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A four-dimensional recurrent neural network with two delays is considered. The main result is given in terms of local stability and
Hopf bifurcation. Sufficient conditions for local stability of the zero equilibrium and existence of the Hopf bifurcation with respect
to both delays are obtained by analyzing the distribution of the roots of the associated characteristic equation. In particular, explicit
formulae for determining the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions are established
by using the normal form theory and center manifold theory. Some numerical examples are also presented to verify the theoretical
analysis.

1. Introduction

In recent years, neural networks have attractedmany scholars’
attention all over the world and have been applied in different
areas such as signal processing [1], pattern recognition [2–4],
optimization [5], and automatic control [6–8]. In particular,
the appearance of a cycle bifurcating from an equilibrium
of an ordinary or a delayed neural network with a single
parameter has been widely investigated [9–17]. In [18], Ruiz
et al. studied the following recurrent neural network for the
first time:
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where 𝑥(𝑡) ∈ 𝑅𝑛 is the state, 𝑤
𝑖
∈ 𝑅, 𝑖 = 1, . . . , 𝑛 − 1

are the network parameters or weights, 𝑢(𝑡) is the input,
𝑦(𝑡) is the output, and 𝑓(⋅) is the transfer function of

the neurons. The three-node network of system (1) in the
feedback configuration, with 𝑢(𝑡) = 𝑦(𝑡), has been studied
in [12, 18, 19]; that is
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It is well known that time delays can play a complicated
role on neural networks. They can be the source of instabil-
ities and bifurcation in neural networks. Based on this fact,
Hajihosseini et al. [11] considered system (2) with distributed
delays and 𝑓(⋅) = tanh(⋅). It is shown that a Hopf bifurcation
takes place in the delayed system as the mean delay passes a
critical value where a family of periodic solutions bifurcate
from the equilibrium. The existence and stability of such
solutions are determined by the Hopf bifurcation theorem in
the frequency domain and the generalized Nyquist stability
criterion.

As far as we know, there are some papers on the bifurca-
tions of neural network with two or multiple delays [20–22].
Motivated by the work in [11, 20–22] and considering that
when the number of neurons is large, the simplified model
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can reflect the really large neural networks more closely,
we consider the following four-dimensional recurrent neural
network with two discrete delays that occur in the interaction
between the neurons:
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where 𝜏
1
≥ 0, 𝜏

2
≥ 0 are time delays that occur in the

interaction between the neurons.
This paper is organized as follows. In Section 2, the

stability of the zero equilibrium of system (3) and the
existence of local Hopf bifurcation with respect to possible
combinations of the two delays are investigated. In Section 3,
the properties of the Hopf bifurcation such as the direction
and the stability are determined by using the normal form
theory and center manifold theory. Some numerical simula-
tions are also included in Section 4 to illustrate the validity of
the main results.

2. Stability of the Zero Equilibrium and
Local Hopf Bifurcation

Throughout this paper we make the following assumption on
the transfer function 𝑓(⋅):

(H) 𝑓 ∈ 𝐶4(𝑅), 𝑓(0) = 0, and 𝑓(0) ̸= 0.
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The characteristic equation of the linearized system (4) is

(𝜆 + 1)

4
+ 𝐴(𝜆 + 1)

2
𝑒

−𝜆(𝜏
1
+𝜏
2
)
+ 𝐵 (𝜆 + 1) 𝑒

−𝜆(2𝜏
1
+𝜏
2
)

+ 𝐶𝑒

−𝜆(3𝜏
1
+𝜏
2
)
= 0,

(5)

where

𝐴 = −𝑤

3
𝑓

2
(0) , 𝐵 = −𝑤

2
𝑓

3
(0) , 𝐶 = −𝑤

1
𝑓

4
(0) .

(6)

In order to study the local stability of the zero equilibrium
of system (3), we investigate the distribution of the roots of (5)
in the following.
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− 2𝐶𝑒

−2𝜆𝜏
1
]

−

𝜏

1

𝜆

.

(33)

Thus,

Re [ 𝑑𝜆
𝑑𝜏

1

]

−1

𝜏
1
=𝜏
10

=

𝑃

𝑅
𝑄

𝑅
+ 𝑃

𝐼
𝑄

𝐼

𝑄

2

𝑅
+ 𝑄

2

𝐼

, (34)

where

𝑃

𝑅
= (4 − 12𝜔

2

10
+ 𝐵) cos 𝜏

10
𝜔

10

− (3𝜔

10
− 𝜔

3

10
) sin 𝜏

10
𝜔

10
+ 2𝐴,

𝑃

𝐼
= (4 − 12𝜔

2

10
− 𝐵) sin 𝜏

10
𝜔

10

+ (3𝜔

10
− 𝜔

3

10
) cos 𝜏

10
𝜔

10
+ 2𝐴𝜔

10
,

𝑄

𝑅
= (4𝜔

4

10
+ 𝐵𝜔

2

10
− 4𝜔

2

10
) cos 𝜏

10
𝜔

10

− (𝐵𝜔

10
+ 𝜔

10
− 6𝜔

3

10
− 𝜔

5

10
) sin 𝜏

10
𝜔

10

− 2𝐶𝜔

10
sin 2𝜏

10
𝜔

10
,

𝑄

𝐼
= (4𝜔

4

10
− 𝐵𝜔

2

10
− 4𝜔

2

10
) sin 𝜏

10
𝜔

10

+ (𝜔

10
− 𝐵𝜔

10
− 6𝜔

3

10
− 𝜔

5

10
) cos 𝜏

10
𝜔

10

− 2𝐶𝜔

10
cos 2𝜏

10
𝜔

10
.

(35)

Obviously, if the condition (𝐻
22
): 𝑃
𝑅
𝑄

𝑅
+ 𝑃

𝐼
𝑄

𝐼
̸= 0 holds,

then Re[𝑑𝜆/𝑑𝜏
1
]

−1

𝜏
1
= 𝜏
10

̸= 0. Namely, if the condition (𝐻
22
)

holds, then the transversality condition is satisfied. By the
discussion above and the Hopf bifurcation theorem in [23],
it is easy to obtain the following results.

Theorem 1. If the condition (𝐻
21
) means that (25) has finite

positive roots and (𝐻
22
)means that𝑃

𝑅
𝑄

𝑅
+𝑃

𝐼
𝑄

𝐼
̸= 0 holds, then

the zero equilibrium 𝐸
0
of system (3) is asymptotically stable

for 𝜏
1
∈ [0, 𝜏

10
), system (3) undergoes a Hopf bifurcation at 𝐸

0

when 𝜏
1
= 𝜏

10
, and a branch of periodic solutions bifurcates

from the zero equilibrium near 𝜏
1
= 𝜏

10
.

Case 3 (𝜏
2
> 0, 𝜏

1
= 0). When 𝜏

1
= 0, (5) becomes the

following form:

(𝜆 + 1)

4
+ [𝐴𝜆

2
+ (2𝐴 + 𝐵) 𝜆 + 𝐴 + 𝐵 + 𝐶] 𝑒

−𝜆𝜏
2
= 0. (36)

Let 𝜆 = 𝑖𝜔
2
(𝜔

2
> 0) be a root of (36). Substituting it into (36)

and separating the real and imaginary parts, we obtain

(2𝐴 + 𝐵) 𝜔

2
sin 𝜏
2
𝜔

2
+ (𝐴 + 𝐵 + 𝐶 − 𝐴𝜔

2

2
) cos𝜔

2
𝜏

2

= 6𝜔

2

2
− 𝜔

4

2
− 1,

(2𝐴 + 𝐵) 𝜔

2
cos 𝜏
2
𝜔

2
− (𝐴 + 𝐵 + 𝐶 − 𝐴𝜔

2

2
) sin𝜔

2
𝜏

2

= 4𝜔

3

2
− 4𝜔

2
.

(37)

It follows that

𝜔

8

2
+ 𝑐

3
𝜔

6

2
+ 𝑐

2
𝜔

2

2
+ 𝑐

1
𝜔

2
+ 𝑐

0
= 0, (38)

where

𝑐

0
= 1 − (𝐴 + 𝐵 + 𝐶)

2
, 𝑐

2
= 6 − 𝐴

2
, 𝑐

3
= 4.

𝑐

1
= 2𝐴 (𝐴 + 𝐵 + 𝐶) − (2𝐴 + 𝐵)

2
+ 4.

(39)

Let 𝜔2
2
= 𝑧, then (38) can be transformed into

𝑧

4
+ 𝑐

3
𝑧

3
+ 𝑐

2
𝑧

2
+ 𝑐

1
𝑧 + 𝑐

0
= 0. (40)

Next, we make the following assumption.

(H
31
) means that (40) has at least one positive root.

Without loss of generality, we assume that (40) has four
positive roots, which are denoted by 𝑧

1
, 𝑧
2
, 𝑧
3
, and 𝑧

4
. Thus,

(38) has four positive roots 𝜔
2𝑘
=
√
𝑧

𝑘
, 𝑘 = 1, 2, 3, 4. The

corresponding critical value of time delay is

𝜏

(𝑗)

2𝑘
=

1

𝜔

2𝑘

arccos( (𝐴𝜔6
2𝑘
+ (𝐴 + 3𝐵 − 𝐶)𝜔

4

2𝑘

+ (2𝐵 + 6𝐶 − 𝐴)𝜔

2

2𝑘
− (𝐴 + 𝐵 + 𝐶))

× ((2𝐴 + 𝐵)

2
𝜔

2

2𝑘

+ (𝐴 + 𝐵 + 𝐶 − 𝐴𝜔

2

2𝑘
)

2

×(6𝜔

2

2𝑘
− 𝜔

4

2𝑘
− 1)

2

)

−1

) +

2𝑗𝜋

𝜔

2𝑘

,

𝑘 = 1, 2, 3, 4; 𝑗 = 0, 1, 2 . . . .

(41)

Then, ±𝑖𝜔
2𝑘

are a pair of purely imaginary roots of (36)
with 𝜏

2
= 𝜏

(𝑗)

2𝑘
. Let

𝜏

20
= min {𝜏(0)

2𝑘
} , 𝑘 = 1, 2, 3, 4, 𝜔

20
= 𝜔

2𝑘
0

. (42)

Taking the derivative of 𝜆 with respect to 𝜏
2
in (36), we can

get

[

𝑑𝜆

𝑑𝜏

2

]

−1

= −

4𝜆

3
+ 12𝜆

2
+ 12𝜆 + 4

𝜆 (𝜆

4
+ 4𝜆

3
+ 6𝜆

2
+ 4𝜆 + 1)

+

2𝐴𝜆 + 2𝐴 + 𝐵

𝜆 [𝐴𝜆

2
+ (2𝐴 + 𝐵) 𝜆 + 𝐴 + 𝐵 + 𝐶]

−

𝜏

2

𝜆

.

(43)
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Then, we can get

Re [ 𝑑𝜆
𝑑𝜏

2

]

−1

𝜏=𝜏
20

=

4𝜔

6

20
+ 12𝜔

4

20
+ 12𝜔

2

20
+ 4

𝜔

8

20
+ 4𝜔

6

20
+ 6𝜔

4

20
+ 4𝜔

2

20
+ 1

− (2𝐴

2
𝜔

2

20
+ (2𝐴 + 𝐵)

2
− 2𝐴 (𝐴 + 𝐵 + 𝐶))

× (𝐴

2
𝜔

4

20
+ [(2𝐴 + 𝐵)

2
− 2𝐴 (𝐴 + 𝐵 + 𝐶)]

× 𝜔

2

20
+ (𝐴 + 𝐵 + 𝐶)

2
)

−1

.

(44)

From (38), we have

𝜔

8

20
+ 4𝜔

6

20
+ 6𝜔

4

20
+ 4𝜔

2

20
+ 1

= 𝐴

2
𝜔

4

20
+ [(2𝐴 + 𝐵)

2
− 2𝐴 (𝐴 + 𝐵 + 𝐶)] 𝜔

2

20

+ (𝐴 + 𝐵 + 𝐶)

2
.

(45)

Thus,

Re [ 𝑑𝜆
𝑑𝜏

2

]

−1

𝜏=𝜏
20

=

𝑔


(𝑧

0
)

𝜔

8

20
+ 4𝜔

6

20
+ 6𝜔

4

20
+ 4𝜔

2

20
+ 1

, (46)

where

𝑔 (𝑧) = 𝑧

4
+ 𝑐

3
𝑧

3
+ 𝑐

2
𝑧

2
+ 𝑐

1
𝑧 + 𝑐

0
, 𝑧

0
= 𝜔

2

20
. (47)

Therefore, if the condition (𝐻

32
): 𝑔(𝑧

0
) ̸= 0, then

Re[𝑑𝜆/𝑑𝜏
2
]

−1

𝜏=𝜏
20

̸= 0. From the analysis above and by the
Hopf bifurcation theorem in [23], we have the following
results.

Theorem 2. If the condition (𝐻
31
)means that (40) has at least

one positive root and (𝐻
32
) means that 𝑔(𝑧

0
) ̸= 0 holds, then

the zero equilibrium 𝐸
0
of system (3) is asymptotically stable

for 𝜏
2
∈ [0, 𝜏

20
), system (3) undergoes a Hopf bifurcation at 𝐸

0

when 𝜏
2
= 𝜏

20
, and a branch of periodic solutions bifurcates

from the zero equilibrium near 𝜏
2
= 𝜏

20
.

Case 4 (𝜏
1
= 𝜏

2
= 𝜏 > 0). For 𝜏

1
= 𝜏

2
= 𝜏 > 0, (5) can be

transformed into the following form:

(𝜆 + 1)

4
+ 𝐴(𝜆 + 1)

2
𝑒

−2𝜆𝜏
+ 𝐵 (𝜆 + 1) 𝑒

−3𝜆𝜏
+ 𝐶𝑒

−4𝜆𝜏
= 0.

(48)

Multiplying 𝑒2𝜆𝜏 on both sides of (48), we obtain

𝐴(𝜆 + 1)

2
+ (𝜆 + 1)

4
𝑒

2𝜆𝜏
+ 𝐶𝑒

−2𝜆𝜏
+ 𝐵 (𝜆 + 1) 𝑒

−𝜆𝜏
= 0.

(49)

Let 𝜆 = 𝑖𝜔 be a root of (49); then we have

𝐴

11
cos 2𝜏

1
𝜔

1
− 𝐴

12
sin 2𝜏

1
𝜔

1
+ 𝐴

13
= 𝐴

14
,

𝐴

21
sin 2𝜏

1
𝜔

1
+ 𝐴

22
cos 2𝜏

1
𝜔

1
+ 𝐴

23
= 𝐴

24
,

(50)

where

𝐴

11
= 𝜔

4
− 6𝜔

2
+ 𝐶 + 1, 𝐴

12
= 4𝜔 − 𝜔

3
,

𝐴

13
= 𝐴 − 𝐴𝜔

2
, 𝐴

14
= 𝐵 cos 𝜏𝜔 − 𝐵𝜔 sin 𝜏𝜔,

𝐴

21
= 𝜔

4
− 6𝜔

2
− 𝐶 + 1, 𝐴

22
= 4𝜔 − 𝜔

3
,

𝐴

23
= 2𝐴𝜔, 𝐴

24
= 𝐵 cos 𝜏𝜔 + 𝐵𝜔 sin 𝜏𝜔.

(51)

Then, we get

(𝐴

11
cos 2𝜏

1
𝜔

1
− 𝐴

12
sin 2𝜏

1
𝜔

1
+ 𝐴

13
)

2

+ (𝐴

21
sin 2𝜏

1
𝜔

1
+ 𝐴

22
cos 2𝜏

1
𝜔

1
+ 𝐴

23
)

2

= 𝐵

2
(1 + 𝜔

2
) .

(52)

Similar as in Case 2, we can obtain the expression of
cos 2𝜏𝜔 and sin 2𝜏𝜔, which is denoted as 𝑔

1
(𝜔) and 𝑔

2
(𝜔),

respectively. Further we can get a function with respect to 𝜔

𝑔

2

1
(𝜔) + 𝑔

2

2
(𝜔) = 1. (53)

Next, wemake the following assumption. (𝐻
41
): Equation

(53) has finite positive real roots, which are denoted by
𝜔

1
, . . . , 𝜔

𝑘
, respectively. For every fixed positive root of (53),

the corresponding critical value of time delay is

𝜏

(𝑗)

𝑖
=

1

2𝜔

𝑖

arccos𝑔
1
(𝜔

𝑖
) +

2𝑗𝜋

2𝜔

𝑖

,

𝑖 = 1, . . . , 𝑘; 𝑗 = 0, 1, 2, . . . .

(54)

Then, ±𝑖𝜔
𝑖
are a pair of purely imaginary roots of (49) with

𝜏 = 𝜏

(𝑗)

𝑖
. Let

𝜏

0
= min {𝜏(𝑗)

𝑖
} , 𝜔

0
= 𝜔

𝑖
0

,

𝑖 = 1, 2, . . . , 𝑘, 𝑗 = 0, 1, 2, . . . .

(55)

Differentiating both sides of (49) with respect to 𝑡, we can
obtain

[

𝑑𝜆

𝑑𝜏

]

−1

=

2𝐴 (𝜆 + 1) + 4(𝜆 + 1)

3
𝑒

2𝜆𝜏
+ 𝐵𝑒

−𝜆𝜏

𝐵𝜆 (𝜆 + 1) 𝑒

−𝜆𝜏
+ 2𝐶𝜆𝑒

−2𝜆𝜏
− 2𝜆(𝜆 + 1)

4
𝑒

2𝜆𝜏
−

𝜏

𝜆

.

(56)

Thus,

Re [ 𝑑𝜆
𝑑𝜏

2

]

−1

𝜏=𝜏
0

=

𝑃



𝑅
𝑄



𝑅
+ 𝑃



𝐼
𝑄



𝐼

𝑄

2

𝑅
+ 𝑄

2

𝐼

, (57)
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where

𝑃



𝑅
= (1 − 3𝜔

2

0
) cos 2𝜏

0
𝜔

0
− (3𝜔

0
− 𝜔

3

0
) sin 2𝜏

0
𝜔

0

+ 𝐵 cos 𝜏
0
𝜔

0
+ 2𝐴,

𝑃



𝐼
= (1 − 3𝜔

2

0
) sin 2𝜏

0
𝜔

0
+ (3𝜔

0
− 𝜔

3

0
) cos 2𝜏

0
𝜔

0

− 𝐵 cos 𝜏
0
𝜔

0
+ 2𝐴𝜔

0
,

𝑄



𝑅
= 𝐵𝜔

0
sin 𝜏
0
𝜔

0
− 𝐵𝜔

2

0
cos 𝜏
0
𝜔

0

+ (𝜔

5

0
+ (1 + 2𝐶) 𝜔

0
− 6𝜔

6

0
) sin 2𝜏

0
𝜔

0

− 8 (𝜔

4

0
− 𝜔

2

0
) cos 2𝜏

0
𝜔

0
,

𝑄



𝐼
= 𝐵𝜔

0
cos 𝜏
0
𝜔

0
+ 𝐵𝜔

2

0
sin 𝜏
0
𝜔

0

− (𝜔

5

0
+ (1 + 2𝐶) 𝜔

0
− 6𝜔

6

0
) cos 2𝜏

0
𝜔

0

− 8 (𝜔

4

0
− 𝜔

2

0
) sin 2𝜏

0
𝜔

0
.

(58)

Obviously, if the condition (𝐻
42
): 𝑃
𝑅
𝑄



𝑅
+ 𝑃



𝐼
𝑄



𝐼
̸= 0 holds,

then Re[𝑑𝜆/𝑑𝜏
2
]

−1

𝜏=𝜏
0

̸= 0. Namely, if the condition (𝐻
42
)

holds, the transversality condition is satisfied. Thus, by the
Hopf bifurcation theorem in [23] we have the following
results.

Theorem 3. If the condition (𝐻
41
) means that (53) has finite

positive real roots and (𝐻
42
)means that𝑃

𝑅
𝑄



𝑅
+𝑃



𝐼
𝑄



𝐼
̸= 0 holds,

then the zero equilibrium 𝐸
0
of system (3) is asymptotically

stable for 𝜏 ∈ [0, 𝜏
0
), system (3) undergoes a Hopf bifurcation

at𝐸
0
when 𝜏 = 𝜏

0
, and a branch of periodic solutions bifurcates

from the zero equilibrium near 𝜏 = 𝜏
0
.

Case 5 (𝜏
1
> 0 and 𝜏

2
> 0). We consider (5) with 𝜏

1
in its

stable interval and 𝜏
2
is considered as a parameter. Without

loss of generality, we consider (5) under Case 2.

Let 𝜆 = 𝑖𝜔
2∗
(𝜔

2∗
> 0) be a root of (5). Then, we can get

𝜔

8
+ 4𝜔

6
+ 6𝜔

4
+ 4𝜔

2
+ 1 + 2𝐵 (𝐴𝜔

3
+ 𝐶𝜔) sin 𝜏

1
𝜔

− 2𝐵 (𝐴 + 𝐶) cos 𝜏
1
𝜔 + 2𝐴𝐶 (𝜔

2
− 1) cos 2𝜏

1
𝜔

+ 2𝐴𝐶𝜔 sin 2𝜏
1
𝜔 = 0.

(59)

Suppose that (𝐻
51
) means that (59) has finite positive real

roots, which are denoted as 𝜔
21∗
, 𝜔

22∗
, . . . , 𝜔

2𝑘∗
. For every

positive real root 𝜔
2𝑖∗
(𝑖 = 1, 2, . . . , 𝑘), their exists a sequence

{𝜏

(𝑗)

2𝑖∗
| 𝑗 = 0, 1, 2, . . .}, such that (59) has a pair of purely

imaginary roots ±𝑖𝜔
2𝑖∗

when 𝜏
2
= 𝜏

(𝑗)

2𝑖∗
.

Let 𝜏∗
2
= min{𝜏(𝑗)

2𝑖∗
| 𝑗 = 0, 1, 2, . . .}, and when 𝜏

2
= 𝜏

∗

2
(59)

has a pair of purely imaginary roots ±𝑖𝜔∗
2
. In the following,

we make the following assumption.

(H
52
) : Re [𝑑𝜆/𝑑𝜏

2
]

−1

𝜏
2
=𝜏
∗

2

̸= 0.

Through the analysis above and by the Hopf bifurcation
theorem in [23], we have the following results.

Theorem 4. If the condition (𝐻
51
) means that (59) has finite

positive real roots and (𝐻
52
) means that Re[𝑑𝜆/𝑑𝜏

2
]

−1

𝜏
2
=𝜏
∗

2

̸= 0

holds, and 𝜏
1
∈ (0, 𝜏

10
), then the zero equilibrium 𝐸

0
of

system (3) is asymptotically stable for 𝜏
2
∈ [0, 𝜏

∗

2
), system (3)

undergoes aHopf bifurcation at𝐸
0
when 𝜏

2
= 𝜏

∗

2
, and a branch

of periodic solutions bifurcates from the zero equilibrium near
𝜏

2
= 𝜏

∗

2
.

3. Stability of Bifurcated Periodic Solutions

In this section, the formulae for determining the direction
of Hopf bifurcation and the stability of bifurcating periodic
solutions of system (3) with respect to 𝜏

2
for 𝜏
1
∈ (0, 𝜏

10
) are

derived by using the normal form method and center man-
ifold theorem introduced by Hassard et al. [23]. Throughout
this section, it is considered that system (3) undergoes Hopf
bifurcation at 𝜏

2
= 𝜏

∗

2
and 𝜏

1
∈ (0, 𝜏

10
). Without loss of

generality, we assume that 𝜏∗
1
< 𝜏

∗

2
, where 𝜏∗

1
∈ (0, 𝜏

10
).

For convenience, let 𝑡 = 𝑠𝜏
2
, 𝑢

𝑖
(𝑡) = 𝑢

𝑖
(𝜏

2
𝑡), (𝑖 =

1, 2, 3, 4). Drop the bars for simplification of notations. Then
system (3) becomes

�̇� (𝑡) = 𝐿

𝜇
𝑢

𝑡
+ 𝐹 (𝜇, 𝑢

𝑡
) , (60)

where 𝑢(𝑡) = (𝑢
1
(𝑡), 𝑢

2
(𝑡), 𝑢

3
(𝑡), 𝑢

4
(𝑡))

𝑇
∈ 𝐶 = 𝐶([−1, 0], 𝑅

4
)

and 𝐿
𝜇
: 𝐶 → 𝑅

4, 𝐹 : 𝑅×𝐶 → 𝑅4 are given, respectively, by

𝐿

𝜇
𝜙 = (𝜏

∗

2
+ 𝜇) (𝐴


𝜙 (0) + 𝐵


𝜙(−

𝜏

∗

1

𝜏

∗

2

) + 𝐶


𝜙 (−1)) ,

𝐹 (𝜇, 𝜙) = (𝜏

∗

2
+ 𝜇) (𝐹

1
, 𝐹

2
, 𝐹

3
, 𝐹

4
)

𝑇

,

(61)

with

𝜙 (𝜃) = (𝜙

1
(𝜃) , 𝜙

2
(𝜃) , 𝜙

3
(𝜃) , 𝜙

4
(𝜃))

𝑇

∈ 𝐶 ([−1, 0] , 𝑅

4
) ,

𝐴


= (

−1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

) ,

𝐵


= (

0 𝑓


(0) 0 0

0 0 𝑓


(0) 0

0 0 0 𝑓


(0)

0 0 0 0

) ,

𝐶


= (

0 0 0 0

0 0 0 0

0 0 0 0

𝑤

1
𝑓


(0) 𝑤

2
𝑓


(0) 𝑤

3
𝑓


(0) 0

) ,

𝐹

1
=

𝑓



2!

𝜙

2

2
(−

𝜏

∗

1

𝜏

∗

2

) +

𝑓



3!

𝜙

3

2
(−

𝜏

∗

1

𝜏

∗

2

) + ⋅ ⋅ ⋅ ,
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𝐹

2
=

𝑓



2!

𝜙

2

3
(−

𝜏

∗

1

𝜏

∗

2

) +

𝑓



3!

𝜙

3

3
(−

𝜏

∗

1

𝜏

∗

2

) + ⋅ ⋅ ⋅ ,

𝐹

3
=

𝑓



2!

𝜙

2

4
(−

𝜏

∗

1

𝜏

∗

2

) +

𝑓



3!

𝜙

3

4
(−

𝜏

∗

1

𝜏

∗

2

) + ⋅ ⋅ ⋅ ,

𝐹

4
=

𝑤

1
𝑓


(0)

2!

𝜙

2

1
(−1) +

𝑤

1
𝑓


(0)

3!

𝜙

3

1
(−1)

+

𝑤

2
𝑓


(0)

2!

𝜙

2

2
(−1) +

𝑤

2
𝑓


(0)

3!

𝜙

3

2
(−1)

+

𝑤

3
𝑓


(0)

2!

𝜙

2

1
(−1) +

𝑤

3
𝑓


(0)

3!

𝜙

3

3
(−1) + ⋅ ⋅ ⋅ .

(62)

Therefore, according to the Riesz representation theorem,
there exists a 4 × 4 matrix function 𝜂(𝜃, 𝜇) : [−1, 0] → 𝑅4
whose elements are of bounded variation such that

𝐿

𝜇
𝜙 = ∫

0

−1

𝑑𝜂 (𝜃, 𝜇) 𝜙 (𝜃) , 𝜙 ∈ 𝐶 ([−1, 0] , 𝑅

4
) .

(63)

In fact, we choose

𝜂 (𝜃, 𝜇)

=

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

(𝜏

∗

2
+ 𝜇) (𝐴


+ 𝐵


+ 𝐶


) , 𝜃 = 0,

(𝜏

∗

2
+ 𝜇) (𝐵


+ 𝐶


) , 𝜃 ∈ [−

𝜏

∗

1

𝜏

∗

2

, 0) ,

(𝜏

∗

2
+ 𝜇)𝐶


, 𝜃 ∈ (−1, −

𝜏

∗

1

𝜏

∗

2

) ,

0, 𝜃 = −1.

(64)

For 𝜙 ∈ 𝐶([−1, 0], 𝑅4), we define

𝐴 (𝜇) 𝜙 =

{

{

{

{

{

{

{

{

{

𝑑𝜙 (𝜃)

𝑑𝜃

, −1 ≤ 𝜃 < 0,

∫

0

−1

𝑑𝜂 (𝜃, 𝜇) 𝜙 (𝜃) , 𝜃 = 0,

𝑅 (𝜇) 𝜙 = {

0, −1 ≤ 𝜃 < 0,

𝐹 (𝜇, 𝜙) , 𝜃 = 0.

(65)

Then system (60) can be transformed into the following
operator equation:

�̇� (𝑡) = 𝐴 (𝜇) 𝑢

𝑡
+ 𝑅 (𝜇) 𝑢

𝑡
, (66)

where 𝑢
𝑡
= 𝑢(𝑡 + 𝜃) for 𝜃 ∈ [−1, 0].

For 𝜑 ∈ 𝐶


([0, 1], (𝑅

4
)

∗
), where (𝑅4)∗ is the 4-

dimensional space of row vector, we define the adjoint
operator 𝐴∗ of 𝐴:

𝐴

∗
(𝜑) =

{

{

{

{

{

{

{

−

𝑑𝜑 (𝑠)

𝑑𝑠

, 0 < 𝑠 ≤ 1,

∫

0

−1

𝑑𝜂

𝑇
(𝑠, 0) 𝜑 (−𝑠) , 𝑠 = 0,

(67)

and a bilinear inner product

⟨𝜑 (𝑠) , 𝜙 (𝜃)⟩

= 𝜑 (0) 𝜙 (0) − ∫

0

𝜃=−1

∫

𝜃

𝜉=0

𝜑 (𝜉 − 𝜃) 𝑑𝜂 (𝜃) 𝜙 (𝜉) 𝑑𝜉,

(68)

where 𝜂(𝜃) = 𝜂(𝜃, 0).
Then 𝐴(0) and 𝐴∗(0) are adjoint operators. From

the discussion above, we know that ±𝑖𝜔∗
2
𝜏

∗

2
are eigenval-

ues of 𝐴(0) and they are also eigenvalues of 𝐴∗(0). Let
𝑞(𝜃) = (1, 𝑞

2
, 𝑞

3
, 𝑞

4
)

𝑇
𝑒

𝑖𝜔
∗

2
𝜏
∗

2
𝜃 be the eigenvector of 𝐴(0)

corresponding to the eigenvalue +𝑖𝜔∗
2
𝜏

∗

2
, and let 𝑞∗(𝑠) =

𝐷(1, 𝑞

∗

2
, 𝑞

∗

3
, 𝑞

∗

4
)𝑒

𝑖𝜔
∗

2
𝜏
∗

2
𝑠 be the eigenvector of 𝐴∗(0) corre-

sponding to the eigenvalue −𝑖𝜔∗
2
𝜏

∗

2
. Then, we have

𝐴 (0) 𝑞 (𝜃) = 𝑖𝜔

∗

2
𝜏

∗

2
𝑞 (𝜃) , 𝐴

∗
(0) 𝑞

∗
(0) = −𝑖𝜔

∗

2
𝜏

∗

2
𝑞

∗
(𝜃) .

(69)

By a simple computation, we can obtain

𝑞

2
=

𝑖𝜔

∗

2
+ 1

𝑓


(0) 𝑒

−𝑖𝜔
∗

2
𝜏
∗

1

, 𝑞

3
=

𝑞

2

𝑓


(0) 𝑒

−𝑖𝜔
∗

2
𝜏
∗

1
− 𝑖𝜔

∗

2

,

𝑞

4
=

𝑓


(0) (𝑤

1
+ 𝑤

2
𝑞

2
+ 𝑤

3
𝑞

3
)

(𝑖𝜔

∗

2
+ 1) 𝑒

𝑖𝜔
∗

2
𝜏
∗

2

,

𝑞

∗

4
=

1 − 𝑖𝜔

∗

2

𝑤

1
𝑓


(0) 𝑒

𝑖𝜔
∗

2
𝜏
∗

2

, 𝑞

∗

2
=

𝑒

𝑖𝜔
∗

2
𝜏
∗

1
+ 𝑤

2
𝑞

∗

4
𝑒

𝑖𝜔
∗

2
𝜏
∗

2

1 − 𝑖𝜔

∗

2

𝑓


(0) ,

𝑞

∗

3
=

𝑞

∗

2
𝑒

𝑖𝜔
∗

2
𝜏
∗

1
+ 𝑤

3
𝑞

∗

4
𝑒

𝑖𝜔
∗

2
𝜏
∗

2

1 − 𝑖𝜔

∗

2

𝑓


(0)

(70)

and ⟨𝑞∗, 𝑞⟩ = 1, ⟨𝑞∗, 𝑞⟩ = 0.
From (68), we can get

𝐷 = [1 + 𝑞

2
𝑞

∗

2
+ 𝑞

3
𝑞

∗

3
+ 𝑞

4
𝑞

∗

4

+ 𝜏

∗

1
𝑓


(0) (𝑞

2
+ 𝑞

∗

2
𝑞

3
+ 𝑞

∗

3
𝑞

4
) 𝑒

−𝑖𝜔
∗

2
𝜏
∗

1

+ 𝜏

∗

2
𝑓


(0) 𝑞

∗

4
(𝑤

1
+ 𝑤

2
𝑞

2
+ 𝑤

3
𝑞

3
) 𝑒

−𝑖𝜔
∗

2
𝜏
∗

2
]

−1

.

(71)

Following the algorithms given in [23] and using similar
computation process in [24], we can get the coefficients which
can be used to determine direction of the Hopf bifurcation
and stability of the bifurcating periodic solutions:

𝑔

20
= 𝑓


(0)𝐷 [𝑒

−2𝑖𝜔
∗

2
𝜏
∗

1
(𝑞

2

2
+ 𝑞

∗

2
𝑞

2

3
+ 𝑞

∗

3
𝑞

2

4
)

+𝑞

∗

4
𝑒

−2𝑖𝜔
∗

2
𝜏
∗

2
(𝑤

1
+ 𝑤

2
𝑞

2

2
+ 𝑤

3
𝑞

2

3
)] ,

𝑔

11
= 𝑓


(0)𝐷 [𝑞

2
𝑞

2
+ 𝑞

∗

2
𝑞

3
𝑞

3
+ 𝑞

∗

3
𝑞

4
𝑞

4

+𝑞

∗

4
(𝑤

1
+ 𝑤

2
𝑞

2
𝑞

2
+ 𝑤

3
𝑞

3
𝑞

3
)] ,
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𝑔

02
= 𝑓


(0)𝐷 [𝑒

2𝑖𝜔
∗

2
𝜏
∗

1
(𝑞

2

2
+ 𝑞

∗

2
𝑞

2

3
+ 𝑞

∗

3
𝑞

2

4
)

+𝑞

∗

4
𝑒

2𝑖𝜔
∗

2
𝜏
∗

2
(𝑤

1
+ 𝑤

2
𝑞

2

2
+ 𝑤

3
𝑞

2

3
)] ,

𝑔

21
= 𝐷[𝑓


(0) (2𝑊

(2)

11
(−

𝜏

∗

1

𝜏

∗

2

) 𝑞

2
𝑒

−𝑖𝜔
∗

2
𝜏
∗

1

+𝑊

(2)

20
(−

𝜏

∗

1

𝜏

∗

2

) 𝑞

2
𝑒

𝑖𝜔
∗

2
𝜏
∗

1
)

+ 𝑓


(0) 𝑞

2

2
𝑞

2
𝑒

−𝑖𝜔
∗

2
𝜏
∗

1

+ 𝑞

∗

2
(𝑓


(0) (2𝑊

(3)

11
(−

𝜏

∗

1

𝜏

∗

2

) 𝑞

3
𝑒

−𝑖𝜔
∗

2
𝜏
∗

1

+𝑊

(3)

20
(−

𝜏

∗

1

𝜏

∗

2

) 𝑞

3
𝑒

𝑖𝜔
∗

2
𝜏
∗

1
)

+𝑓


(0) 𝑞

2

3
𝑞

3
𝑒

−𝑖𝜔
∗

2
𝜏
∗

1
)

+ 𝑞

∗

3
(𝑓


(0) (2𝑊

(4)

11
(−

𝜏

∗

1

𝜏

∗

2

) 𝑞

2
𝑒

−𝑖𝜔
∗

2
𝜏
∗

1

+𝑊

(4)

20
(−

𝜏

∗

1

𝜏

∗

2

) 𝑞

2
𝑒

𝑖𝜔
∗

2
𝜏
∗

1
)

+𝑓


(0) 𝑞

2

4
𝑞

4
𝑒

−𝑖𝜔
∗

2
𝜏
∗

1
)

+ 𝑞

∗

4
(𝑤

1
𝑓


(0) (2𝑊

(1)

11
(−1) 𝑒

−𝑖𝜔
∗

2
𝜏
∗

2

+𝑊

(1)

20
(−1) 𝑒

𝑖𝜔
∗

2
𝜏
∗

2
)

+ 𝑤

1
𝑓


(0) 𝑒

−𝑖𝜔
∗

2
𝜏
∗

2

+ 𝑤

2
𝑓


(0) (2𝑊

(2)

11
(−1) 𝑞

2
𝑒

−𝑖𝜔
∗

2
𝜏
∗

2

+𝑊

(2)

20
(−1) 𝑞

2
𝑒

𝑖𝜔
∗

2
𝜏
∗

2
)

+ 𝑤

2
𝑓


(0) 𝑞

2

2
𝑞

2
𝑒

−𝑖𝜔
∗

2
𝜏
∗

2

+ 𝑤

3
𝑓


(0) (2𝑊

(3)

11
(−1) 𝑞

3
𝑒

−𝑖𝜔
∗

2
𝜏
∗

2

+𝑊

(3)

20
(−1) 𝑞

3
𝑒

𝑖𝜔
∗

2
𝜏
∗

2
)

+𝑤

3
𝑓


(0) 𝑞

2

3
𝑞

3
𝑒

−𝑖𝜔
∗

2
𝜏
∗

2
)] ,

(72)

with

𝑊

20
(𝜃) =

𝑖𝑔

20
𝑞 (0)

𝜔

∗

2
𝜏

∗

2

𝑒

𝑖𝜔
∗

2
𝜏
∗

2
𝜃
+

𝑖𝑔

02
𝑞 (0)

3𝜔

∗

2
𝜏

∗

2

𝑒

−𝑖𝜔
∗

2
𝜏
∗

2
𝜃
+ 𝐸

1
𝑒

2𝑖𝜔
∗

2
𝜏
∗

2
𝜃
,

𝑊

11
(𝜃) = −

𝑖𝑔

11
𝑞 (0)

𝜔

∗

2
𝜏

∗

2

𝑒

𝑖𝜔
∗

2
𝜏
∗

2
𝜃
+

𝑖𝑔

11
𝑞 (0)

𝜔

∗

2
𝜏

∗

2

𝑒

−𝑖𝜔
∗

2
𝜏
∗

2
𝜃
+ 𝐸

2
,

(73)

where𝐸
1
and𝐸

2
can be computed by the following equations,

respectively:

(

2𝑖𝜔

∗

2
+ 1 𝛼

12
0 0

0 2𝑖𝜔

∗

2
+ 1 𝛼

23
0

0 0 2𝑖𝜔

∗

2
+ 1 𝛼

34

𝛼

41
𝛼

42
𝛼

43
2𝑖𝜔

∗

2
+ 1

)𝐸

1

=

(

(

(

(

𝐸

(1)

1

𝐸

(2)

1

𝐸

(3)

1

𝐸

(4)

1

)

)

)

)

,

(

1 −𝑓


(0) 0 0

0 1 −𝑓


(0) 0

0 0 1 −𝑓


(0)

−𝑤

1
𝑓


(0) −𝑤

2
𝑓


(0) −𝑤

3
𝑓


(0) 1

)𝐸

2

= −

(

(

(

(

𝐸

(1)

2

𝐸

(2)

2

𝐸

(3)

2

𝐸

(4)

2

)

)

)

)

,

(74)

with
𝛼

12
= 𝛼

23
= 𝛼

34
= −𝑓


(0) 𝑒

−2𝑖𝜔
∗

2
𝜏
∗

1
,

𝛼

41
= − 𝑤

1
𝑓


(0) 𝑒

−2𝑖𝜔
∗

2
𝜏
∗

2
,

𝛼

42
= − 𝑤

2
𝑓


(0) 𝑒

−2𝑖𝜔
∗

2
𝜏
∗

2
,

𝛼

43
= − 𝑤

3
𝑓


(0) 𝑒

−2𝑖𝜔
∗

2
𝜏
∗

2
.

𝐸

(1)

1
= 𝑓


(0) 𝑞

2

2
𝑒

−2𝑖𝜔
∗

2
𝜏
∗

1
,

𝐸

(2)

1
= 𝑓


(0) 𝑞

2

3
𝑒

−2𝑖𝜔
∗

2
𝜏
∗

1
,

𝐸

(3)

1
= 𝑓


(0) 𝑞

2

4
𝑒

−2𝑖𝜔
∗

2
𝜏
∗

1
,

𝐸

(4)

1
= 𝑓


(0) (𝑤

1
+ 𝑤

2
𝑞

2

2
+ 𝑤

3
𝑞

2

3
) 𝑒

−2𝑖𝜔
∗

2
𝜏
∗

2
,

𝐸

(1)

2
= 𝑓


(0) 𝑞

2
𝑞

2
,

𝐸

(2)

2
= 𝑓


(0) 𝑞

3
𝑞

3
,

𝐸

(3)

2
= 𝑓


(0) 𝑞

4
𝑞

4
,
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Therefore, we can calculate the following values:
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(76)

Based on the discussion above, we can obtain the follow-
ing results.
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Theorem 5. For system (3),

(i) 𝜇
2
determines the direction of the Hopf bifurcation.

If 𝜇
2
> 0 (𝜇

2
< 0); then the Hopf bifurcation is

supercritical (subcritical);

(ii) 𝛽
2
determines the stability of the bifurcating periodic

solutions. If 𝛽
2
< 0 (𝛽

2
> 0); then the bifurcating

periodic solutions are stable (unstable);

(iii) 𝑇
2
determines the period of the bifurcating periodic

solutions. If 𝑇
2
> 0 (𝑇

2
< 0); then the period of the

bifurcating periodic solutions increases (decreases).



10 Journal of Applied Mathematics

0.5
0

−0.5

x
1
(
t
)

0 500 1000 1500

(a)

0.5
0

−0.5

x
2
(
t
)

0 500 1000 1500

(b)

0.5
0

−0.5

x
3
(
t
)

0 500 1000 1500

(c)

0.5
0

−0.5

x
4
(
t
)

0 500 1000 1500
Time t

(d)

Figure 5: The trajectory of 𝑥
1
, 𝑥
2
, 𝑥
3
, and 𝑥

4
when 𝜏

2
= 2.75 <

3.1610 = 𝜏

20
.

0.4

0.2

0

−0.2

−0.4

x
3
(
t
)

x
2 (t)

x1
(t)

0.2
0.1 0 0

−0.4

−0.2

−0.3
−0.2

−0.1

Figure 6:Thephase plot of𝑥
1
,𝑥
2
, and𝑥

3
when 𝜏

2
= 2.75 < 3.1610 =

𝜏

20
.

4. Numerical Simulation

In this section, we present some numerical simulations to
support the theoretical analysis in Sections 2 and 3. As an
example, we consider the following special case of system
(3) with the parameters 𝑤

1
= 1, 𝑤

2
= −1, 𝑤

3
= −1, and

𝑓(𝑥) = tanh(𝑥). Then 𝑓(0) = 0, 𝑓(0) = 1, and system (3)
becomes
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(77)

Obviously, 𝐸
0
(0, 0, 0, 0) is the equilibrium of system (77).

By a simple computation, we get𝐷
2
= 21 > 0, 𝐷

3
= 131 > 0,

and𝐷
4
= 131 > 0. That is, the condition (𝐻

1
) holds.

For 𝜏
1
> 0, 𝜏

2
= 0. We can obtain 𝜔

10
= 1.7216, 𝜏

10
=

1.4022 by some complicated computations. FromTheorem 1,
we know that 𝐸

0
(0, 0, 0, 0) is asymptotically stable when 𝜏

1
<

𝜏

10
as illustrated by Figures 1 and 2. When 𝜏

1
passes through,

the critical value 𝜏
10
, 𝐸
0
(0, 0, 0, 0) becomes unstable and a
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Hopf bifurcation occurs and a branch of periodic solutions
bifurcate from 𝐸

0
(0, 0, 0, 0), which can be seen from Figures

3 and 4. Similarly, we have 𝜔
20
= 0.5194, 𝜏

20
= 3.1610 for

𝜏

1
= 0, 𝜏

2
> 0. The corresponding waveforms and the phase

plots are shown in Figures 5, 6, 7, and 8.
For 𝜏
1
= 𝜏

2
= 𝜏 > 0, we obtain 𝜔

0
= 2.0967, 𝜏

0
= 0.7915.

From Theorem 3, when 𝜏 increases from zero to the critical
value 𝜏

0
, 𝐸
0
(0, 0, 0, 0) is asymptotically stable, then it will lose

its stability and a Hopf bifurcation occurs once 𝜏 > 𝜏
0
. These

properties can be shown in Figures 9, 10, 11, and 12.
Lastly, for 𝜏

2
> 0 and 𝜏∗

1
= 0.35 ∈ (0, 𝜏
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), we get
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unstable when 𝜏
2
> 𝜏

∗

2
and a Hopf bifurcation occurs, which

can be illustrated by Figures 13, 14, 15, and 16.

5. Conclusion

In this paper, we have investigated a four-dimensional recur-
rent neural network with two discrete delays. Compared with
the literature [11], we consider the neural network model
which can reflect the really large neural networks more
closely. By regarding the possible combinations of the two
delays as the bifurcation parameter, sufficient conditions for
the local stability of the zero equilibrium and the existence of
Hopf bifurcation are obtained. If the conditions are satisfied,
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then there exists a critical value of the time delay belowwhich
the system is stable and above which the system is unstable.
The results have shown that the two delays can play a compli-
cated role on themodel. And from the numerical simulations,
we find that 𝜏

1
is marked in the model because the critical

value of 𝜏
1
is much smaller than that of 𝜏

2
when we only

consider them, respectively. Furthermore, the direction of the
Hopf bifurcation and the stability of the bifurcating periodic
solutions are discussed by the normal form theory and center
manifold theory. Finally, some numerical simulations are also
presented to support the theoretical analysis.
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