Moreover, from Lemma 4 and
Theorem 19, respectively, we have that the smallest and largest
eigenvalues of 𝐴𝑁 (symmetric positive definite) satisfy 𝜆

𝑛
≤

1 and 𝜆
1
≥ 1, respectively. Nothing can be asserted about

the remaining eigenvalues of the symmetric positive definite
matrix 𝐴𝑁, which can be greater than, equal to, or less than
the unity, as the same counterexample also shows.

Example 20. For 𝑛 = 3, let

𝐴
𝑘
= (

3 0 0

0 𝑘 0

0 0 1

) , 𝑘 ∈ R, (50)

let 𝐼
3
be identitymatrix of order 3, and let 𝑆 be the subspace of

all 3×3 scalarmatrices; that is, 𝑆 = span{𝐼
3
}.Then the solution

𝑁
𝑘
to the problem (3) for subspace 𝑆 can be immediately

obtained by using formula (6) as follows:

𝑁
𝑘
=
tr (𝐴
𝑘
)

𝐴𝑘


2

𝐹

𝐼
3
=

𝑘 + 4

𝑘2 + 10
𝐼
3 (51)

and then we get

𝐴
𝑘
𝑁
𝑘
=

𝑘 + 4

𝑘2 + 10
𝐴
𝑘
=

𝑘 + 4

𝑘2 + 10
(

3 0 0

0 𝑘 0

0 0 1

) . (52)
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Let us arrange the eigenvalues and singular values of
matrix 𝐴

𝑘
𝑁
𝑘
, as usual, in nonincreasing order (as shown in

(11)).
On one hand, for 𝑘 = −2, we have

𝐴
−2
𝑁
−2

=
1

7
(

3 0 0

0 −2 0

0 0 1

) , (53)

and then

𝜎
1
=
𝜆1

 =
3

7

≥ 𝜎
2
=
𝜆2

 =
2

7

≥ 𝜎
3
=
𝜆3

 =
1

7
.

(54)

Hence, 𝐴
−2
𝑁
−2

is indefinite and 𝜎
1
= |𝜆
1
| = 3/7 < 1.

On the other hand, for 1 < 𝑘 < 3, we have (see matrix
(52))

𝜎
1
= 𝜆
1
= 3

𝑘 + 4

𝑘2 + 10

≥ 𝜎
2
= 𝜆
2
= 𝑘

𝑘 + 4

𝑘2 + 10

≥ 𝜎
3
= 𝜆
3
=

𝑘 + 4

𝑘2 + 10
,

(55)

and then

𝑘 = 2: 𝜎
1
= 𝜆
1
=
9

7
> 1,

𝜎
2
= 𝜆
2
=
6

7
< 1,

𝜎
3
= 𝜆
3
=
3

7
< 1,

𝑘 =
5

2
: 𝜎
1
= 𝜆
1
=
6

5
> 1,

𝜎
2
= 𝜆
2
= 1,

𝜎
3
= 𝜆
3
=
2

5
< 1,

𝑘 =
8

3
: 𝜎
1
= 𝜆
1
=
90

77
> 1,

𝜎
2
= 𝜆
2
=
80

77
> 1,

𝜎
3
= 𝜆
3
=
30

77
< 1.

(56)

Hence, for 𝐴
𝑘
𝑁
𝑘
positive definite, we have (depending on 𝑘)

𝜆
2
< 1, 𝜆

2
= 1, or 𝜆

2
> 1.

The following corollary improves the lower bound zero
on both tr(𝐴𝑁), given in (4), and cos(𝐴𝑁, 𝐼), given in (17).

Corollary 21. Let 𝐴 ∈ R𝑛×𝑛 be nonsingular and let 𝑆

be a linear subspace of R𝑛×𝑛. Let 𝑁 be the solution to the

problem (3). Suppose thatmatrix𝐴𝑁 is symmetric and positive
definite. Then,

1 ≤ ‖𝐴𝑁‖
𝐹
≤ tr (𝐴𝑁) = ‖𝐴𝑁‖

2

𝐹
≤ 𝑛, (57)

cos (𝐴𝑁, 𝐼) ≥
1

√𝑛
. (58)

Proof. Denote by ‖ ⋅ ‖
2
the spectral norm. Using the well-

known inequality ‖ ⋅ ‖
2
≤ ‖ ⋅ ‖

𝐹
[19], Theorem 19, and (4), we

get

‖𝐴𝑁‖
𝐹
≥ ‖𝐴𝑁‖

2
= 𝜎
1
= 𝜆
1
≥ 1

⇒ 1 ≤ ‖𝐴𝑁‖
𝐹
≤ tr (𝐴𝑁) = ‖𝐴𝑁‖

2

𝐹
≤ 𝑛.

(59)

Finally, (58) follows immediately from (57) and (25).

Let usmention that an upper bound on all the eigenvalues
moduli and on all singular values of any orthogonal projec-
tion 𝐴𝑁 can be immediately obtained from (38) and (4) as
follows:

𝑛

∑

𝑖=1

𝜆𝑖


2

≤

𝑛

∑

𝑖=1

𝜎
2

𝑖
= ‖𝐴𝑁‖

2

𝐹
≤ 𝑛

⇒
𝜆𝑖

 , 𝜎
𝑖
≤ √𝑛, ∀𝑖 = 1, 2, . . . , 𝑛.

(60)

Our last theorem improves the upper bound given in
(60) for the special case that the orthogonal projection 𝐴𝑁

is symmetric positive definite.

Theorem 22. Let 𝐴 ∈ R𝑛×𝑛 be nonsingular and let 𝑆 be a
linear subspace of R𝑛×𝑛. Let 𝑁 be the solution to the problem
(3). Suppose thatmatrix𝐴𝑁 is symmetric and positive definite.
Then, all the eigenvalues of matrix 𝐴𝑁 satisfy

𝜎
𝑖
= 𝜆
𝑖
≤
1 + √𝑛

2
∀𝑖 = 1, 2, . . . , 𝑛. (61)

Proof. First, note that the assertion is obvious for the smallest
singular value since |𝜆

𝑛
| ≤ 1 for any orthogonal projection

𝐴𝑁 (Lemma 4). For any eigenvalue of 𝐴𝑁, we use the fact
that 𝑥 − 𝑥

2

≤ 1/4 for all 𝑥 > 0. Then from (41), we get
𝑛

∑

𝑖=1

𝜆
2

𝑖
=

𝑛

∑

𝑖=1

𝜆
𝑖

⇒ 𝜆
2

1
− 𝜆
1
=

𝑛

∑

𝑖=2

(𝜆
𝑖
− 𝜆
2

𝑖
) ≤

𝑛 − 1

4

⇒ 𝜆
1
≤
1 + √𝑛

2
⇒ 𝜆

𝑖
≤
1 + √𝑛

2

∀𝑖 = 1, 2, . . . , 𝑛.

(62)

5. Conclusion

In this paper, we have considered the orthogonal projection
𝐴𝑁 (in the Frobenius sense) of the identity matrix onto an
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arbitrary matrix subspace 𝐴𝑆 (𝐴 ∈ R𝑛×𝑛 nonsingular, 𝑆 ⊂

R𝑛×𝑛). Among other geometrical properties of matrix 𝐴𝑁,
we have established a strong relation between the quality
of the approximation 𝐴𝑁 ≈ 𝐼 and the cosine of the angle
∠(𝐴𝑁, 𝐼). Also, the distance between𝐴𝑁 and the identity has
been related to the ratio 𝑛‖𝐴‖

𝐹
/| tr(𝐴)| (which is independent

of the subspace 𝑆). The spectral analysis has provided lower
and upper bounds on the largest eigenvalue of the symmetric
positive definite orthogonal projections of the identity.
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