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Singular two-point boundary value problems (BVPs) are investigated using a new technique, namely, optimal homotopy asymptotic
method (OHAM). OHAM provides a convenient way of controlling the convergence region and it does not need to identify an
auxiliary parameter. The effectiveness of the method is investigated by comparing the results obtained with the exact solution,
which proves the reliability of the method.

1. Introduction

Consider singular two-point boundary value problems
(BVPs) of the form

1

𝑝
𝑢
󸀠󸀠

(𝑥) +
1

𝑞 (𝑥)
𝑢
󸀠

(𝑥) +
1

𝑟 (𝑥)
= 𝑔 (𝑥) , 0 ≤ 𝑡 ≤ 1, (1)

subject to the boundary conditions

𝑢 (0) = 𝛼
1
, 𝑢 (1) = 𝛽, or 𝑢

󸀠

(0) = 𝛼
2
, 𝑢 (1) = 𝛽, (2)

where𝑝, 𝑞, 𝑟, and 𝑔 are continuous functions on (0, 1] and the
parameters 𝛼

1
, 𝛼
2
, and 𝛽 are real constants.

Problems of the forms (1) and (2) are encountered in the
fields of fluid mechanics, reaction-diffusion processes, chem-
ical kinetics, optimal control, and other branches of applied
mathematics [1, 2]. Many different numerical methods have
been proposed by various authors regarding singular two-
point boundary value problems such as variational iteration
method (VIM) [3], cubic splines [4], differential transfor-
mation method (DTM) [5], the Adomian decomposition
method (ADM) [6], continuous genetic algorithm (CGA) [7],
sinc-Galerkin method and homotopy perturbation method

(HPM) [8–13], and homotopy analysis method (HAM)
[14–23]. The existence of a unique solution of (1) and (2) was
discussed in [24, 25].

Recently, Marinca et al. introduced and developed opti-
mal homotopy asymptotic method (OHAM) in a series of
papers [26–29] for the approximate solutions of nonlinear
problems. OHAMdoes not depend on the presence of a small
parameter. An advantage of OHAM is that it does not need
to identify the ℎ-curve as in HAM for convergence region.
In OHAM, the control and adjustment of the convergence
region is provided in a convenient way. Furthermore, it has
a built-in convergence criteria similar to HAM but with a
greater degree of flexibility.

In this paper, OHAM is presented to create an approx-
imate analytic solution of singular two-point boundary
value problems. The method is directly applied without
any linearization and discretizations and without splitting
the nonhomogeneous term. The structure of this paper is
organized as follows: Section 2 is devoted to the analysis of the
proposed method, in Section 3, three examples are employed
to illustrate the accuracy and computational efficiency of this
approach, and lastly, conclusions are given in the last section.
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2. Analysis of the Method

To illustrate the basic idea of OHAM [30], we consider the
following differential equation:

𝐿 (𝑢 (𝑥)) + 𝑔 (𝑥) + 𝑁 (𝑢 (𝑥)) = 0, 𝐵 (𝑢,
d𝑢

d𝑥
) = 0, (3)

where 𝐿 is the chosen linear operator, 𝑁 is the linear or
nonlinear operator, 𝑢(𝑥) is an unknown function, 𝑥 denotes
an independent variable, 𝑔(𝑥) is a known function, and 𝐵 is a
boundary operator.

According to the basic idea OHAM we construct a
homotopy ℎ(V(𝑥, 𝑝), 𝑝) : 𝑅 × [0, 1] → 𝑅 which satisfies

(1 − 𝑝) [𝐿 (V (𝑥, 𝑝)) − 𝑢
0

(𝑥)]

= 𝐻 (𝑝) [𝐿 (V (𝑥, 𝑝)) + 𝑔 (𝑥) + 𝑁 (V (𝑥, 𝑝))] ,

𝐵 (V (𝑥, 𝑝) ,
𝜕V (𝑥, 𝑝)

𝜕𝑥
) = 0,

(4)

where 𝑥 ∈ 𝑅 and 𝑝 ∈ [0, 1] is an embedding parameter,
𝐻(𝑝) is a nonzero auxiliary function for 𝑝 ̸= 0, 𝐻(0) = 0,
and V(𝑥, 𝑝) is an unknown function. Obviously, when 𝑝 = 0

and 𝑝 = 1 it holds that V(𝑥, 0) = 𝑢
0
(𝑥) and V(𝑥, 1) = 𝑢(𝑥),

respectively.Thus, as 𝑝 varies from 0 to 1, the solution V(𝑥, 𝑝)

approaches from 𝑢
0
(𝑥) to 𝑢(𝑥) where 𝑢

0
(𝑥) is the initial guess

that satisfies the linear operator and the boundary conditions

𝐿 (𝑢
0

(𝑥)) = 0, 𝐵 (𝑢
0
,
d𝑢
0

d𝑥
) = 0. (5)

Next, we choose the auxiliary function 𝐻(𝑝) in the form

𝐻 (𝑝) = 𝑝𝐶
1

+ 𝑝
2
𝐶
2

+ 𝑝
3
𝐶
3

+ ⋅ ⋅ ⋅ , (6)

where 𝐶
1
, 𝐶
2
, 𝐶
3
, . . . are constants which can be determined

later. 𝐻(𝑝) can be expressed in many forms as reported by
Marinca et al. [26–29].

To get an approximate solution, we expand V(𝑥, 𝑝, 𝐶
𝑖
) in

Taylor’s series about 𝑝 in the following manner:

V (𝑥, 𝑝, 𝐶
𝑖
) = 𝑢
0

(𝑥) +

∞

∑

𝑘=1

𝑢
𝑘

(𝑥, 𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑘
) 𝑝
𝑘
. (7)

Substituting (7) into (4) and equating the coefficient of like
powers of 𝑝, we obtain the following linear equations. The
zeroth-order problem is given by (5); the first- and second-
order problems are given as

𝐿 (𝑢
1

(𝑥)) + 𝑔 (𝑥) = 𝐶
1
𝑁
0

(𝑢
0

(𝑥)) , 𝐵 (𝑢
1
,
d𝑢
1

d𝑥
) = 0,

(8)
𝐿 (𝑢
2

(𝑥)) − 𝐿 (𝑢
1

(𝑥))

= 𝐶
2
𝑁
0

(𝑢
0

(𝑥))

+ 𝐶
1

[𝐿 (𝑢
1

(𝑥) + 𝑁
1

(𝑢
0

(𝑥) , 𝑢
1

(𝑥)) ] ,

𝐵 (𝑢
2
,
d𝑢
2

d𝑥
) = 0.

(9)

The general governing equations for 𝑢
𝑘
(𝑥) are

𝐿 (𝑢
𝑘

(𝑥)) − 𝐿 (𝑢
𝑘−1

(𝑥))

= 𝐶
𝑘
𝑁
0

(𝑢
0

(𝑥))

+

𝑘−1

∑

𝑖=1

𝐶
𝑖
[𝐿 (𝑢
𝑘−𝑖

(𝑥)) + 𝑁
𝑘−𝑖

× (𝑢
0

(𝑥) , 𝑢
1

(𝑥) , . . . , 𝑢
𝑘−1

(𝑥))] ,

𝐵 (𝑢
𝑘
,
d𝑢
𝑘

d𝑥
) = 0,

(10)

where 𝑘 = 2, 3, . . . and 𝑁
𝑚

(𝑢
0
(𝑥), 𝑢
1
(𝑥), . . . , 𝑢

𝑚
(𝑥)) is the

coefficient of 𝑝
𝑚 in the expansion of 𝑁(V(𝑥, 𝑝)) about the

embedding parameter 𝑝:

𝑁 (V (𝑥, 𝑝, 𝐶
𝑖
))

= 𝑁
0

(𝑢
0

(𝑥))

+

∞

∑

𝑚=1

𝑁
𝑚

(𝑢
0

(𝑥) , 𝑢
1

(𝑥) , . . . , 𝑢
𝑚

(𝑥)) 𝑝
𝑚

.

(11)

It has been observed that the convergence of the series (7)
depends upon the auxiliary constants 𝐶

1
, 𝐶
2
, 𝐶
3
, . . .. If it is

convergent at 𝑝 = 1, one has

V (𝑥, 𝐶
𝑖
) = 𝑢
0

(𝑥) +

∞

∑

𝑘=1

𝑢
𝑘

(𝑥, 𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑘
) . (12)

The result of the 𝑚th-order approximation is given

�̃� (𝑥, 𝐶
1
, 𝐶
2
, 𝐶
3
, . . . , 𝐶

𝑚
) = 𝑢
0

(𝑥) +

𝑚

∑

𝑖=1

𝑢
𝑖
(𝑥, 𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑖
) .

(13)

Substituting (12) into (3) yields the following residual:

𝑅 (𝑥, 𝐶
1
, 𝐶
2
, 𝐶
3
, . . . , 𝐶

𝑚
)

= 𝐿 (�̃� (𝑥, 𝐶
1
, 𝐶
2
, 𝐶
3
, . . . , 𝐶

𝑚
)) + 𝑔 (𝑥)

+ 𝑁 (�̃� (𝑥, 𝐶
1
, 𝐶
2
, 𝐶
3
, . . . , 𝐶

𝑚
)) .

(14)

If 𝑅 = 0, then �̃� will be the exact solution. Generally such
a case will not arise for nonlinear problems, but we can
minimize the functional

𝐽 (𝐶
1
, 𝐶
2
, 𝐶
3
, . . . , 𝐶

𝑚
) = ∫

𝑏

𝑎

𝑅
2

(𝑥, 𝐶
1
, 𝐶
2
, 𝐶
3
, . . . , 𝐶

𝑚
) 𝑑𝑥,

(15)

where 𝑎 and 𝑏 are the endpoints of the given problem. The
unknown constants 𝐶

𝑖
(𝑖 = 1, 2, 3, . . . , 𝑚) can be identified

from the conditions
𝜕𝐽

𝜕𝐶
1

=
𝜕𝐽

𝜕𝐶
2

= ⋅ ⋅ ⋅ =
𝜕𝐽

𝜕𝐶
𝑚

= 0. (16)

With these constants known, the approximate solution (of
order 𝑚) is well determined.
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3. Numerical Examples

To illustrate the effectiveness of the OHAM we will consider
three examples of singular two-point BVPs.

Example 1. Consider the following singular two-point BVP
[2, 31]:

𝑢
󸀠󸀠

(𝑥) +
1

𝑥
𝑢
󸀠

(𝑥) + 𝑢 (𝑥) = 𝑔 (𝑥) , 0 ≤ 𝑥 ≤ 1, (17)

subject to the boundary conditions

𝑢 (0) = 0, 𝑢 (1) = 0; (18)

the exact solution of this problem in case of

𝑔 (𝑥) = 4 − 9𝑥 + 𝑥
2

− 𝑥
3 (19)

is given by

𝑢 (𝑥) = 𝑥
2

− 𝑥
3
. (20)

According to the OHAM formulation described in the above
section, we start with

𝐿 [V (𝑥, 𝑝)] = 𝑥
𝑑
2V (𝑥, 𝑝)

𝑑𝑥
2

+
1

𝑥

𝑑V (𝑥, 𝑝)

𝑑𝑥
,

𝑁 [V (𝑥, 𝑝)] = 𝑥
𝑑
2V (𝑥, 𝑝)

𝑑𝑥
2

+
𝑑V (𝑥, 𝑝)

𝑑𝑥
+ 𝑥V (𝑥, 𝑝) − 𝑥𝑔 (𝑥) .

(21)

Now, apply (4) at 𝑝 = 0 to give the zeroth-order problem as
follows:

𝑢
󸀠󸀠

0
(𝑥) = 0; (22)

with conditions

𝑢
0

(0) = 0, 𝑢
0

(1) = 0, (23)

it gives us

𝑢
0

(𝑥) = 0. (24)

Now, apply (8) to give the first-order problem as follows:

𝑢
󸀠󸀠

1
(𝑥, 𝐶
1
) = − 4𝐶

1
+ 9𝑥𝐶

1
− 𝑥
2
𝐶
1

+ 𝑥
3
𝐶
1

+ 𝑐
1
𝑢
0

(𝑥)

+
𝑢
󸀠

0
(𝑥)

𝑥
+

𝐶
1
𝑢
󸀠

0
(𝑥)

𝑥
−

𝑢
󸀠

1
(𝑥)

𝑥
+ 𝐶
1
(𝑢
0
)
󸀠󸀠

(𝑥)

(25)

subject to the boundary conditions

𝑢
1

(0) = 0, 𝑢
1

(1) = 0 (26)

and having the solution

𝑢
1

(𝑥, 𝐶
1
) =

1

400
(9 − 400𝑥

2
+ 400𝑥

3
− 25𝑥

4
+ 16𝑥

5
) 𝐶
1
.

(27)

The second-order problem can be defined by (9):

𝑢
󸀠󸀠

2
(𝑥, 𝐶
1
, 𝐶
2
)

= − 4𝐶
2

+ 9𝑥𝐶
2

− 𝑥
2
𝐶
2

+ 𝑥
3
𝐶
2

+ 𝐶
2
𝑢
0

(𝑥)

+ 𝐶
1
𝑢
1

(𝑥) +
𝐶
2
𝑢
󸀠

0
(𝑥)

𝑥
+

𝑢
󸀠

1
(𝑥)

𝑥
+

𝐶
1
𝑢
󸀠

1
(𝑥)

𝑥

−
𝑢
󸀠

2
(𝑥)

𝑥
+ 𝐶
2
𝑢
󸀠󸀠

0
(𝑥) + 𝑢

󸀠󸀠

1
(𝑥) + 𝐶

1
𝑢
󸀠󸀠

1
(𝑥)

(28)

subject to the boundary problem

𝑢
2

(0) = 0, 𝑢
2

(1) = 0 (29)

and has the solution
𝑢
2

(𝑥, 𝐶
1
, 𝐶
2
)

= (
9

400
− 𝑥
2

+ 𝑥
3

−
𝑥
4

16
+

𝑥
5

25
) 𝐶
1

+ (
1777

44100
−

1591𝑥
2

1600
+ 𝑥
3

−
𝑥
4

8
+

2𝑥
5

25
−

𝑥
6

576
+

𝑥
7

1225
) 𝐶
2

1

+
1

400
(9 − 400𝑥

2
+ 400𝑥

3
− 25𝑥

4
+ 16𝑥

5
) 𝐶
2
.

(30)

By applying (10), the third-order problem is defined as
follows:

𝑢
󸀠󸀠

3
(𝑥, 𝐶
1
, 𝐶
2
, 𝐶
3
)

= − 4𝐶
3

+ 9𝑥𝐶
3

− 𝑥
2
𝐶
3

+ 𝑥
3
𝐶
3

+ 𝐶
3
𝑢
0

(𝑥) + 𝐶
2
𝑢
1

(𝑥) + 𝐶
1
𝑢
2

(𝑥) +
𝐶
3
𝑢
󸀠

0
(𝑥)

𝑥

+
𝐶
2
𝑢
󸀠

1
(𝑥)

𝑥
+

𝑢
󸀠

2
(𝑥)

𝑥
+

𝐶
1
𝑢
󸀠

2
(𝑥)

𝑥
−

𝑢
󸀠

3
(𝑥)

𝑥

+ 𝐶
3
𝑢
󸀠󸀠

0
(𝑥) + 𝐶

2
𝑢
󸀠󸀠

1
(𝑥) + 𝑢

󸀠󸀠

2
(𝑥) + 𝐶

1
𝑢
󸀠󸀠

2
(𝑥)

(31)

subject to the boundary problem

𝑢
3

(0) = 0, 𝑢
3

(1) = 0 (32)

and has the solution

𝑢
3

(𝑥, 𝐶
1
, 𝐶
2
, 𝐶
3
)

=
9𝐶
1

400
− 𝑥
2
𝐶
1

+ 𝑥
3
𝐶
1

−
𝑥
4
𝐶
1

16
+

𝑥
5
𝐶
1

25

+
1777𝐶

2

1

22050
−

1591

800
𝑥
2
𝐶
2

1
+ 2𝑥
3
𝐶
2

1
−

1

4
𝑥
4
𝐶
2

1

+
4

25
𝑥
5
𝐶
2

1
−

1

288
𝑥
6
𝐶
2

1
+

2𝑥
7
𝐶
2

1

1225
+

22038893𝐶
3

1

406425600

−
694523𝑥

2
𝐶
3

1

705600
+ 𝑥
3
𝐶
3

1
−

4791𝑥
4
𝐶
3

1

25600
+

3

25
𝑥
5
𝐶
3

1

−
1

192
𝑥
6
𝐶
3

1
+

3𝑥
7
𝐶
3

1

1225
−

𝑥
8
𝐶
3

1

36864
+

𝑥
9
𝐶
3

1

99225
+

9𝐶
2

400
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Table 1: Comparison of the exact solution and the OHAM solution for Example 1.

𝑥 Exact solution OHAM solution (3 terms) CGA solution [7] Absolute error
0.1 0.0090 0.0089895718978 0.0089999999973 1.04281000 × 10

−5

0.2 0.0320 0.0319909691543 0.0319999999954 9.03084567 × 10
−6

0.3 0.0630 0.0629929391328 0.0629999999949 7.06086713 × 10
−6

0.4 0.0960 0.0959950247523 0.0959999999950 4.97524765 × 10
−6

0.5 0.1250 0.1249967655986 0.1249999999952 3.23440137 × 10
−6

0.6 0.1440 0.1439978797237 0.1439999999957 2.12027629 × 10
−6

0.7 0.1470 0.1469984038747 0.1469999999965 1.59612524 × 10
−6

0.8 0.1280 0.1279987010935 0.1279999999976 1.29890642 × 10
−6

0.9 0.0810 0.0809992354577 0.0809999999988 7.64542249 × 10
−7

− 𝑥
2
𝐶
2

+ 𝑥
3
𝐶
2

−
𝑥
4
𝐶
2

16
+

𝑥
5
𝐶
2

25
+

1777𝐶
1
𝐶
2

22050

−
1591

800
𝑥
2
𝐶
1
𝐶
2

+ 2𝑥
3
𝐶
1
𝐶
2

−
1

4
𝑥
4
𝐶
1
𝐶
2

+
4

25
𝑥
5
𝐶
1
𝐶
2

−
1

288
𝑥
6
𝐶
1
𝐶
2

+
2𝑥
7
𝐶
1
𝐶
2

1225
+

9𝐶
3

400

− 𝑥
2
𝐶
3

+ 𝑥
3
𝐶
3

−
𝑥
4
𝐶
3

16
+

𝑥
5
𝐶
3

25
.

(33)

Using (24), (27), (30), and (33), the third-order approximate
solution by OHAM for 𝑝 = 1 is as follows:

�̃� (𝑥, 𝐶
1
, 𝐶
2
, 𝐶
3
) = 𝑢
0

(𝑥) + 𝑢
1

(𝑥, 𝐶
1
)

+ 𝑢
2

(𝑥, 𝐶
1
, 𝐶
2
) + 𝑢
3

(𝑥, 𝐶
1
, 𝐶
2
, 𝐶
3
) .

(34)

Following the procedure described in Section 2 on the
domain between 𝑎 = 0 and 𝑏 = 1, using the residual error,

𝑅 = 𝑥�̃�
󸀠󸀠

(𝑥, 𝐶
1
, 𝐶
2
, 𝐶
3
) + �̃�
󸀠

(𝑥, 𝐶
1
, 𝐶
2
, 𝐶
3
)

+ 𝑥�̃� (𝑥, 𝐶
1
, 𝐶
2
, 𝐶
3
) − 𝑥 (4 − 9𝑥 + 𝑥

2
− 𝑥
3
) .

(35)

The less square method can be applied as

𝐽 (𝐶
1
, 𝐶
2
, 𝐶
3
) = ∫

1

0

𝑅
2
𝑑𝑥,

𝑑𝐽

𝑑𝐶
1

=
𝑑𝐽

𝑑𝐶
2

=
𝑑𝐽

𝑑𝐶
3

.

(36)

Thus, the following optimal values of 𝐶
𝑖
’s are obtained:

𝐶
1

= −1.076627460, 𝐶
2

= −0.005293863,

𝐶
3

= −0.000381048.

(37)

By considering these values our approximate solution
becomes

�̃� (𝑥, 𝐶
1
, 𝐶
2
, 𝐶
3
)

= −0.0000109358 + 0 ⋅ 𝑥 + 1.00005𝑥
2

− 1.00002𝑥
3

+ 7.25718 × 10
−6

𝑥
4

− 0.000285432𝑥
5

0.14
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0.1

0.08

0.06
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0.04
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Exact solution
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𝑥
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Figure 1: Exact and approximate solution using OHAM for
Example 1.

+ 0.000442819𝑥
6

− 0.000208215𝑥
7

+ 0.0000338527𝑥
8

− 0.0000125769𝑥
9
.

(38)

It is clear that the given solution is very close to the exact
one since the other terms’ approach zero which leads to
that the solution is converge. Moreover, Table 1 exhibits the
approximate solution obtained by using theOHAMandCGA
[7]. It is clear that the obtained results in a our method
are in very good agreement with the exact solution, which
proves the reliability of the method. In Figure 1 we plot the
approximate solution and the exact solution.

Example 2. Let us consider the singular two-point BVP [2, 3]:

𝑢
󸀠󸀠

(𝑥) +
1

𝑥
𝑢
󸀠

(𝑥) + 𝑢 (𝑥) = 𝑔 (𝑥) , 0 ≤ 𝑥 ≤ 1,

𝑢
󸀠

(0) = 0, 𝑢 (1) =
17

16
.

(39)

The exact solution of this problem in the case of

𝑔 (𝑥) =
5

4
+

𝑥
2

16

(40)
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Table 2: Comparison of the exact solution and the OHAM solution for Example 2.

𝑥 Exact solution OHAM solution (3 terms) VIM solution [3] Absolute error
0.1 1.0006 1.0006255449104 0.8665109375000 5.44910481 × 10

−7

0.2 1.0025 1.0025004672985 0.8723000000000 4.67298560 × 10
−7

0.3 1.0056 1.0056253598830 0.8819692708333 3.59883028 × 10
−7

0.4 1.0100 1.0100002486730 0.895550000000 2.48673017 × 10
−7

0.5 1.0156 1.0156251578232 0.9130859375000 1.57823275 × 10
−7

0.6 1.0225 1.0225001009617 0.9346333333333 1.00961799 × 10
−7

0.7 1.0306 1.0306250751620 0.9602609375000 7.51620191 × 10
−8

0.8 1.0400 1.0400000614013 0.9900500000000 6.14013284 × 10
−8

0.9 1.0506 1.0506250362014 1.0240942708333 3.62014673 × 10
−8

is given by

𝑢 (𝑥) = 1 +
𝑥
2

16
. (41)

According to the OHAM formulation described in the previ-
ous section, we start with

𝐿 [V (𝑥, 𝑝)] = 𝑥
𝑑
2V (𝑥, 𝑝)

𝑑𝑥
2

+
1

𝑥

𝑑V (𝑥, 𝑝)

𝑑𝑥

𝑁 [V (𝑥, 𝑝)] = 𝑥
𝑑
2V (𝑥, 𝑝)

𝑑𝑥
2

+
𝑑V (𝑥, 𝑝)

𝑑𝑥
+ 𝑥V (𝑥, 𝑝) − 𝑥𝑔 (𝑥) .

(42)

Applying OHAM, we have the following zeroth-, first-,
second-, and the third-order problem solutions:

𝑢
0

(𝑥) =
17

16
,

𝑢
1

(𝑥, 𝐶
1
) =

13𝐶
1

256
−

3𝑥
2
𝐶
2

1

64
−

𝑥
4
𝐶
1

256
,

𝑢
2

(𝑥, 𝐶
1
, 𝐶
2
) =

13𝐶
1

256
−

3𝑥
2
𝐶
1

64
−

𝑥
4
𝐶
1

256

+
379𝐶
2

1

9216
−

35𝑥
2
𝐶
2

1

1024
−

7𝑥
4
𝐶
2

1

1024

−
𝑥
6
𝐶
2

1

9216
+

13𝐶
2

256
−

3𝑥
2
𝐶
2

64
,

𝑢
3

(𝑥, 𝐶
1
, 𝐶
2
, 𝐶
3
)

=
13𝐶
1

256
−

3𝑥
2
𝐶
1

64
−

𝑥
4
𝐶
1

256
+

379𝐶
2

1

4608
−

35𝑥
2
𝐶
2

1

512

−
7𝑥
4
𝐶
2

1

512
−

𝑥
6
𝐶
2

1

4608
+

19565𝐶
3

1

589824
−

881𝑥
2
𝐶
3

1

589824

−
147𝑥
4
𝐶
3

1

16384
−

11𝑥
6
𝐶
3

1

36864
−

𝑥
8
𝐶
3

1

589824
−

13𝐶
2

256

−
3𝑥
2
𝐶
2

64
−

𝑥
4
𝐶
2

256
+

379𝐶
1
𝐶
2

4608
−

35𝑥
2
𝐶
1
𝐶
2

512

−
7𝑥
4
𝐶
1
𝐶
2

512
−

𝑥
6
𝐶
1
𝐶
2

4608
+

13𝐶
3

256
−

3𝑥
2
𝐶
3

64
−

𝑥
4
𝐶
3

256
.

(43)

Using (43) we obtain the following third-order approxi-
mate solution by OHAM:

�̃� (𝑥, 𝐶
1
, 𝐶
2
, 𝐶
3
) = 𝑢
0

(𝑥) + 𝑢
1

(𝑥, 𝐶
1
) + 𝑢
2

(𝑥, 𝐶
1
, 𝐶
2
)

+ 𝑢
3

(𝑥, 𝐶
1
, 𝐶
2
, 𝐶
3
) .

(44)

Following the procedure described in Section 2 on the
domain between 𝑎 = 0 and 𝑏 = 1, using the residual

𝑅 = 𝑥�̃�
󸀠󸀠

(𝑥, 𝐶
1
, 𝐶
2
, 𝐶
3
) + �̃�
󸀠

(𝑥, 𝐶
1
, 𝐶
2
, 𝐶
3
)

+ 𝑥�̃� (𝑥, 𝐶
1
, 𝐶
2
, 𝐶
3
) − 𝑥 (

5

4
+

𝑥
2

16
) .

(45)

The following optimal values of 𝐶
𝑖
’s are obtained:

𝐶
1

= −1.0769, 𝐶
2

= −0.00539311,

𝐶
3

= −0.000394546.

(46)

By considering these values, our approximate solution
becomes

�̃� (𝑥, 𝐶
1
, 𝐶
2
, 𝐶
3
)

= 1.0 + 0.0624971𝑥
2

+ 6.3086 × 10
−6

𝑥
4

− 6.10932 × 10
−6

𝑥
6

+ 2.11738 × 10
−6

𝑥
8
.

(47)

Therefore, we have the third-order approximate solution of
Example 2.

Table 2 shows a comparison between theOHAM solution
and the solutions of VIM [3] both with the exact solution. As
it is an evident from the compared results, it was found that
OHAMgives better results. In Figure 2, both the approximate
solution by using OHAM and the exact solution have been
plotted.
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Figure 2: Exact and approximate solution using OHAM for
Example 2.

Example 3. Consider the singular two-point BVP [2, 8]

(1 −
𝑥

2
) 𝑢
󸀠󸀠

(𝑥) +
3

2
(

1

𝑥
− 1) 𝑢

󸀠

(𝑥) + (
𝑥

2
− 1) 𝑢 (𝑥)

= 𝑔 (𝑥) , 0 ≤ 𝑥 ≤ 1,

𝑢
󸀠

(0) = 0, 𝑢 (1) = 0.

(48)

The exact solution of this problem in the case of

𝑔 (𝑥) = 5 −
29𝑥

2
+

13𝑥
2

2
+

3𝑥
3

2
−

𝑥
4

2

(49)

is given by

𝑢 (𝑥) = 𝑥
2

− 𝑥
3
. (50)

According to the OHAM formulation described in the
above section, we start with

𝐿 [V (𝑥, 𝑝)] =
𝑑
2V (𝑥, 𝑝)

𝑑𝑥
2

+
𝑑V (𝑥, 𝑝)

𝑑𝑥

𝑁 [V (𝑥, 𝑝)] = (𝑥 −
1

2
)

𝑑
2V (𝑥, 𝑝)

𝑑𝑥
2

+
3

2
(1 − 𝑥)

𝑑V (𝑥, 𝑝)

𝑑𝑥

+
𝑥
2

− 2𝑥

2
V (𝑥, 𝑝) − 𝑥𝑔 (𝑥) .

(51)

Applying OHAM, we have the following zeroth-, first-,
and second-order solutions:

𝑢
0

(𝑥) = 0,

𝑢
1

(𝑥, 𝐶
1
) =

1741𝐶
1

120
+

23𝐶
1

𝑒
−

23𝐶
1

𝑒
− 23𝑥𝐶

1
+

23𝑥
2
𝐶
1

2

−
14𝑥
3
𝐶
1

3
+

19𝑥
4
𝐶
1

8
−

4𝑥
5
𝐶
1

5
+

𝑥
6
𝐶
1

12
,

𝑢
2

(𝑥, 𝐶
1
, 𝐶
2
)

=
1741𝐶

1

120
+

23𝐶
1

𝑒
−

23𝐶
1

𝑒
𝑥

− 23𝑥𝐶
1

+
23𝑥
2
𝐶
1

2

−
14𝑥
3C
1

3
+

19𝑥
4
𝐶
1

8
−

4𝑥
5
𝐶
1

5
+

𝑥
6
𝐶
1

12
−

4057507𝐶
2

1

6048

−
46𝐶
2

1

𝑒
2

−
11141𝐶

2

1

10𝑒
+

46𝐶
2

1

𝑒
(−1−𝑥)

+
64201𝐶

2

1

60𝑒
−𝑥

+
64201𝑥𝐶

2

1

60
+

46𝑥𝐶
2

1

𝑒
−

66271𝑥
2
𝐶
2

1

120
−

23𝑥
2
𝐶
2

1

𝑒

+
69𝑥
2
𝐶
2

1

4𝑒
−𝑥

+
141841𝑥

3
𝐶
2

1

720
+

23𝑥
3
𝐶
2

1

6𝑒
−

2623𝑥
4
𝐶
2

1

48

+
41𝑥
5
𝐶
2

1

3
−

1301𝑥
6
𝐶
2

1

360
+

1369𝑥
7
𝐶
2

1

1680
−

49𝑥
8
𝐶
2

1

480

+
𝑥
9
𝐶
2

1

216
+

1741𝐶
2

120
+

23𝐶
2

𝑒
−

23𝐶
2

𝑒
𝑥

− 23𝑥𝐶
2

+
23𝑥
2
𝐶
2

2
−

14𝑥
3
𝐶
2

3
+

19𝑥
4
𝐶
2

8
−

4𝑥
5
𝐶
2

5
+

𝑥
6
𝐶
2

12
.

(52)

Using (52) and also by adding the solutions of the third-order
problems, we obtain the following third-order approximate
solution by OHAM:

�̃� (𝑥, 𝐶
1
, 𝐶
2
, 𝐶
3
) = 𝑢
0

(𝑥) + 𝑢
1

(𝑥, 𝐶
1
) + 𝑢
2

(𝑥, 𝐶
1
, 𝐶
2
)

+ 𝑢
3

(𝑥, 𝐶
1
, 𝐶
2
, 𝐶
3
) .

(53)

Following the procedure described in Section 2 on the
domain between 𝑎 = 0 and 𝑏 = 1, using the residual

𝑅 = (𝑥 −
𝑥
2

2
) �̃�
󸀠󸀠

(𝑥, 𝐶
1
, 𝐶
2
, 𝐶
3
)

+
3

2
(1 − 𝑥) �̃�

󸀠
(𝑥, 𝐶
1
, 𝐶
2
, 𝐶
3
)

+ (
𝑥
2

2
− 𝑥) �̃� (𝑥, 𝐶

1
, 𝐶
2
, 𝐶
3
)

− 𝑥 (5 −
29𝑥

2
+

13𝑥
2

2
+

3𝑥
3

2
−

𝑥
4

2
) .

(54)

The following optimal values of 𝐶
𝑖
’s are obtained:

𝐶
1

= −2.5182, 𝐶
2

= −0.0304705,

𝐶
3

= −0.00712009.

(55)
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Table 3: Comparison of the exact solution and the OHAM solution for Example 3.

𝑥 Exact solution OHAM solution (3 terms) OHAM error He’s HPM error [8]
0.1 0.0090 0.0099841073222 9.841 × 10

−4
8.936 × 10

−4

0.2 0.0320 0.0291990486850 2.801 × 10
−3

8.631 × 10
−4

0.3 0.0630 0.0600046093219 2.995 × 10
−3

8.120 × 10
−4

0.4 0.0960 0.0941688334742 1.831 × 10
−3

7.408 × 10
−4

0.5 0.1250 0.1241809960356 8.190 × 10
−4

6.507 × 10
−4

0.6 0.1440 0.1437292946566 2.707 × 10
−4

5.435 × 10
−4

0.7 0.1470 0.14693478562367 6.521 × 10
−5

4.215 × 10
−4

0.8 0.1280 0.1279073412152 9.266 × 10
−5

2.878 × 10
−4

0.9 0.0810 0.0808082770963 1.917 × 10
−4

1.467 × 10
−9

OHAM solution
Exact solution

0 0.2 0.4 0.6 0.8 1
𝑥
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0.06
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Figure 3: Exact and approximate solution using OHAM for
Example 3.

The approximate solution now becomes

�̃� (𝑥, 𝐶
1
, 𝐶
2
, 𝐶
3
)

= −1.40959 × 10
6

+ 2.81716 × 10
7
𝑒
−3−𝑥

+ 51363.2𝑒
−2−𝑥

+ 57.9185𝑒
−𝑥

+ 1.40766 × 10
6
𝑥

+ 38729.3𝑒
−3−𝑥

𝑥 − 717179 ⋅ 𝑥
2

+ 285281 ⋅ 𝑒
−3−𝑥

𝑥
2

+ 808.272𝑒
−2−𝑥

𝑥
2

+ 248195 ⋅ 𝑥
3

+ 1844.25𝑒
−3−𝑥

𝑥
3

− 65742 ⋅ 𝑥
4

+ 4841.17𝑒
−3−𝑥

𝑥
4

+ 14295.2𝑥
5

− 2702.04𝑥
6

+ 477.666𝑥
7

− 84.9559𝑥
8

+ 14.2263𝑥
9

− 1.7433𝑥
10

+ 0.117783𝑥
11

− 0.00308038𝑥
12

.

(56)

Table 3 exhibits the approximate solution obtained by
using the OHAM and He’s HPM [8]. It can be seen that the
solution obtained by our procedure is nearly identical with
that given by the exact solution, which proves the reliability
of the method. In Figure 3 we compare the exact solution and
the approximate solution obtained by OHAM.

4. Conclusions

In this work, OHAM has been applied successfully to solve
singular two-point BVPs. The results which are obtained by
usingOHAMare in a good agreement with the exact solution
as well as the results which are already presented in the
literature like CGA, VIM, and HPM. This shows that the
method is efficient and reliable for the solution of singular
two-point boundary value problems.
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