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As a complementary technique of the BDD-based approach, boundedmodel checking (BMC) has been successfully applied to LTL
symbolic model checking. However, the expressiveness of LTL is rather limited, and some important properties cannot be captured
by such logic. In this paper, we present a semantic BMC encoding approach to deal with the mixture of ETL𝑓 and ETL𝑙. Since such
kind of temporal logic involves both finite and looping automata as connectives, all regular properties can be succinctly specified
with it. The presented algorithm is integrated into the model checker ENuSMV, and the approach is evaluated via conducting a
series of imperial experiments.

1. Introduction

A crucial bottleneck of model checking is the state-explosion
problem, and the symbolic model checking technique has
proven to be an applicable approach to alleviate it. In the
early 1990s, McMillan presented the BDD [1] based model
checking technique [2]. It is first applied toCTLmodel check-
ing and is later adapted to deal with LTL. With the rapid
evolvement of SAT solvers, an entirely new approach, namely,
bounded model checking (BMC), is presented in [3]. It rerpre-
sents the problem “there is a path (with bounded length) vio-
lating the specification in the model” with a Boolean formula
and then tests its satisfiability via a SAT solver. Usually, BMC
is considered to be a complementary approach of the BDD-
based approach: BMC is normally used for hunting bugs not
for proving their absence. It performs better when handling
a model having a large reachable state set but involving
(relatively) shallow error runnings.

BMC has been successfully employed in LTL model
checking. However, LTL has the drawback of limited expres-
siveness. Wolper was the first to complain about this by
addressing the fact that some counting properties such as “𝑝
holds at every even moment” cannot be expressed by any
LTL formula [4]. Indeed, LTL formulae are just as expressive
as star-free 𝜔-expressions, that is, 𝜔-regular expressions dis-
allowing arbitrary (in a star-free expression, Kleene-closure

operators (∙∗ and ∙
𝜔) can only be applied upon Σ, which is

the whole set of alphabet) use of Kleene-closure operators.
As pointed in [5, 6], it is of great importance for a spec-

ification language to have the power to express all 𝜔-regular
properties—as an example, it is a necessary requirement to
support modular model checking. Actually, such specifica-
tion language like PSL [7] has been accepted as industrial
standard.

For temporal logics within linear framework, there are
several ways to pursue such an expressiveness.

(1) The first way is to add fixed-point operators or propo-
sitional quantifiers to the logic, such as linear 𝜇-
calculus [8] and QLTL [9].

(2) An alternative choice is to add regular expressions to
LTL-like logics, as done in RLTL [10], FTL [11, 12], and
PSL [7].

(3) The third approach is to cooperate infinitely many
temporal connectives with the logic, just like various
of ETLs [4, 9, 13].

The first extension requires finitely many operators in
defining formulae. Meanwhile, the use of fixed-point opera-
tors and higher-order quantifiers tends to rise difficulties in
understanding. In contrast, using regular expressions or
automata as syntactical ingredients is much more intuitive in
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comprehension. To some extent, since nesting of automata
connectives is allowed, the third approach generalizes the
second one.

In [4], Wolper suggested using right linear grammars as
connectives. Later, Wolper, Vardi, and Sistla consider tak-
ing various 𝜔-automata [9, 13]. Depending on the type of
automata used as temporal connectives, we may obtain vari-
ous ETLs. As a result, ETLs employing𝜔-automatawith loop-
ing, finite, and repeating (alternatively, Büchi [14]) acceptance
are, respectively, named ETL𝑙, ETL𝑓, and ETL𝑟, and all of
them are known to be as expressive as 𝜔-regular expressions
[13].

We have presented a BDD-based model checking algo-
rithm for ETL𝑓 in [15] and an algorithm for BDD-based
model checking of an invariant of PSL in [16]. Jehle et al.
present a bounded model checking algorithm for linear 𝜇-
calculus in [17]. And in [18], a tester based symbolic model
checking approach is proposed by Pnueli and Zacks to deal
with PSL properties. Meanwhile, a modular symbolic Büchi
automata construction is presented in [19] by Cimatti et al.

In this paper, we present a semantic BMC encoding for
ETL employing both finite acceptance and looping accep-
tance automata connectives (we in the following refer to it as
ETL𝑙+𝑓). The reason that we study BMC algorithm for such
kind of logic is for the following considerations.

(1) The BDD-based symbolic model checking technique
for ETL𝑓 has been established in [15] by extending
LTL construction [20]. Nevertheless, in a pure the-
oretical perspective, looping and finite acceptance,
respectively, correspond to safety and liveness proper-
ties, and looping acceptance automata can be viewed
as the counterparts of finite acceptance automata.
Actually, both similarities and differences could be
found in compiling the semanticmodels and translat-
ing Boolean representations when dealing with these
two types of connectives. Since ETL𝑙+𝑓 has a rich set
of fragments, such as LTL, it is hopeful to develop a
unified semantic BMC framework of such logics.

(2) Practically, things would usually be much more suc-
cinct when employing both types of automata con-
nectives, in comparison tomerely using finite or loop-
ing ones. As an example, there is no direct encoding
for the temporal operatorG just with finite acceptance
automata—to do this with ETL𝑓, we need to use a
two-state and two-letter connective to represent the
operator F and then to dualize it. In contrast, with
looping automata, we just need to define a one-state
and one-letter connective. It would save much space
overhead in building tableaux.

(3) Lastly, unlike syntactic BMC encodings (such kind
of encodings give inductive Boolean translations with
the formulae’s structure, cf. [21, 22] for a survey), the
semantic fashion [22] yields a natural completeness
threshold computation approach, and it describes the
fair path finding problem over the product model
with Boolean formulae. In this paper, we give a linear

semantic encoding approach (opposing to the origi-
nal quadratic semantic encoding) for ETL𝑙+𝑓. More-
over, the technique can also be tailored to semantic
LTL BMC.

We have implemented the presented algorithm with our
model checker ENuSMV (Ver. 1.2), and this tool allows end
users to customize temporal connectives by defining automa-
ta.We have also justified the algorithm by conducting a series
of comparative experiments.

The paper is structured as follows: Section 2 briefly revis-
its basic notions. Section 3 introduces semantic BMC encod-
ing technique for ETL𝑙+𝑓. In Section 4, experimental results of
ETL𝑙+𝑓 BMC are given. Finally, we conclude the whole paper
with Section 5.

2. Preliminaries

An infinite word 𝑤 over the alphabet Σ is a mapping from
N to Σ; hence we may use 𝑤(𝑖) to denote the 𝑖th letter of 𝑤.
For the sake of simplicity, we usually write 𝑤 as the sequence
𝑤(0)𝑤(1) ⋅ ⋅ ⋅ . A finite prefix of𝑤with length 𝑛 is a restriction
of 𝑤 to the domain {0, . . . , 𝑛 − 1}, denoted by 𝑤[𝑛].

A (nondeterministic) automaton is a tuple A = ⟨Σ, 𝑄, 𝛿,

𝑞, 𝐹⟩, where:

(i) Σ is a finite alphabet,
(ii) 𝑄 is a finite set of states,
(iii) 𝛿 : 𝑄 × Σ → 2

𝑄 is a transition function,
(iv) 𝑞 ∈ 𝑄 is an initial state, and
(v) 𝐹 ⊆ 𝑄 is a set of accepting states.

An infinite run ofA = ⟨Σ, 𝑄, 𝛿, 𝑞, 𝐹⟩ over an infinite word
𝑤 is an infinite sequence 𝜎 = 𝑞0𝑞1 ⋅ ⋅ ⋅ ∈ 𝑄

𝜔, where 𝑞0 = 𝑞

and 𝑞𝑖+1 ∈ 𝛿(𝑞𝑖, 𝑤(𝑖)) for each 𝑖. In addition, we say that each
prefix 𝑞0 ⋅ ⋅ ⋅ 𝑞𝑛+1 is a finite run over 𝑤[𝑛].

In this paper, we are concernedwith two acceptance types
for 𝜔-automata.

Looping. An infinite word 𝑤 is accepted if it has an
infinite run over 𝑤.
Finite. An infinite word 𝑤 is accepted if it has a
finite prefix 𝑤[𝑛], over which there is a finite run
𝑞0 ⋅ ⋅ ⋅ 𝑞𝑛+1 and 𝑞𝑛+1 is an accepting state (call such a
prefix accepting prefix).

In both cases, we denote by L(A) the set of infinite words
accepted byA.

Given an automatonA = ⟨Σ, 𝑄, 𝛿, 𝑞, 𝐹⟩ and a state 𝑟 ∈ 𝑄,
we denote by A𝑟 the automaton ⟨Σ, 𝑄, 𝛿, 𝑟, 𝐹⟩. That is, A𝑟 is
almost identical toA, except for that its initial state is replaced
by 𝑟. Hence,A andA𝑞 are the same.

Given a set of atomic propositions 𝐴𝑃, the class of ETL𝑙+𝑓

formulae can be inductively defined as follows.

(i) Both ⊤ and ⊥ are ETL𝑙+𝑓 formulae.
(ii) Each proposition 𝑝 ∈ 𝐴𝑃 is an ETL𝑙+𝑓 formula.
(iii) If 𝜑 is an ETL𝑙+𝑓 formula, then ¬𝜑 and I𝜑 are ETL𝑙+𝑓

formulae.
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(iv) If 𝜑1, 𝜑2 are ETL𝑙+𝑓 formulae, then both 𝜑1 ∧ 𝜑2 and
𝜑1 ∨ 𝜑2 are ETL𝑙+𝑓 formulae.

(v) If A is an automaton with the alphabet Σ = {𝑎1,

. . . , 𝑎𝑛} and 𝜑1, . . . , 𝜑𝑛 are ETL𝑙+𝑓 formulae, then
A(𝜑1, . . . , 𝜑𝑛) is also an ETL𝑙+𝑓 formula.

Remark 1. In the original definition of various ETLs (say
ETL𝑙, ETL𝑓, and ETL𝑟), the “next operator” (I) is not explic-
itly declared. However, this operator is extremely important
in building the semantic BMC encodings for ETL𝑙+𝑓. Hence,
we explicitly use this operator in our definition, and it would
not change the expressiveness of the logic.

Remark 2. Since we employ both finite and looping accep-
tance automata connectives, our logic is a mixture of ETL𝑙

and ETL𝑓. On the one hand, ETL𝑙+𝑓 generalizes both of
these two logics; on the other hand, it can be embedded into
ETL𝑟; hence this logic is also as expressive as omega-regular
expressions.

The satisfaction relation of an ETL𝑙+𝑓 formula 𝜑 with
respect to an infinite word 𝜋 ∈ (2

𝐴𝑃
)
𝜔 and a position 𝑖 ∈ N is

inductively given as follows.

(i) 𝜋, 𝑖 ⊨ ⊤ and 𝜋, 𝑖 ⊭⊥.
(ii) 𝜋, 𝑖 ⊨ 𝑝 if and only if 𝑝 ∈ 𝜋(𝑖).
(iii) 𝜋, 𝑖 ⊨ ¬𝜑 if and only if 𝜋, 𝑖 ⊭ 𝜑.
(iv) 𝜋, 𝑖 ⊨ I𝜑 if and only if 𝜋, 𝑖 + 1 ⊨ 𝜑.
(v) 𝜋, 𝑖 ⊨ 𝜑1 ∧ 𝜑2 if and only if 𝜋, 𝑖 ⊨ 𝜑1 and 𝜋, 𝑖 ⊨ 𝜑2.
(vi) 𝜋, 𝑖 ⊨ 𝜑1 ∨ 𝜑2 if and only if 𝜋, 𝑖 ⊨ 𝜑1 or 𝜋, 𝑖 ⊨ 𝜑2.
(vii) If A is a looping acceptance automaton with the

alphabet {𝑎1, . . . , 𝑎𝑛}, then 𝜋, 𝑖 ⊨ A(𝜑1, . . . , 𝜑𝑛) if and
only if: there is an infinite word 𝑤 ∈ L(A), and, for
each 𝑗 ∈ N, 𝑤(𝑗) = 𝑎𝑘 implies 𝜋, 𝑖 + 𝑗 ⊨ 𝜑𝑘.

(viii) IfA is a finite acceptance automaton with the alpha-
bet {𝑎1, . . . , 𝑎𝑛}, then 𝜋, 𝑖 ⊨ A(𝜑1, . . . , 𝜑𝑛) if and only
if: there is an infinite word 𝑤 ∈ L(A) with an
accepting prefix𝑤[𝑛], such that, for each 𝑗 < 𝑛,𝑤(𝑗) =
𝑎𝑘 implies 𝜋, 𝑖 + 𝑗 ⊨ 𝜑𝑘.

As usual, we directly use 𝜋 ⊨ 𝜑 in place of 𝜋, 0 ⊨ 𝜑.
To make a better understanding of ETL𝑙+𝑓 formulas, we

here give some examples of the use of automata connectives.

(1) Considering the LTL formula 𝜑1U𝜑2, it can be
described with an ETL𝑙+𝑓 formula AU(𝜑1, 𝜑2),
where AU is the finite acceptance automaton ⟨{𝑎1,

𝑎2}, {𝑞1, 𝑞2}, 𝛿U, 𝑞1, {𝑞2}⟩, and we let 𝛿U(𝑞1, 𝑎1) = {𝑞1},
𝛿U(𝑞1, 𝑎2) = {𝑞2}, and 𝛿U(𝑞2, 𝑎1) = 𝛿U(𝑞2, 𝑎2) = 0.

(2) The LTL formula G𝜑 is equivalent to the ETL𝑙+𝑓

formula AG(𝜑), where AG = ⟨{𝑎}, {𝑞}, 𝛿G, 𝑞, 0⟩ is a
looping acceptance automaton and 𝛿G(𝑞, 𝑎) = {𝑞}.

Remark 3. The order of letters is important in defining
automata connectives. Hence, the alphabet should be consid-
ered as a vector, rather than a set.

Weuse sub(𝜑) to denote the set of subformulae of𝜑. A for-
mula 𝜑 is in negation normal form (NNF) if all negations in 𝜑
are adjacent to atomic propositions or automata connectives.
One can achieve this by repeatedly usingDeMorgan’s law and
the schemas of ¬I𝜑 ≡ I¬𝜑 and ¬¬𝜑 ≡ 𝜑. In addition, we call
a formula 𝜑 being of the form A(𝜑1, . . . , 𝜑𝑛) an automaton
formula.

Given a formula𝜑 (in NNF), we use a two-letter-acronym
to designate the type of an automaton subformula of 𝜑: the
first letter is either “P” or “N,” which means “positive” or
“negative”; and the second letter can be “F” or “L,” which
describes the acceptance type. For example, NL-subformulae
stand for “negative automata formulae with looping automata
connectives,” such as ¬A𝑞

(𝜑1, 𝜑2), where A is a two-letter
looping automaton.

A model or interchangeably a labeled transition system
(LTS) is a tupleM = ⟨𝑆, 𝜌, 𝐼, 𝐿,F⟩, where:

(i) 𝑆 is a finite set of states,
(ii) 𝜌 ⊆ 𝑆 × 𝑆 is a transition relation (usually, we require 𝜌

to be total; that is, for each 𝑠 ∈ 𝑆, there is some 𝑠 ∈ 𝑆

having (𝑠, 𝑠) ∈ 𝜌),
(iii) 𝐼 ⊆ 𝑆 is the set of initial states,
(iv) 𝐿 : 𝑆 → 2

𝐴𝑃 is the labeling function, and
(v) F ⊆ 2

𝑆 is a set of fairness constraints.

A path of M is an infinite sequence 𝜎 = 𝑠0𝑠1 ⋅ ⋅ ⋅ ∈ 𝑆
𝜔,

where 𝑠0 ∈ 𝐼 and (𝑠𝑖, 𝑠𝑖+1) ∈ 𝜌 for each 𝑖 ∈ N. In addition, 𝜎
is a fair path if 𝜎 visits each 𝐹 ∈ F infinitely often. Formally,
𝜎 is a fair path if inf(𝜎) ∩ 𝐹 ̸= 0 for each 𝐹 ∈ F, where inf(𝜎)
denotes the set of states occurring infinitely many times in 𝜎.

An infinite word 𝜋 = 𝑎0𝑎1 ⋅ ⋅ ⋅ is derived from a path 𝜎 of
M (denoted by 𝜋 = 𝐿(𝜎)) if 𝑎𝑖 = 𝐿(𝑠𝑖) for each 𝑖 ∈ N. We use
L(M) to denote the set of infinite words derived from fair
paths ofM.

Given an ETL𝑙+𝑓 formula 𝜑 and an LTSM, we denote by
M ⊨ 𝜑 if 𝜋 ⊨ 𝜑 for each 𝜋 ∈ L(M). The model checking
problem of ETL𝑙+𝑓 is just to verify if M ⊨ 𝜑 holds for the
given LTSM and the given ETL𝑙+𝑓 formula 𝜑.

3. Semantic BMC Encoding for ETL𝑙+𝑓

In this section, we will give a detailed description of the
semantic BMC encoding for ETL𝑙+𝑓. Firstly, we show how
to extend the tableau construction of LTL [20] to that of
ETL𝑙+𝑓, and hence a product model can also be constructed.
Subsequently, we interpret the fairness path finding problem
(upon the product model) into SAT, and the size blow-up of
this encoding is linear with the bound.

For the sake of convenience, in this section, we always
assume that the given ETL𝑙+𝑓 formulae have been normalized
into NNF.

3.1. The Tableaux of ETL𝑙+𝑓 Formulae. Given an ETL𝑙+𝑓 for-
mula 𝜑, we first inductively define its elementary formula set
el(𝜑) as follows.

(i) el(⊤) = el(⊥) = 0.
(ii) el(𝑝) = el(¬𝑝) = {𝑝} for each 𝑝 ∈ 𝐴𝑃.
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(iii) el(𝜑1 ∧ 𝜑2) = el(𝜑1 ∨ 𝜑2) = el(𝜑1) ∪ el(𝜑2).
(iv) el(I𝜑) = el(𝜑) ∪ {I𝜑}.
(v) If 𝜑 = A𝑞

(𝜑1, . . . , 𝜑𝑛) or 𝜑 = ¬A𝑞
(𝜑1, . . . , 𝜑𝑛) and the

states set ofA is 𝑄, then

el (𝜑) = ⋃

1≤𝑘≤𝑛

el (𝜑𝑘) ∪ {IA
𝑞
(𝜑1, . . . , 𝜑𝑛) | 𝑞


∈ 𝑄} . (1)

Hence, if𝜓 ∈ el(𝜑), then𝜓 is either an atomic proposition
or a formula rooted at the next operator.

Subsequently, we define the function sat, which maps
each subformula 𝜓 of 𝜑 to a set of members in 2

el(𝜑). Induc-
tively the following hold.

(i) sat(⊤) = 2
el(𝜑); sat(⊥) = 0.

(ii) sat(𝑝) = {Γ ⊆ el(𝜑) | 𝑝 ∈ Γ} and sat(¬𝑝) = {Γ ⊆

el(𝜑) | 𝑝 ∉ Γ}.
(iii) sat(I𝜓) = {Γ ⊆ el(𝜑) | I𝜓 ∈ Γ}.
(iv) sat(𝜑1 ∧ 𝜑2) = sat(𝜑1) ∩ sat(𝜑2) and sat(𝜑1 ∨ 𝜑2) =

sat(𝜑1) ∪ sat(𝜑2).
(v) Suppose thatA = ⟨{𝑎1, . . . , 𝑎𝑛}, 𝑄, 𝛿, 𝑞, 𝐹⟩.

(1) If A is a looping acceptance automaton or a
finite acceptance automaton and 𝑞 ∉ 𝐹, then

sat (A𝑞
(𝜑1, . . . , 𝜑𝑛))

= ⋃

1≤𝑘≤𝑛

(sat (𝜑𝑘) ∩ ⋃

𝑞∈𝛿(𝑞,𝑎𝑘)

sat (IA𝑞
(𝜑1, . . . , 𝜑𝑛))) .

(2)

(2) IfA is a finite acceptance automaton and 𝑞 ∈ 𝐹,
then sat(A𝑞

(𝜑1, . . . , 𝜑𝑛)) = 2
el(𝜑).

(vi) sat(¬A𝑞
(𝜑1, . . . , 𝜑𝑛)) = 2

el(𝜑)
\ sat(A𝑞

(𝜑1, . . . , 𝜑𝑛)).

Recall the tableau construction for LTL [20], an “until
subformula” would generate a fairness constraint to the
tableau. Indeed, such a subformula corresponds to a “least-
fixpoint subformula” if we translate the specification into a
logic employing higher-order quantifiers, such as 𝜇-calculus.
Similarly, for ETL𝑙+𝑓, the PF- and NL-subformulae also
impose fairness constraints. For this reason, we need to define
the following two auxiliary relations before giving the tableau
construction.

For a PF-subformula 𝜓 = A(𝜑1, . . . , 𝜑𝑛) of 𝜑, where
A = ⟨{𝑎1, . . . , 𝑎𝑛}, 𝑄, 𝛿, 𝑞, 𝐹⟩, we define a relation Δ

+
𝜓 ⊆

(2
el(𝜑)

×2
𝑄
)×(2

el(𝜑)
×2

𝑄
) as follows: suppose that Γ, Γ

⊆ el(𝜑)
and 𝑃, 𝑃

⊆ 𝑄; then ((Γ, 𝑃), (Γ

, 𝑃


)) ∈ Δ

+
𝜓 if and only if the

following hold.

(i) When𝑃 ̸= 0, then, for each 𝑞 ∈ 𝑃\𝐹, there exists some
1 ≤ 𝑘 ≤ 𝑛 such that Γ ∈ sat(𝜑𝑘) and 𝑃


∩ 𝛿(𝑞, 𝑎𝑘) ̸= 0.

(ii) When𝑃 = 0, then 𝑞 ∈ 𝑃 if and only if Γ
∈ sat(A𝑞

(𝜑1,

. . . , 𝜑𝑛)) for each 𝑞 ∈ 𝑄.

Likewise, for each NL-subformula 𝜓 = ¬A(𝜑1, . . . , 𝜑𝑛)

of 𝜑, we also define a relation Δ
−
𝜓 ⊆ (2

el(𝜑)
× 2

𝑄
) × (2

el(𝜑)
×

2
𝑄
). In detail, for any Γ, Γ

⊆ el(𝜑) and 𝑃, 𝑃

⊆ 𝑄, we have

((Γ, 𝑃), (Γ

, 𝑃


)) ∈ Δ

−
𝜓 if and only if the following hold.

(i) When 𝑃 ̸= 0, then, for each 𝑞 ∈ 𝑃 and 1 ≤ 𝑘 ≤ 𝑛, we
have: Γ ∈ sat(𝜑𝑘) implies 𝛿(𝑞, 𝑎𝑘) ⊆ 𝑃

.
(ii) When 𝑃 = 0, then 𝑞 ∈ 𝑃

 if and only if Γ
∉

sat(A𝑞
(𝜑1, . . . , 𝜑𝑛)), for each 𝑞 ∈ 𝑄.

We now describe the tableau construction for 𝜑. Suppose
that 𝜓1, . . . , 𝜓𝑚 and ¬𝜂1, . . . , ¬𝜂𝑛 are, respectively, all the PF-
subformulae and NL-subformulae occurring in 𝜑 then the
tableauT𝜑 is such an LTS ⟨𝑆𝜑, 𝜌𝜑, 𝐼𝜑, 𝐿𝜑,F𝜑⟩, where:

(i) 𝑆𝜑 consists of tuples like ⟨Γ; 𝑃1, . . . , 𝑃𝑚; 𝑅1, . . . , 𝑅𝑛⟩,
where Γ ⊆ el(𝜑) and each 𝑃𝑖 (resp., 𝑅𝑖) is a subset of
𝜓𝑖’s (resp., 𝜂𝑖’s) connective’s state set.

(ii) For two states 𝑠 = ⟨Γ; 𝑃1, . . . , 𝑃𝑚; 𝑅1, . . . , 𝑅𝑛⟩ and 𝑠

=

⟨Γ

; 𝑃


1, . . . , 𝑃


𝑚; 𝑅


1, . . . , 𝑅


𝑛⟩, (𝑠, 𝑠


) ∈ 𝜌𝜑 if and only if

the following three conditions hold.

(1) Γ ∈ sat(I𝜓) if and only if Γ
∈ sat(𝜓) for each

I𝜓 ∈ el(𝜑).
(2) ((Γ, 𝑃𝑖), (Γ


, 𝑃


𝑖 )) ∈ Δ

+
𝜓
𝑖

for each 1 ≤ 𝑖 ≤ 𝑚.
(3) ((Γ, 𝑅𝑗), (Γ


, 𝑅


𝑗)) ∈ Δ

−
¬𝜂
𝑗

for each 1 ≤ 𝑗 ≤ 𝑛.

(iii) 𝐼𝜑 = {⟨Γ; 𝑃1, . . . , 𝑃𝑚; 𝑅1, . . . , 𝑅𝑛⟩ ∈ 𝑆𝜑 | Γ ∈ sat(𝜑)}.
(iv) 𝐿𝜑(⟨Γ; 𝑃1, . . . , 𝑃𝑚; 𝑅1, . . . , 𝑅𝑛⟩) = Γ ∩ 𝐴𝑃.

(v) F𝜑 = {𝐹
+
𝑖 | 1 ≤ 𝑖 ≤ 𝑚} ∪ {𝐹

−
𝑗 | 1 ≤ 𝑗 ≤ 𝑛}, where

𝐹
+
𝑖 = {⟨Γ; 𝑃1, . . . , 𝑃𝑚; 𝑅1, . . . , 𝑅𝑛⟩ ∈ 𝑆𝜑 | 𝑃𝑖 = 0} ,

𝐹
−
𝑗 = {⟨Γ; 𝑃1, . . . , 𝑃𝑚; 𝑅1, . . . , 𝑅𝑛⟩ ∈ 𝑆𝜑 | 𝑅𝑗 = 0} .

(3)

The below two theorems (Theorems 4 and 5) reveal the
language property of ETL𝑙+𝑓 tableaux. To remove the length-
iness, we here just provide the proof sketches, and rigorous
proofs of them are postponed to the appendices.

Theorem 4. For each 𝜋 ∈ (2
𝐴𝑃
)
𝜔, if 𝜋 ∈ L(T𝜑), then 𝜋 ⊨ 𝜑.

Proof (sketch). Just assume that 𝜎 = 𝑠0𝑠1 ⋅ ⋅ ⋅ ∈ 𝑆
𝜔
𝜑 is the corre-

sponding fair path of T𝜑 such that 𝜋 = 𝐿𝜑(𝜎), where 𝑠𝑖 =
⟨Γ𝑖; 𝑃1,𝑖, . . . , 𝑃𝑚,𝑖; 𝑅1,𝑖, . . . , 𝑅𝑛,𝑖⟩. We may inductively prove the
following claim.

“For each 𝜓 ∈ sub(𝜑) ∪ 𝑒𝑙(𝜑), we have: Γ𝑖 ∈ sat(𝜓) implies
𝜋, 𝑖 ⊨ 𝜓.”

Because we require that Γ0 ∈ sat(𝜑), hence we have 𝜋, 0 ⊨
𝜑.

Theorem 5. For each 𝜋 ∈ (2
𝐴𝑃
)
𝜔, if 𝜋 ⊨ 𝜑, then 𝜋 ∈ L(T𝜑).

Proof (sketch). Suppose that 𝜋 ⊨ 𝜑; to show 𝜋 ∈ L(T𝜑),
we need to first construct an infinite state sequence 𝜎 =

𝑠0𝑠1 ⋅ ⋅ ⋅ ∈ 𝑆
𝜔
𝜑 guided by 𝜋 (the detailed construction is given

in Section A.2), and then we will subsequently show that 𝜎 is
a fair path ofT𝜑 and 𝜋 = 𝐿𝜑(𝜎).
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The following theorem is immediate from Theorems 4
and 5.

Theorem 6. The model M violates the ETL𝑙+𝑓 property 𝜑 if
and only if L(M) ∩ L(T¬𝜑) ̸= 0, equivalently; there exists
some fair path inM ×T¬𝜑.

Theorem 7. For an ETL𝑙+𝑓 formula 𝜑, its tableau T𝜑 has at
most 4|el(𝜑)| states.

Proof. Observe that a state should be of the form ⟨Γ; 𝑃1, . . . ,

𝑃𝑚; 𝑅1, . . . , 𝑅𝑛⟩. For Γ, there are 2
|el(𝜑)| possible choices. Sup-

pose that 𝜓𝑗 = A𝑗(𝜑1, . . . , 𝜑𝑘) (resp., ¬𝜂𝑖 = ¬A𝑖(𝜑

1, . . . , 𝜑


𝑟))

and the state set of A𝑗 is 𝑄𝑗 (resp., A𝑖 with 𝑄

𝑖 ). According

to the construction, each 𝑞 ∈ 𝑄𝑗 (resp., 𝑞 ∈ 𝑄

𝑖 ) cor-

responds to a unique elementary formula IA
𝑞
𝑗(𝜑1, . . . , 𝜑𝑘)

(resp., IA𝑞
𝑖 (𝜑


1, . . . , 𝜑


𝑟)), and such a mapping is an injection.

Hence we have

( ∑

1≤𝑗≤𝑚


𝑄𝑗


+ ∑

1≤𝑖≤𝑛


𝑄


𝑖


) ≤

el (𝜑) \ 𝐴𝑃
 . (4)

Note that 𝑃𝑗 ⊆ 𝑄𝑗 (resp., 𝑅𝑖 ⊆ 𝑄

𝑖 ), and hence we have |𝑆𝜑| ≤

(2
|el(𝜑)|

)
2
= 4

|el(𝜑|).

3.2.The Linear Semantic Encoding. Practically, amodel’s state
space is determined by the evaluation of a set of variables.
Further, we may assume that each of them is a “Boolean
variable” (which corresponds to a proposition belonging to
𝐴𝑃), because every variable over finite domain could be
encoded with several Boolean variables.

Let C = ⟨𝑆, 𝜌, 𝐼, 𝐿,F⟩ be an arbitrary LTS, and we
also assume that the corresponding variable set is 𝑉 = {𝑝1,

. . . , 𝑝𝑛}; then each state 𝑠 ∈ 𝑆 uniquely corresponds to an
assignment of such 𝑝𝑖s.

If we use 𝑠(𝑝𝑖) to denote the value of 𝑝𝑖 at 𝑠, then each
subset 𝑍 ⊆ 𝑆 can be represented by a Boolean formula Φ𝑍

over 𝑉. In detail, it fulfills

𝑠 ∈ 𝑆 ⇐⇒ 𝑠 ⊩ Φ𝑍, (5)

where 𝑠 ⊩ Φ𝑍 means that Φ𝑍 is evaluated to be true if we
assign each 𝑝𝑖 with the value 𝑠(𝑝𝑖).

Let 𝑉
= {𝑝


1, . . . , 𝑝


𝑛}, and each binary relation 𝜆 ⊆ 𝑆 ×

𝑆 also has a Boolean representation Φ𝜆 over the variable set
𝑉 ∪ 𝑉

. That is,

(𝑠1, 𝑠2) ∈ 𝜆 ⇐⇒ (𝑠1, 𝑠2) ⊩ Φ𝜆, (6)

where (𝑠1, 𝑠2) ⊩ Φ𝜆 means that Φ𝜆 is evaluated to be true if
we assign each 𝑝𝑖 with 𝑠1(𝑝𝑖) and assign each 𝑝

𝑖 with 𝑠2(𝑝𝑖).
Hence, all components of M can be encoded: 𝐼 and 𝜌

can be represented by two Boolean formulae Φ𝐼 and Φ𝜌,
respectively; we subsequently create a Boolean formula Φ𝐹

for each 𝐹 ∈ F; note that the labeling function 𝐿 is not
concerned any longer, because the sates labeled with 𝑝 can
be captured by the Boolean formula 𝑝.

For example, fromTheorem 7, we have that the symbolic
representation of T𝜑 requires 2 × |el(𝜑) \ 𝐴𝑃| new Boolean
variables—because variables in el(𝜑)∩𝐴𝑃 can be shared with
the encoding of the original model.

A canonical Boolean encoding of fair path existence
detection upon LTSs is presented in [22]: given a modelC =

⟨𝑆, 𝜌, 𝐼, 𝐿,F⟩ and a bound 𝑘 ∈ N, one may use the formula

Φ
(0)
𝐼 ∧ ⋀

0≤𝑖<𝑘

Φ
(𝑖,𝑖+1)
𝜌 ∧ ⋁

0≤ℓ≤𝑘

(Φ
(𝑘,ℓ)
𝜌 ∧ ⋀

𝐹∈F

⋁

ℓ≤𝑗≤𝑘

Φ
(𝑗)
𝐹 ) ,

(7)

where Φ(𝑗)
𝐼 and Φ

(𝑗)
𝐹 are, respectively, the Boolean formulae

obtained from Φ𝐼 and Φ𝐹 by replacing each variable 𝑝 with
a new copy 𝑝(𝑗), and Φ(𝑖,𝑗)

𝜌 is obtained from Φ𝜌 by replacing
each 𝑝 with 𝑝(𝑖) and replacing each 𝑝 with 𝑝(𝑗).

It can be seen that this formula is satisfiable if and only if
C involves a fair path of the form 𝑠0𝑠1 ⋅ ⋅ ⋅ 𝑠ℓ−1(𝑠ℓ ⋅ ⋅ ⋅ 𝑠𝑘)

𝜔 (call
it is of the lasso shape). Since that L(C) ̸= 0 if and only if C
contains some lasso fair path (note that from each fair path
wemay derive another fair path of lasso shape), hencewemay
convert the fair path detection into the satisfiability problem
of the above Boolean formula.

However, a closer look shows that the size of such encod-
ing is quadratic with the bound. To reduce the blow-up in
size, we need to introduce the following new variables (the
linearization can also be done with the syntactic fashion
presented in [23, 24]. We would draw a comparison of these
two approaches in Section 4.).

(1) For each 0 ≤ ℓ ≤ 𝑘, we introduce a new variable 𝑟ℓ.
Intuitively, 𝑟ℓ indicates that 𝑠ℓ is a successor of 𝑠𝑘.

(2) For each fairness constraint 𝐹 ∈ F and each 0 ≤

ℓ ≤ 𝑘, we introduce a variable 𝑓(ℓ)
𝐹 , and this variable

is evaluated to be true only if there is someΦ(𝑗)
𝐹 which

is evaluated to true, where ℓ ≤ 𝑗 ≤ 𝑘.

And the new encoding (with the bound 𝑘 ∈ N) can be formu-
lated as

Φ
(0)
𝐼 ∧ ⋀

0≤𝑖<𝑘

Φ
(𝑖,𝑖+1)
𝜌 ∧ ⋁

0≤ℓ≤𝑘

𝑟ℓ,

Ψ
(𝑘)
C = ∧ ⋀

0≤ℓ≤𝑘

(𝑟ℓ → (Φ
(𝑘,ℓ)
𝜌 ∧ ⋀

𝐹∈F

𝑓
(ℓ)
𝐹 ))

∧ ⋀

𝐹∈F

( ⋀

0≤𝑖<𝑘

(𝑓
(𝑖)
𝐹 → (𝑓

(𝑖+1)
𝐹 ∨ Φ

(𝑖)
𝐹 ))

∧ (𝑓
(𝑘)
𝐹 → Φ

(𝑘)
𝐹 )) .

(8)

Hence, both the number of variables and the size of this
encoding are linear with 𝑘. Moreover, the following theorem
guarantees the correctness of such encoding.

Theorem8. L(C) ̸= 0 if and only if Ψ(𝑘)
C

is satisfiable for some
𝑘.
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Proof. We begin with the “if ” direction: suppose that the
variable set is {𝑝1, . . . , 𝑝𝑚}; if there is some 𝑘 such that Ψ𝑘

C

is evaluated to 1 (i.e., true) under the assignment 𝑒, then we
denote 𝑠𝑖 = (𝑒(𝑝

(𝑖)
1 ), . . . , 𝑒(𝑝

(𝑖)
𝑚 )) for each 1 ≤ 𝑖 ≤ 𝑚. Hence,

each 𝑠𝑖 is a state ofC.

(i) Since the truth value ofΦ(0)
𝐼 is 1 under 𝑒, then we have

𝑠0 ⊩ Φ
(0)
𝐼 ; this implies that 𝑠0 ∈ 𝐼.

(ii) For each 0 ≤ 𝑖 < 𝑘, we have (𝑠𝑖, 𝑠𝑖+1) ⊩ Φ
(𝑖,𝑖+1)
𝜌 , and

thus (𝑠𝑖, 𝑠𝑖+1) ∈ 𝜌.
(iii) Because we have the conjunct ⋁0≤ℓ𝑟ℓ, then there is

some 0 ≤ ℓ ≤ 𝑘 such that 𝑒(𝑟ℓ) = 1. In the following,
we fix this specific value ℓ for the discussion.

(iv) According to the constraint 𝑟ℓ → (Φ
(𝑘,ℓ)
𝜌 ∧⋀𝐹∈F 𝑓

(ℓ)
𝐹 ),

we have the following.

(1) 𝑒(Φ(𝑘,ℓ)
𝜌 ) = 1, which indicates that (𝑠𝑘, 𝑠ℓ) ∈ 𝜌.

(2) For each 𝐹 ∈ F, we have 𝑒(𝑓(ℓ)
𝐹 ) = 1.

(v) For each fairness constraint 𝐹 ∈ F and 0 ≤ 𝑖 ≤ 𝑘,
we now inductively show that “𝑒(𝑓(𝑖)

𝐹 ) = 1 implies
𝑒(Φ

(𝑗)
𝐹 ) = 1 (alternatively, 𝑠𝑗 ∈ 𝐹) for some 𝑖 ≤ 𝑗 ≤ 𝑘.”

First of all, it holds in the case of 𝑖 = 𝑘, because we
have the constraint 𝑓(𝑘)

→ Φ
(𝑘)
𝐹 . In addition, the fact

of “when 𝑖 = 𝑐, it holds” can be immediately inferred
from the hypothesis “when 𝑖 = 𝑐 + 1, it holds,”
according to the conjunct𝑓(𝑖)

𝐹 → (𝑓
(𝑖+1)
𝐹 ∨Φ

(𝑖)
𝐹 ). Since

we have shown that 𝑒(𝑓(ℓ)
𝐹 ) = 1, we can conclude that

there exists some ℓ ≤ 𝑗 ≤ 𝑘 such that 𝑠𝑗 ∈ 𝐹.

The above shows that 𝑠0𝑠1 ⋅ ⋅ ⋅ 𝑠ℓ−1(𝑠ℓ ⋅ ⋅ ⋅ 𝑠𝑘)
𝜔 is a fair path ofC,

and henceL(C) ̸= 0.
Conversely, for the “only if ” direction, it suffices to find

some 𝑘 and some assignment 𝑒 evaluating Ψ
(𝑘)
C

to be true.
Since L(C) ̸= 0, there must exist some fair path of lasso
shape in C. Without loss of generality, assume that 𝜎 =

𝑠0𝑠1 ⋅ ⋅ ⋅ 𝑠ℓ−1(𝑠ℓ ⋅ ⋅ ⋅ 𝑠𝑘)
𝜔 is such a path; just let 𝑘 be this value,

and we now illustrate how the assignment 𝑒 is constructed.

(i) For each variable 𝑝𝑗 and each 𝑖 ≤ 𝑘, let 𝑒(𝑝(𝑖)
𝑗 ) =

𝑠𝑖(𝑝𝑗). Since 𝑠0 is an initial state, according to the
definition, we have 𝑒(Φ(0)

𝐼 ) = 1. Meanwhile, because
each (𝑠𝑖, 𝑠𝑖+1) ∈ 𝜌, we have that the conjunction
⋀0≤𝑖≤𝑘Φ

(𝑖,𝑖+1)
𝜌 is satisfied under 𝑒.

(ii) For each 0 ≤ 𝑖 ≤ 𝑘, we let

𝑒 (𝑟𝑖) = {
1, 𝑖 = ℓ,

0, 𝑖 ̸= ℓ.
(9)

Then it can be seen that 𝑒(⋁0≤𝑖≤𝑘𝑟𝑖) = 1.
(iii) For each 𝐹 ∈ F and each 0 ≤ 𝑖 ≤ 𝑘, we let

𝑒 (𝑓
(𝑖)
𝐹 ) = {

1, if there is some 𝑗 ≥ 𝑖 such that 𝑠𝑗 ∈ 𝐹,
0, otherwise.

(10)

Then it can be directly checked that the conjunct

⋀

𝐹∈F

( ⋀

0≤𝑖<𝑘

(𝑓
(𝑖)
𝐹 → (𝑓

(𝑖+1)
𝐹 ∨ Φ

(𝑖)
𝐹 )) ∧ (𝑓

(𝑘)
𝐹 → Φ

(𝑘)
𝐹 ))

(11)

is evaluated to be true under 𝑒.
(iv) Since (𝑠𝑘, 𝑠ℓ) ∈ 𝜌, we have 𝑒(Φ(𝑘,ℓ)

𝜌 ) = 1. Also note
that 𝜎 is a fair path; then for each 𝐹 ∈ F there is some
𝑠𝑗 ∈ 𝐹, where ℓ ≤ 𝑗 ≤ 𝑘. According to the previous
definition, we can infer that 𝑒(⋀𝐹∈F𝑓

(ℓ)
𝐹 ) = 1. Thus

the conjunct

⋀

0≤𝑖≤𝑘

(𝑟𝑖 → (Φ
(𝑘,𝑖)
𝜌 ∧ ⋀

𝐹∈F

𝑓
(𝑖)
𝐹 )) (12)

is also satisfied under 𝑒 (recall that we have assigned
𝑒(𝑟𝑖) = 0 in the case of 𝑖 ̸= ℓ).

Thus, the formula Ψ(𝑘)
C

is satisfiable.
For bounded model checking, an important issue is the

completeness threshold, which is the specific value 𝑘 such that
we may declareL(C) = 0 in the case that Ψ(𝑘)

C
is not satisfia-

ble, and we denote it by CT(C) in this paper.
Since we need only to concern about fair paths of the

form 𝜎1(𝜎2)
𝜔, as pointed in [22], a possible candidate for the

completeness threshold CT(C) is

𝐷
𝐼
(C) + |F| × 𝐷 (C) , (13)

where𝐷 and𝐷𝐼 are, respectively, the diameter and the initial-
ized diameter (cf. [22]). Since [22] just considers LTSs having
only one fairness constraint, we here add the factor |F|.

Observe that the part 𝜎2 must be enclosed in some SCC
(i.e., strongly connected component) ofC, and we may replace
𝐷(C) with 𝐷(S), where S is the largest SCC that intersects
all fairness constraints.Therefore, wemay get amore compact
upper bound of the completeness threshold.

Then, for a given LTS M and the given ETL𝑙+𝑓 formula
𝜑, since we have shown that M ⊭ 𝜑 if and only if M ×T¬𝜑

involves some fair path, we now just need to test if there is
some 𝑘makingΨ(𝑘)

M×T
¬𝜑

satisfiable, where 𝑘 ≤ CT(M×T¬𝜑).

Remark 9. In the case that C = C1 × C2, where C = ⟨𝑆,

𝜌, 𝐼, 𝐿,F⟩ and C𝑖 = ⟨𝑆𝑖, 𝜌𝑖, 𝐼𝑖, 𝐿 𝑖,F𝑖⟩ for 𝑖 = 1, 2, we have
Φ𝐼 = Φ𝐼

1

∧ Φ𝐼
2

, Φ𝜌 = Φ𝜌
1

∧ Φ𝜌
2

, and ΦF = ΦF
1

∪ ΦF
1

,
and in addition, the variable set of C is just the union of the
variable sets ofC1 andC2.

Remark 10. Actually, for an ETL𝑙+𝑓 formula 𝜑, the symbolic
representation ofT𝜑 can be directly given without the detour
of explicit construction of the LTS. Because, the relation sat
could be inductively constructed if we introduce correspond-
ing new variables in el(𝜑). Subsequently, encodings ofΦΔ+

𝜓

or
ΦΔ−
𝜂

could be naturally obtained from the underlying Boolean
variables corresponding to states of automata connectives.
Hence, the Boolean representation of Φ𝜌

𝜑

is obtained. And,
encodings of other components are as routine.
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CONNECTIVE A (a1, a2) : FIN
STATES >q1, q2, q3<;
TRANSITIONS(q1)
case a1 : q2; a2 : q3; esac;
TRANSITIONS(q2)
case

a1 : fq2, q3g;
a2 : q3;

esac;
TRANSITIONS(q3)
case a1 : fq1, q2g; esac;

Figure 1: An automata connective declaration in ENuSMV.

Table 1: Comparative results of BDD-based and BMC approaches.

Cells BDD BMC
Time (s) Memory (MB) C.L. Variables Clauses Time (s) Memory (MB) C.L.

5 170.56 68.32 78 3939 8126 13.50 34.98 39
6 513.06 209.17 84 4677 9620 29.14 42.37 39
7 2372.28 976.14 90 5415 11113 41.32 58.48 39
8 8074.05 1482.15 96 6154 12609 52.45 67.32 39
9 ≥5 h ≥2G — 6892 14102 68.17 82.13 39
10 ≥5 h ≥2G — 7630 15599 85.13 101.21 39

4. Experimental Results

To justify our idea, we have integrated (the tool is available
at https://sourceforge.net/projects/enusmv12/) the ETL𝑙+𝑓

BMC algorithm into ENuSMV (Ver. 1.2). This tool is com-
pletely compatible with NuSMV [25], and it allows end-users
to customize new temporal connectives by defining automa-
ta.

For example, Figure 1 illustrates how to declare a finite
acceptance automata connective (to define a looping accep-
tance automata connective, just replace the keyword FINwith
LOOP), namely, A. Since it has three states q1, q2, and q3
(where q1 is the initial state and q3 is an accepting state), then
A[q1], A[q2], and A[q3] are also connectives—for example,
A[q2] just replaces the initial state with q2. Subsequently, one
may define ETL𝑙+𝑓 specifications; for example,

ETLSPEC A(p,A[q2] (q,p))

is a proper declaration.
In this redistribution, both BDD-based and bounded

model checkings for ETL𝑙+𝑓 are supported. To perform (se-
mantic encoding based) BMC, we need to use the command
option bmc tab.

We have conducted some experiments to test the correct-
ness and efficiency of our algorithm. In this paper, we are
especially concerned with the following issues.

(1) The comparison of BDD-based symbolic model
checking and bounded model checking.

(2) The overhead contrast in verifications of ETL𝑓 and
ETL𝑙+𝑓 upon both star-free and nonstar-free proper-
ties.

(3) The comparison of performances with syntactic/se-
mantic BMC of LTL and semantic BMC of ETL𝑙+𝑓.

To compare the efficiencies between BDD-based MC
and BMC, we chose the (distributed mutual exclusion) DME
circuit as the model (which involves a buggy design), as
described in [3]. It consists of 𝑛 cells for 𝑛 users that want to
have exclusive access to a shared resource. We conducted the
experiment by describing the liveness property that “a request
for using the resource will eventually be acknowledged” (with
ETL𝑙+𝑓 formula). The max bound are set to 100, and the
comparative results are shown in Table 1, where “C.L.” stands
for the length of counterexample.

As a previous work, we have implemented the symbolic
model checking algorithm for ETL𝑓 in ENuSMV 1.0. To
justify that in general ETL𝑙+𝑓 could be more effectively
checked, we wouldmake a comparison of BMC for ETL𝑓 and
ETL𝑙+𝑓.

To draw the comparison upon non-start-free regular
properties, we use a “mod 2

𝑛 counter” as the model. The
model consists of 𝑛 “cells” bit 0,. . .,bit n-1. Each cell is
a (mod 2) counter having an input carry in and an output
signal carry out. These cells are connected in a serial
manner; that is, bit 0’s carry in is set to 1, and bit i’s
carry in is connected to bit i−1’s carry out as described
in Figure 2.
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Carry out Carry out Carry out Carry out

· · ·bit 0 bit 1 bit n − 1

Carry in Carry in Carry in Carry in1

Figure 2: The circuit of MOD 2
𝑛 counter.

Table 2: Comparison of ETL𝑓 and ETL𝑙+𝑓 with periodicity properties.

Cells ETL𝑓 ETL𝑙+𝑓

Max bound Memory (MB) Variables Clauses Max bound Memory (MB) Variables Clauses
10 11032 279.44 154461 1180431 13009 382.784 182140 1417990
11 5138 148.22 77084 631981 6037 173.59 90570 754461
12 3702 129.571 3702 518287 4316 143.802 69072 612888

We, respectively, describe the periodicity property that
“bit 0 carries out at every even (except for 0) moment”
with ETL𝑓 and ETL𝑙+𝑓. We set the time bound to 1 hour,
and Table 2 provides the max bounds (together with related
information) which can be handled by the SAT solver within
the time bound. From it, we can see that a deeper search could
be done when specifications are described with ETL𝑙+𝑓.

To compare the overhead of ETL𝑓 and ETL𝑙+𝑓 upon
star-free properties, we would first use the DME model to
check the safety property: “no two cells will be simultaneously
acknowledged.”The results are shown in Table 3, and the time
bound is also set to 1 hour.

At the same time, we can also compare the verification
performances of the DME model upon the aforementioned
liveness property that “each request will be acknowledged
in the further.” Note that for this property, the verification
could be accomplished within the given time bound, and a
counterexample could be detected at the bound 𝑘 = 39. The
comparative results are given in Table 4.

The last group of experiments aims at comparing the
efficiencies of (syntactic/semantic) LTL BMC and ETL𝑙+𝑓

BMC. First of all, for LTL BMC, we are also concerned with
two types of encoding approaches.

(1) The Syntactic Approach. We here adopt the linear
incremental syntactic encoding proposed in [26]—to
the best of our knowledge, this is the most effective
syntactic encoding for full LTL.

(2) The Semantic Approach. ENuSMV 1.2 also supports
semantic encoding for LTL—this is tailored from our
linear encoding presented in Section 3.2.

We still use the DME circuit as themodel and the liveness
property as specification; Table 5 provides the experimental
results on LTL BMC based on syntactic and semantic encod-
ings. From that, we can see that, with semantic encoding, it
tends to generate less clauses and tends to terminate earlier
than that with the syntactic encoding, whereas the latter
requires fewer variables.

Meanwhile, we can also make a comparison between
Tables 4 and 5; we may find that the variable numbers of
semantic ETL BMC and LTL BMC are almost at a fixed
ratio—for this experiment, the ratio is 1.09 (approximately).

5. Concluding Remarks

The logic ETL𝑙+𝑓 is a variant of extended temporal logic,
it employs both finite and looping acceptance automata
connectives, and it can be considered a mixture of ETL𝑙 and
ETL𝑓. Thus, any omega-regular properties can be succinctly
described with this kind of logic, particularly for safety and
liveness properties.

Wehave presented the semantic boundedmodel checking
algorithm for ETL𝑙+𝑓. The central part of this approach is
the tableau construction. Meanwhile, we also illustrate how
to give a linear BMC encoding for it. To justify it, we
have implemented the presented algorithm (in ENuSMV
1.2). Experimental results show that ETL𝑙+𝑓 could be more
efficiently verified via BMC (in comparison to our previous
implementation for ETL𝑙+𝑓).

In this paper, verification of ETL𝑟, namely, extended tem-
poral logic using Büchi (alternatively, repeating) automata
as connectives, has not been studied. This is partly because
of the inherited difficulties of Büchi complementation
[27]. Indeed,wemaymimic the ranking complementing tech-
nique of Büchi automata [28–30]. However, this would cause
an asymptotically quadratic blow-up of variable number in
building the tableaux. Hence, a further work is about to study
the semantic BMC encodings of ETL𝑟.

Appendix

A. Omitted Proofs

A.1. Proof of Theorem 4. Just assume that 𝜎 = 𝑠0𝑠1 ⋅ ⋅ ⋅ ∈ 𝑆
𝜔
𝜑 is

the corresponding fair path of T𝜑 having 𝜋 = 𝐿𝜑(𝜎), where
𝑠𝑖 = ⟨Γ𝑖; 𝑃1,𝑖, . . . , 𝑃𝑚,𝑖; 𝑅1,𝑖, . . . , 𝑅𝑛,𝑖⟩.We now inductively prove
the following claim.

“For each 𝜓 ∈ sub(𝜑) ∪ el(𝜑), we have: Γ𝑖 ∈ sat(𝜓)
implies 𝜋, 𝑖 ⊨ 𝜓.”

(i) The basic cases are trivial.

(a) 𝜓 = ⊤, or 𝜓 =⊥. Since 𝜋, 𝑖 ⊨ ⊤ holds trivially, the case
Γ𝑖 ∈ sat(⊥) never happens.
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Table 3: Comparison of ETL𝑓 and ETL𝑙+𝑓 with safety properties.

Cells ETL𝑓 ETL𝑙+𝑓

Max bound Memory (MB) Variables Clauses Max-bound Memory (MB) Variables Clauses
3 68 29.14 4002 8091 101 38.03 4958 9898
4 62 34.76 4864 9764 87 40.34 5712 11512
5 54 40.12 5170 10313 73 45.37 6072 12088

Table 4: Comparison of ETL𝑓 and ETL𝑙+𝑓 with liveness properties.

Cells ETL𝑓 ETL𝑙+𝑓

Time (s) Variables Clauses Memory (MB) Time (s) Variables Clauses Memory (MB)
3 25.09 2400 4796 29.66 13.78 2340 4747 26.34
4 31.42 3120 6200 38.61 20.06 3042 6115 31.38
5 42.56 3840 7604 44.28 24.70 3744 7843 36.12

(b) 𝜓 = 𝑝, or 𝜓 = ¬𝑝, where 𝑝 ∈ 𝐴𝑃. Because Γ𝑖 ∈ sat(𝑝)
if and only if 𝑝 ∈ Γ𝑖 if and only if 𝑝 ∈ 𝜋(𝑖) if and only
if 𝜋, 𝑖 ⊨ 𝑝. Similar to show it when 𝜓 = ¬𝑝.

(ii) The following inductions are as routine.

(a) For the case 𝜓 = 𝜓1 ∧𝜓2, or 𝜓1 ∨𝜓2. For the first case,
we have Γ𝑖 ∈ sat(𝜓) if and only if Γ𝑖 ∈ Sat(𝜓1) and Γ𝑖 ∈
sat(𝜓2); by induction, we have 𝜋, 𝑖 ⊨ 𝜓1 and 𝜋, 𝑖 ⊨ 𝜓2;
hence 𝜋, 𝑖 ⊨ 𝜓; similar to the case of 𝜓 = 𝜓1 ∨ 𝜓2.

(b) In the case of 𝜓 = I𝜓, we have Γ𝑖 ∈ sat(𝜓) if and
only if Γ𝑖+1 ∈ sat(𝜓

), according to the definition ofΔ 𝜑

(note that in this case 𝜓 is an elementary formula of
𝜑). By induction, we have 𝜋, 𝑖+1 ⊨ 𝜓

; hence 𝜋, 𝑖 ⊨ 𝜓.

(iii) If 𝜓 = A𝑞
(𝜑1, . . . , 𝜑𝑘) is a PF-subformula, without

loss of generality, assume 𝜓 = 𝜓𝑗 (i.e., the 𝑗th PF-subformula
of 𝜑), where 1 ≤ 𝑗 ≤ 𝑚 and A𝑞

= ⟨{𝑎1, . . . , 𝑎𝑘}, 𝑄, 𝛿, 𝑞, 𝐹⟩,
then the proof is given as follows.

Since 𝜎 is a fair path, there exists 𝑖2 > 𝑖1 > 𝑖, such that
𝑃𝑗,𝑖
1

= 𝑃𝑗,𝑖
2

= 0 and 𝑃𝑗,𝑐 ̸= 0 for each 𝑖1 < 𝑐 < 𝑖2.

(a) First, let 𝑞0 = 𝑞; then we have Γ𝑖 ∈ sat(A𝑞
0(𝜑1, . . . ,

𝜑𝑘)).
(b) For each 𝑡 ≤ 𝑖1 − 𝑖, if 𝑞𝑡 ∉ 𝐹 and Γ𝑖+𝑡 ∈ sat(A𝑞

𝑡(𝜑1,

. . . , 𝜑𝑘)), then, according to the definition of sat, there
is some 1 ≤ 𝑘𝑡 ≤ 𝑘 and a 𝑞 such that Γ𝑖+𝑡 ∈ sat(𝜑𝑘

𝑡

),
𝑞

∈ 𝛿(𝑞𝑡, 𝑎𝑘

𝑡

), and Γ𝑖+𝑡 ∈ sat(IA𝑞
(𝜑1, . . . , 𝜑𝑘)) (equiv-

alently, Γ𝑖+𝑡+1 ∈ sat(A𝑞
(𝜑1, . . . , 𝜑𝑘)), as discussed

above). Now, we let 𝑞𝑡+1 = 𝑞
.

Till now, if there is some 𝑡 having 𝑞𝑡 ∈ 𝐹, we stop the process-
ing. Otherwise, we go on with the following processing.

(a) When 𝑡 = 𝑖1 − 𝑖 + 1, we have Γ𝑡 ∈ sat(A𝑞
𝑡(𝜑1, . . . , 𝜑𝑘)).

Since 𝑃𝑗,𝑖
1

= 0, according to the definition of Δ+
𝜓
𝑗

, we
have 𝑞𝑡 ∈ 𝑃𝑗,𝑖

1
+1 = 𝑃𝑗,𝑖+𝑡.

(b) For each 𝑖1 − 𝑖 < 𝑡 ≤ 𝑖2 − 𝑖, if 𝑞𝑡 ∈ 𝑃𝑗,𝑖+𝑡 and 𝑞𝑡 ∉

𝐹, according to Δ+
𝜓
𝑗

, there is some 1 ≤ 𝑘𝑡 ≤ 𝑘, such
that Γ𝑖+𝑡 ∈ sat(𝜑𝑘

𝑡

), and there is some 𝑞 ∈ 𝑃𝑗,𝑖+𝑡+1 ∩

𝛿(𝑞𝑡, 𝑎𝑘
𝑡

). Now, we let 𝑞𝑡+1 = 𝑞
.

Notice that 𝑃𝑗,𝑖
2

= 0, and we have the inductive assertion that
𝑞𝑡 ∉ 𝐹 implies 𝑞𝑡 ∈ 𝑃𝑗,𝑖+𝑡; hence there must exist some 𝑞𝑡 ∈ 𝐹.

Thus,A have some accepting prefix 𝑎𝑘
0

𝑎𝑘
1

⋅ ⋅ ⋅ 𝑎𝑘
ℓ

of some
infinite word.On the other hand, by induction, Γ𝑖+𝑡 ∈ sat(𝜑𝑘,𝑡)

implies 𝜋, 𝑖 + 𝑡 ⊨ 𝜑𝑘
𝑡

. Hence, we have 𝜋, 𝑖 ⊨ 𝜓 by definition.
(iv) If 𝜓 = ¬A𝑞

(𝜑1, . . . , 𝜑𝑘) is an NF-subformula of 𝜑 and
assume that A𝑞

= ⟨{𝑎1 . . . , 𝑎𝑘}, 𝑄, 𝛿, 𝑞, 𝐹⟩, then the proof is
given as below.

Assume by contradiction it is not the case; then 𝜋, 𝑖 ⊨

A𝑞
(𝜑1, . . . , 𝜑𝑘) holds. Therefore, there exist some accepting

prefix 𝑎𝑘
0

𝑎𝑘
1

⋅ ⋅ ⋅ 𝑎𝑘
ℓ

of some infinite word and a state sequence
𝑞0𝑞1⋅ ⋅ ⋅ 𝑞ℓ𝑞ℓ+1 such that

(a) 𝑞0 = 𝑞, 𝑞ℓ+1 ∈ 𝐹 and each 𝑞𝑡+1 ∈ 𝛿(𝑞𝑡, 𝑎𝑘
𝑡

),
(b) for each 𝑡 ≤ ℓ, we have 𝜋, 𝑖 + 𝑡⊨ 𝜑𝑘

𝑡

.

Then, we have the following facts.

(a) Γ𝑖+ℓ+1 ∈ sat(A𝑞
ℓ+1(𝜑1, . . . , 𝜑𝑘)) = 2

el(𝜑), because 𝑞ℓ+1 ∈
𝐹.

(b) Assume that Γ𝑖+𝑡+1 ∈ sat(A𝑞
𝑡+1(𝜑1, . . . , 𝜑𝑘)), where

𝑡 ≤ ℓ; then Γ𝑖+𝑡 ∈ sat(IA𝑞
𝑡+1(𝜑1, . . . , 𝜑𝑘)). In addition,

𝜋, 𝑖 + 𝑡 ⊨ 𝜑𝑘
𝑡

implies that Γ𝑖+𝑡 ∈ sat(𝜑𝑘
𝑡

)—otherwise
(it is not hard to show that if there is an infinite path
inT𝜑 starting from 𝑠𝑖+𝑡, then, for each 𝜂, either Γ𝑖+𝑡 ∈
sat(𝜂) or Γ𝑖+𝑡 ∈ sat(¬𝜂) holds), Γ𝑖+𝑡 ∈ sat(¬𝜑𝑘

𝑡

); then
we have 𝜋, 𝑖 + 𝑡 ⊨ ¬𝜑𝑘

𝑡

by induction contradicts!
Hence, by the definition of sat, we have Γ𝑖+𝑡 ∈

sat(A𝑞
𝑡(𝜑1, . . . , 𝜑𝑘)).

Then, we have Γ𝑖 ∈ sat(A𝑞
0(𝜑1, . . . , 𝜑𝑘))when 𝑡 = 0. However,

it contradicts the premiss Γ𝑖 ∈ sat(¬A𝑞
(𝜑1, . . . , 𝜑𝑛)), because

𝑞0 = 𝑞. Therefore, the assumption 𝜋, 𝑖 ⊨ A𝑞
(𝜑1, . . . , 𝜑𝑘) is a

falsity, and this implies that 𝜋, 𝑖 ⊨ 𝜓 holds.
(v) If 𝜓 = A𝑞

(𝜑1, . . . , 𝜑𝑘) is a PL-subformula of 𝜑, where
A𝑞

= ({𝑎1, . . . , 𝑎𝑘}, 𝑄, 𝛿, 𝑞, 𝐹), then we have the following
proof in the case that Γ𝑖 ∈ sat(𝜓).

(a) Let 𝑞0 = 𝑞, and Γ𝑖 ∈ sat(A𝑞
0(𝜑1, . . . , 𝜑𝑘)).

(b) For each 𝑡 ≥ 0, assume that Γ𝑖+𝑡 ∈ sat(A𝑞
𝑡(𝜑1, . . . ,

𝜑𝑘)); then by the definition of sat, there is some 1 ≤

𝑘𝑡 ≤ 𝑘, such that Γ𝑖+𝑡 ∈ sat(𝜑𝑘
𝑡

), and there is
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Table 5: Comparison of syntactic/semantic LTL BMC with liveness properties.

Cells Syntactic LTL BMC encoding Semantic LTL BMC encoding
Time (s) Variables Clauses Memory (MB) Time (s) Variables Clauses Memory (MB)

3 9.34 2052 5474 32.66 8.59 2128 4291 24.79
4 16.71 2736 6806 35.74 10.87 2812 5623 28.44
5 24.06 3420 8138 37.02 15.90 3469 6955 32.28

some 𝑞 ∈ 𝛿(𝑞𝑡, 𝑎𝑘
𝑡

) such that 𝑠𝑎𝑡(IA𝑞
(𝜑1, . . . , 𝜑𝑘))

(equivalently, Γ𝑖+𝑡+1 ∈ sat(A𝑞
(𝜑1, . . . , 𝜑𝑘)) holds).

Now, we let 𝑞𝑡+1 = 𝑞
.

Hence, we have an accepting run ofA𝑞 over the infinite word
𝑎𝑘
0

𝑎𝑘
1

⋅ ⋅ ⋅ . Meanwhile, by induction, Γ𝑖+𝑡 ∈ sat(𝜑𝑘
𝑡

) implies
that 𝜋, 𝑖 + 𝑡 ⊨ 𝜑𝑘

𝑡

. By definition, we have 𝜋, 𝑖 ⊨ 𝜓 in this
case.

(vi) Lastly, consider the case 𝜓 = ¬A𝑞
(𝜑1, . . . , 𝜑𝑘), where

A𝑞
= ⟨{𝑎1, . . . , 𝑎𝑘}, 𝑄, 𝛿, 𝑞, 𝐹⟩ is a looping acceptance automa-

ton.
Suppose that Γ𝑖 ∈ sat(𝜓), and assume by contradiction

that 𝜋, 𝑖 ⊭ 𝜓; then there is an infinite word 𝑤 = 𝑎𝑘
0

𝑎𝑘
1

⋅ ⋅ ⋅ ∈

L(A𝑞
) and 𝜋, 𝑖 + 𝑡 ⊨ 𝜑𝑘

𝑡

for each 𝑡 ≥ 0. Also, let the
corresponding run ofA𝑞 on 𝑤 is 𝑞0𝑞1 ⋅ ⋅ ⋅ , where 𝑞0 = 𝑞.

Without loss of generality, suppose that 𝜓 = ¬𝜂𝑗 (i.e., the
𝑗th NL-subformula); since 𝜎 is a fair path, there must exist
some 𝑖2 > 𝑖1 > 𝑖 such that 𝑅𝑗,𝑖

1

= 𝑅𝑗,𝑖
2

= 0 and 𝑅𝑗,𝑐 ̸= 0 for
each 𝑖1 < 𝑐 < 𝑖2. Then

(a) Γ𝑖 ∈ sat(¬A𝑞
0(𝜑1, . . . , 𝜑𝑘)), because 𝑞0 = 𝑞,

(b) as discussed before (in the case of NF-subformula),
𝜋, 𝑖 + 𝑡 ⊨ 𝜑𝑘

𝑡

implies that Γ𝑖+𝑡 ∈ sat(𝜑𝑘
𝑡

). For each
𝑡 > 0, if Γ𝑖+𝑡 ∈ sat(¬A𝑞

𝑡(𝜑1, . . . , 𝜑𝑘)) holds, according
to the definition of sat, for each 𝑞 ∈ 𝛿(𝑞𝑡, 𝑎𝑘

𝑡

), we have
Γ𝑖+𝑡�∈ sat(IA

𝑞
(𝜑1, . . . , 𝜑𝑘)). Note that 𝑞𝑡+1 ∈ 𝛿(𝑞𝑡, 𝑎𝑘);

hence Γ𝑖+𝑡+1 ∈ sat(¬A𝑞
𝑡+1(𝜑1, . . . , 𝜑𝑘)).

Therefore, we have Γ𝑖+𝑡 ∈ sat(¬A𝑞
𝑡(𝜑1, . . . , 𝜑𝑘)) for each 𝑡 ≥ 0.

According to the definition of Δ−
¬𝜂
𝑗

, we have

(a) 𝑞𝑖
1
+1−𝑖 ∈ 𝑅𝑗,𝑖

1
+1, since 𝑅𝑗,𝑖

1

= 0,
(b) for each 𝑡 having 𝑞𝑡 ∈ 𝑅𝑗,𝑖+𝑡, since Γ𝑖+𝑡 ∈ sat(𝜑𝑘

𝑡

), then
𝑞

∈ 𝛿(𝑞𝑡, 𝑎𝑘

𝑡

) implies 𝑞 ∈ 𝑅𝑗,𝑖+𝑡+1. Therefore, 𝑞𝑡+1 ∈

𝑅𝑗,𝑖+𝑡+1.

The above induction implies that 𝑞𝑡 ∈ 𝑅𝑗,𝑖+𝑡 for each 𝑡 ≥ 𝑖1 −

𝑖 + 1. However, it is impossible since 𝑅𝑗,𝑖
2

= 0. Hence, the
assumption 𝜋, 𝑖 ⊨ A𝑞

(𝜑1, . . . , 𝜑𝑘) is incorrect, which implies
that 𝜋, 𝑖 ⊨ 𝜓 also holds in this case.

Clearly, the above induction is complete. Because we
require that Γ0 ∈ sat(𝜑), we have 𝜋, 0 ⊨ 𝜑.

A.2. Proof of Theorem 5. Suppose that 𝜋 ⊨ 𝜑 to show 𝜋 ∈

L(T𝜑), we need to first construct an infinite state sequence
𝜎 = 𝑠0𝑠1 ⋅ ⋅ ⋅ , where 𝑠𝑖 = ⟨Γ𝑖; 𝑃1,𝑖, . . . , 𝑃𝑚,𝑖; 𝑅1,𝑖, . . . , 𝑅𝑛,𝑖⟩ ∈ 𝑆𝜑,
and then we will show that 𝜎 is a fair path of T𝜑 and 𝜋 =

𝐿𝜑(𝜎).
(i) The construction of Γ𝑖 is as follows.

For each 𝑖 ≥ 0, we let Γ𝑖 = {𝜓 ∈ el(𝜑) | 𝜋, 𝑖 ⊨ 𝜓}. We will
now show the following claim.

“For each 𝜓 ∈ sub(𝜑) ∪ el(𝜑), we have Γ𝑖 ∈ sat(𝜓) if
and only if 𝜋, 𝑖 ⊨ 𝜓.”

By induction of the structure of 𝜓 the following hold.

(a) Cases are trivial when 𝜓 =⊥ or 𝜓 = ⊤.
(b) If 𝜓 = 𝑝 ∈ 𝐴𝑃, then 𝜓 ∈ el(𝜑). Thus, Γ𝑖 ∈ sat(𝑝) if

and only if 𝑝 ∈ Γ𝑖 if and only if 𝑝 ∈ 𝜋(𝑖) if and only if
𝜋, 𝑖 ⊨ 𝑝. Similar to show the case of 𝜓 = ¬𝑝.

(c) Another basic case is 𝜓 = I𝜓: note that in this case
we also have𝜓 ∈ el(𝜑); hence Γ𝑖 ∈ sat(I𝜓

) if and only
if 𝜓 ∈ Γ𝑖 if and only if 𝜋, 𝑖 ⊨ 𝜓.

(d) If 𝜓 = 𝜓1 ∧ 𝜓2, then Γ𝑖 ∈ sat(𝜓) if and only if Γ𝑖 ∈
sat(𝜓1) and Γ𝑖 ∈ sat(𝜓2). By induction, we have 𝜋, 𝑖 ⊨
𝜓1 and 𝜋, 𝑖 ⊨ 𝜓2 that is, 𝜋, 𝑖 ⊨ 𝜓. Similar to show the
case of 𝜓 = 𝜓1 ∨ 𝜓2.

(e) If 𝜓 = A𝑞
(𝜑1, . . . , 𝜑𝑘), where A𝑞

= ⟨{𝑎1, . . . , 𝑎𝑘},

𝑄, 𝛿, 𝑞, 𝐹⟩ and ifA is a looping acceptance automaton
or a finite acceptance automaton, but 𝑞 �∈𝐹, it is not
difficult to show that

A
𝑞
(𝜑1, . . . , 𝜑𝑘) ←→ ⋁

1≤𝑡≤𝑘

(𝜑𝑡∧ ⋁

𝑞∈𝛿(𝑞,𝑎𝑡)

IA
𝑞
(𝜑1, . . . , 𝜑𝑘)) .

(A.1)

Then by induction and according to the scheme
sat(𝜓

∨ 𝜓

) = sat(𝜓

) ∪ sat(𝜓
) and sat(𝜓

∧ 𝜓

) =

sat(𝜓
) ∩ sat(𝜓

), we have 𝜋, 𝑖 ⊨ 𝜓 if and only if

Γ𝑖 ∈ ⋃

1≤𝑡≤𝑘

(sat (𝜑𝑡) ∩ ⋃

𝑞∈𝛿(𝑞,𝑎𝑡)

sat (IA𝑞
(𝜑1, . . . , 𝜑𝑘)))

= sat (A𝑞
(𝜑1, . . . , 𝜑𝑘)) .

(A.2)

Otherwise, ifA is a finite acceptance automaton and
𝑞 ∈ 𝐹, then

A
𝑞
(𝜑1, . . . , 𝜑𝑘) ←→ ⊤. (A.3)

In this case, sat(A𝑞
(𝜑1, . . . , 𝜑𝑘)) = 2

el(𝜑), and hence
the claim “𝜋, 𝑖 ⊨ 𝜓 if and only if Γ𝑖 ∈ sat(𝜓)” also
holds.

(f) If 𝜓 = ¬A𝑞
(𝜑1, . . . , 𝜑𝑘), then Γ𝑖 ∈ sat(𝜓) if and only

if Γ𝑖 �∈ sat(A
𝑞
(𝜑1, . . . , 𝜑𝑘)) if and only if 𝜋, 𝑖 ⊭ A𝑞

(𝜑1,

. . . , 𝜑𝑘) if and only if 𝜋, 𝑖 ⊨ 𝜓.
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Now, we have the following properties.

(1) Since 𝜋, 0 ⊨ 𝜑, we have Γ0 ∈ sat(𝜑), and hence 𝑠0 ∈ 𝐼𝜑.
(2) For each 𝑖 and each I𝜓 ∈ el(𝜑), we have Γ𝑖 ∈ sat(I𝜓)

if and only if 𝜋, 𝑖 ⊨ I𝜓 if and only if 𝜋, 𝑖 + 1 ⊨ 𝜓 if and
only if Γ𝑖+1 ∈ sat(𝜓).

(3) For each 𝑝 ∈ 𝐴𝑃 and each 𝑖, we have 𝑝 ∈ 𝜋(𝑖) if and
only if 𝜋, 𝑖 ⊨ 𝑝 if and only if 𝑝 ∈ Γ𝑖. Hence, 𝜋(𝑖) =

Γ𝑖 ∩ 𝐴𝑃.

(ii) The construction of 𝑃𝑗,𝑖, for 1 ≤ 𝑗 ≤ 𝑚 is as follows.
Assume that the 𝑗th PF-subformula 𝜓𝑗 = A𝑞

(𝜑1, . . . , 𝜑𝑘)

and the automata connective A𝑞
= ⟨{𝑎1, . . . , 𝑎𝑘}, 𝑄, 𝛿, 𝑞, 𝐹⟩;

then the construction is as follows.

(a) Wewill find a series of “key positions” ℓ0, ℓ1, . . ., having
𝑃𝑗,ℓ
𝑡

= 0 for each ℓ𝑡. First, let ℓ0 = 0, and, for each 𝑡 ≥
0, once ℓ𝑡 has been determined, we use the following
two steps to determine ℓ𝑡+1 and each 𝑃𝑗,𝑐 for ℓ𝑡 < 𝑐 <

ℓ𝑡+1.

(b) Let 𝑃𝑗,ℓ
𝑡

= 0, and let 𝑃𝑗,ℓ
𝑡
+1 = {𝑞


| 𝜋, ℓ𝑡 + 1 ⊨ A𝑞

(𝜑1,

. . . , 𝜑𝑘)}. For each 𝑞

∈ 𝑃𝑗,ℓ

𝑡
+1, there must exit a finite

word 𝑤𝑞 = 𝑎𝑘
0

𝑎𝑘
1

⋅ ⋅ ⋅ 𝑎𝑘
𝑠

and a finite state sequence
𝜒𝑞 = 𝑞0𝑞1 ⋅ ⋅ ⋅ 𝑞𝑠+1 such that 𝑞0 = 𝑞

, 𝑞𝑠+1 ∈ 𝐹, and, for
each 𝑐 ≤ 𝑠, we have 𝑞𝑐+1 ∈ 𝛿(𝑞𝑐, 𝑎𝑘

𝑐

) and 𝜋, ℓ𝑡 + 𝑐+ 1 ⊨
𝜑𝑘
𝑠

(equivalently, Γℓ
𝑡
+𝑐+1 ∈ sat(𝜑𝑘

𝑠

)).

(c) Now, let ℓ𝑡+1 = ℓ𝑡 +max{|𝜒𝑞 | | 𝑞

∈ 𝑃𝑗,ℓ

𝑡
+1} + 1. And

we let

𝑃𝑗,𝑐 = {𝜒𝑞 (𝑐 − ℓ𝑡 − 1)

𝜒𝑞


> 𝑐 − ℓ𝑡 − 1} (A.4)

for each ℓ𝑡 + 1 < 𝑐 < ℓ𝑡+1, where 𝜒𝑞(𝑠) is the 𝑠th ele-
ment of 𝜒𝑞 .

Now, it is not hard to check that ((Γ𝑖, 𝑃𝑗,𝑖), (Γ𝑖+1, 𝑃𝑗+1)) ∈ Δ
+
𝜓
𝑗

for each 𝑖. Moreover, for each 𝑡, we have 𝑃𝑗,ℓ
𝑡

= 0.
(iii) The construction of 𝑅𝑗,𝑖 for each 1 ≤ 𝑗 ≤ 𝑛 is as

follows.
Assume that the 𝑗thNL-subformula¬𝜂𝑗=¬A

𝑞
(𝜑1, . . . , 𝜑𝑘)

and the automata connective A𝑞
= ⟨{𝑎1, . . . , 𝑎𝑘}, 𝑄, 𝛿, 𝑞, 𝐹⟩;

then the construction is as follows.

(a) First, let ℓ0 = 0, and, for each 𝑡 ≥ 0, once ℓ𝑡 is decided,
we use the following steps to determine ℓ𝑡+1 and each
set 𝑅𝑗,𝑐 for ℓ𝑡 < 𝑐 < ℓ𝑡+1.

(b) Let 𝑅𝑗,ℓ
𝑡

= 0, and let 𝑅𝑗,ℓ
𝑡
+1 = {𝑞


| Γℓ
𝑡
+1 ∈ sat(¬A𝑞

(𝜑1,

. . . , 𝜑𝑘))}. For each 𝑐 ≥ ℓ𝑡 + 1, let

𝑅𝑗,𝑐+1 = ⋃

𝑞∈𝑅
𝑗,𝑐

{𝛿 (𝑞

, 𝑎𝑠) | 1 ≤ 𝑠 ≤ 𝑘, Γ𝑐 ∈ sat (𝜑𝑠)} . (A.5)

(c) Since we have shown that Γ, 𝑖 ⊨ 𝜓 if and only if
𝜋, 𝑖 ⊨ 𝜓 for every 𝜓 ∈ sub(𝜑) ∪ el(𝜓), it is not hard
to show that if 𝑅𝑗,ℓ

𝑡
+1 ̸= 0, then there is some 𝑐 > ℓ𝑡 +1

such that 𝑅𝑗,𝑐 = 0—otherwise (because, if 𝑅𝑗,𝑐 ̸= 0

for each 𝑡 > ℓ𝑡, using König’s lemma, we may find
a run of A𝑞 over some infinite word), we can show

𝜋, ℓt + 1 ⊨ A𝑞
(𝜑1, . . . , 𝜑𝑘) for some 𝑞 ∈ 𝑅𝑗,ℓ

𝑡
+1, and

this implies that Γℓ
𝑡
+1 ∈ sat(A𝑞

(𝜑1, . . . , 𝜑𝑘)), which is
contradiction!

If 𝑅𝑗,ℓ
𝑡
+1 = 0, let ℓ𝑡+1 = ℓ𝑡 + 1; otherwise, let ℓ𝑡+1 = 𝑐.

According to the construction, it can be examined that
((Γ𝑖, 𝑅𝑗,𝑖), (Γ𝑖+1, 𝑅𝑗,𝑖+1)) ∈ Δ

−
¬𝜂
𝑗

for each 𝑖. In addition, we have
𝑅𝑗,ℓ
𝑡

= 0 for each 𝑡 ≥ 0.
Taking all the above into account, by definition, we may

conclude that (𝑠𝑖, 𝑠𝑖+1) ∈ 𝜌𝜑 for every 𝑖 ≥ 0; hence 𝜎 is a fair
path ofT𝜑. According to the construction of Γ𝑖s, we have that
𝜋 = 𝐿𝜑(𝜎); hence 𝜋 ∈ L(T𝜑).
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