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We study a nondifferentiable fractional programming problem as follows: (𝑃)min
𝑥∈𝐾

𝑓(𝑥)/𝑔(𝑥) subject to 𝑥 ∈ 𝐾 ⊆ 𝑋, ℎ
𝑖
(𝑥) ≤

0, 𝑖 = 1, 2, . . . , 𝑚, where𝐾 is a semiconnected subset in a locally convex topological vector space𝑋, 𝑓 : 𝐾 → R, 𝑔 : 𝐾 → R
+
and

ℎ
𝑖
: 𝐾 → R, 𝑖 = 1, 2, . . . , 𝑚. If 𝑓, −𝑔, and ℎ

𝑖
, 𝑖 = 1, 2, . . . , 𝑚, are arc-directionally differentiable, semipreinvex maps with respect

to a continuous map 𝛾 : [0, 1] → 𝐾 ⊆ 𝑋 satisfying 𝛾(0) = 0 and 𝛾


(0
+

) ∈ 𝐾, then the necessary and sufficient conditions for
optimality of (𝑃) are established.

1. Introduction

In recent years, there has been an increasing interest in
studying the develpoment of optimality conditions for non-
differentiable multiobjective programming problems. Many
authors established and employed some different Kuhn and
Tucker type necessary conditions or other type necessary
conditions to research optimal solutions; see [1–27] and ref-
erences therein. In [7], Lai and Ho used the Pareto optimality
condition to investigate multiobjective programming prob-
lems for semipreinvex functions. Lai [6] had obtained the
necessary and sufficient conditions for optimality program-
ming problems with semipreinvex assumptions. Some Pareto
optimality conditions are established by Lai and Lin in [8].
Lai and Szilágyi [9] studied the programming with convex
set functions and proved that the alternative theorem is valid
for convex set functions defined on convex subfamily 𝑆 of
measurable subsets in 𝑋 and showed that if the system

𝑓 (Ω) ≪ 𝜃,

𝑔 (Ω) < 𝜃
(1)

has on solution,where 𝜃 stands for zero vector in a topological
vector space, then there exists a nonzero continuous linear
function (𝑦

∗, 𝑧∗) ∈ 𝐶∗ × 𝐷∗ such that

⟨𝑓 (Ω) , 𝑦
∗

⟩ + ⟨𝑔 (Ω) , 𝑧
∗

⟩ ≥ 0 ∀Ω ∈ 𝑆. (2)

In this paper, we study the following optimization problem:

min
𝑥∈𝐾

𝑓 (𝑥)

𝑔 (𝑥)

subject to 𝑥 ∈ 𝐾 ⊆ 𝑋, ℎ
𝑖
(𝑥) ≤ 0,

𝑖 = 1, 2, . . . , 𝑚,

(𝑃)

where 𝐾 is a semiconnected subset in a locally convex
topological vector space 𝑋, 𝑓 : 𝐾 → R, 𝑔 : 𝐾 → R

+
and

ℎ
𝑖
: 𝐾 → (−∞, 0], 𝑖 = 1, 2, . . . , 𝑚, are functions satisfying

some suitable conditions. The purpose of this study is dealt
with such constrained fractional semipreinvex programming
problem. Finally, we established the Fritz John type necessary
and sufficient conditions for the optimality of a fractional
semipreinvex programming problem.



2 Journal of Applied Mathematics

2. Preliminaries

Throughout this paper, we let 𝑋 be a locally convex topolog-
ical vector space over the real field R. Denote 𝐿1(𝑋) by the
space of all linear operators from 𝑋 into R.

Let𝑊 be a nonempty convex subset of𝑋. Let𝑓 : 𝑊 → R

be differentiable at 𝑥
0

∈ 𝐾. Then there is a linear operator
𝐴 = 𝑓(𝑥

0
) ∈ 𝐿1(𝑋), such that

lim
𝛼→0

𝑓 ((1 − 𝛼) 𝑥
0
+ 𝛼𝑥) − 𝑓 (𝑥

0
)

𝛼
= 𝑓


(𝑥
0
) (𝑥 − 𝑥

0
) . (3)

Recall that a function 𝑓 : 𝑊 → R is called convex on 𝑊, if

𝑓 ((1 − 𝛼) 𝑥
0
+ 𝛼𝑥) ≤ (1 − 𝛼) 𝑓 (𝑥

0
) + 𝛼𝑓 (𝑥) (4)

or

𝑓 ((1 − 𝛼) 𝑥
0
+ 𝛼𝑥) − 𝑓 (𝑥

0
)

𝛼
≤ 𝑓 (𝑥) − 𝑓 (𝑥

0
) . (5)

If 𝑓 : 𝑊 → R is convex and differentiable at 𝑥
0
∈ 𝐾, then by

(3) and (5), we have

𝑓


(𝑥
0
) (𝑥 − 𝑥

0
) ≤ 𝑓 (𝑥) − 𝑓 (𝑥

0
) . (6)

In 1981, Hanson [13, 14] introduced a generalized convexity
on𝑋, so-called invexity; that is, 𝑥 − 𝑥

0
is replaced by a vector

𝜏(𝑥
0
, 𝑥) ∈ 𝑋 in (6), or

𝑓


(𝑥
0
) 𝜏 (𝑥
0
, 𝑥) ≤ 𝑓 (𝑥) − 𝑓 (𝑥

0
) . (7)

So an invex function is indeed a generalization of a convex
differentiable function.

Definition 1 (see [6]). (1) A set 𝐾 ⊆ 𝑋 is said to be
semiconnected with respect to a given 𝜏 : 𝑋 × 𝑋 → R if

𝑥, 𝑦 ∈ 𝐾, 0 ≤ 𝛼 ≤ 1 ⇒ 𝑦 + 𝛼𝜏 (𝑥, 𝑦, 𝛼) ∈ 𝐾. (8)

(2) A map 𝑓 : 𝑋 → R is said to be semipreinvex on
a semiconnected subset𝐾 ⊂ 𝑋 if each (𝑥, 𝑦, 𝛼) ∈ 𝐾×𝐾×[0, 1]

corresponds a vector 𝜏(𝑥, 𝑦, 𝛼) ∈ 𝑋 such that

𝑓 (𝑥 + 𝛼𝜏 (𝑥, 𝑦, 𝛼)) ≤ (1 − 𝛼) 𝑓 (𝑥) + 𝛼𝑓 (𝑦) ,

lim
𝛼↓0

𝛼𝜏 (𝑥, 𝑦, 𝛼) = 𝜃,
(9)

where 𝜃 stands for the zero vector of 𝑋.

The following is an example of a bounded semiconnected
set in R, which is semiconnected with respect to a nontrivial
𝜏.

Example 2. Let 𝐴 := [4, 8], 𝐵 := [−8, −4] and 𝐾 := 𝐴 ∪ 𝐵 be
bounded sets. Let 𝜏 : 𝐾 × 𝐾 × [0, 1] → R be defined by

𝜏 (𝑥, 𝑦, 𝛼) =
𝑥 − 𝑦

1 − 𝛼
, for (𝑥, 𝑦, 𝛼) ∈ 𝐴 × 𝐴 × [0,

1

2
] ,

𝜏 (𝑥, 𝑦, 𝛼) =
𝑥 − 𝑦

1 − 𝛼
, for (𝑥, 𝑦, 𝛼) ∈ 𝐵 × 𝐵 × [0,

1

2
] ,

𝜏 (𝑥, 𝑦, 𝛼) =
−8 − 𝑦

1 − 𝛼
, for (𝑥, 𝑦, 𝛼) ∈ 𝐴 × 𝐵 × [0,

1

2
] ,

𝜏 (𝑥, 𝑦, 𝛼) =
4 − 𝑦

1 − 𝛼
, for (𝑥, 𝑦, 𝛼) ∈ 𝐵 × 𝐴 × [0,

1

2
] ,

𝜏 (𝑥, 𝑦, 𝛼) =
𝑥 − 𝑦

𝛼
, for (𝑥, 𝑦, 𝛼) ∈ 𝐴 × 𝐴 × [

1

2
, 1] ,

𝜏 (𝑥, 𝑦, 𝛼) =
𝑥 − 𝑦

𝛼
, for (𝑥, 𝑦, 𝛼) ∈ 𝐵 × 𝐵 × [

1

2
, 1] ,

𝜏 (𝑥, 𝑦, 𝛼) =
−8 − 𝑦

𝛼
, for (𝑥, 𝑦, 𝛼) ∈ 𝐴 × 𝐵 × [

1

2
, 1] ,

𝜏 (𝑥, 𝑦, 𝛼) =
4 − 𝑦

𝛼
, for (𝑥, 𝑦, 𝛼) ∈ 𝐵 × 𝐴 × [

1

2
, 1] .

(10)

Then 𝐾 is a bound semiconnected set with respect to 𝜏.

Theorem 3 (see [6, Theorem 2.2]). Let 𝐾 ⊂ 𝑋 be a
semiconnected subset and 𝑓 : 𝐾 → R a semipreinvex map.
Then any local minimum of 𝑓 is also a global minimum of 𝑓
over 𝐾.

From the assumption in problem 9, there exists a positive
number 𝜆 such that

𝑓 (𝑦)

𝑔 (𝑦)
≥ 𝜆 ∀𝑦 ∈ 𝑋,

𝑓 (𝑦) − 𝜆𝑔 (𝑦) ≥ 0.

(11)

Consequently, we can reduce the problem 9 to an equivalent
nonfractional parametric problem:

𝜐 (𝜆) := min
𝑦∈𝑋

(𝑓 (𝑦) − 𝜆𝑔 (𝑦)) ≥ 0, (𝑃
𝜆
)

where 𝜆 ∈ [0,∞) is a parameter.
We will prove that the problem (𝑃) is equivalent to the

problem (𝑃
𝜆
∗) for the optimal value 𝜆∗. The following result

is our main technique to derive the necessary and sufficient
optimality conditions for problem (𝑃).

Theorem 4. Problem (𝑃) has an optimal solution 𝑦
0
with

optimal value 𝜆∗ if and only if 𝑣(𝜆∗) = 0 and 𝑦
0
is an optimal

solution of (𝑃
𝜆
∗).

Proof. If 𝑦
0
is an optimal solution of (𝑃) with optimal value

𝜆∗, that is,

𝜆
∗

:=
𝑓 (𝑦
0
)

𝑔 (𝑦
0
)

= min
𝑧∈𝑋

𝑓 (𝑧)

𝑔 (𝑧)
≤

𝑓 (𝑧)

𝑔 (𝑧)
∀𝑧 ∈ 𝑋. (12)
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It follows from (12) that

𝑓 (𝑧) − 𝜆
∗

𝑔 (𝑧) ≥ 0 ∀𝑧 ∈ 𝑋,

𝑓 (𝑦
0
) − 𝜆
∗

𝑔 (𝑦
0
) = 0.

(13)

Thus, we have

0 ≤ min
𝑧∈𝑋

(𝑓 (𝑧) − 𝜆
∗

𝑔 (𝑧)) ≤ 𝑓 (𝑦
0
) − 𝜆
∗

𝑔 (𝑦
0
) = 0. (14)

Then, by (14), we get

𝜈 (𝜆
∗

) = min
𝑧∈𝑋

(𝑓 (𝑧) − 𝜆
∗

𝑔 (𝑧)) = 𝑓 (𝑦
0
) − 𝜆
∗

𝑔 (𝑦
0
) = 0.

(15)

Therefore, 𝑦
0
is an optimal solution of (𝑃

𝜆
∗) and 𝜈(𝜆∗) = 0.

Conversely, if 𝑦
0
is an optimal solution of (𝑃

𝜆
∗) with

optimal value 𝜈(𝜆∗) = 0, then

𝑓 (𝑦
0
) − 𝜆
∗

𝑔 (𝑦
0
) = min
𝑧∈𝑋

(𝑓 (𝑧) − 𝜆
∗

𝑔 (𝑧)) = 0. (16)

So

𝑓 (𝑧) − 𝜆
∗

𝑔 (𝑧) ≥ 0 = 𝑓 (𝑦
0
) − 𝜆
∗

𝑔 (𝑦
0
) ∀𝑧 ∈ 𝑋. (17)

It follows from (17) that
𝑓 (𝑧)

𝑔 (𝑧)
≥ 𝜆
∗

∀𝑧 ∈ 𝑋,

𝑓 (𝑦
0
)

𝑔 (𝑦
0
)

= 𝜆
∗

,

(18)

and hence

min
𝑧∈𝑋

𝑓 (𝑧)

𝑔 (𝑧)
≥ 𝜆
∗

,

min
𝑧∈𝑋

𝑓 (𝑧)

𝑔 (𝑧)
≤

𝑓 (𝑦
0
)

𝑔 (𝑦
0
)

= 𝜆
∗

.

(19)

Therefore,

min
𝑧∈𝑋

𝑓 (𝑧)

𝑔 (𝑧)
= 𝜆
∗

=
𝑓 (𝑦
0
)

𝑔 (𝑦
0
)

(20)

and we know 𝑦
0
is an optimal solution of (𝑃) with optimal

value 𝜆
∗.

3. The Existence of
the Necessary and Sufficient Conditions
for Semipreinvex Functions

Definition 5 (see [6]). A mapping 𝑓 : 𝐾 ⊂ 𝑋 → R is
said to be arcwise directionally (in short, arc-directionally)
differentiable at 𝑥

0
∈ 𝐾 with respect to a continuous arc

𝛽 : [0, 1] → 𝐾 ⊂ 𝑋 if 𝑥
0
+ 𝛽(𝑡) ∈ 𝐾 for 𝑡 ∈ [0, 1] with

𝛽 (0) = 𝜃, 𝛽


(0
+

) = 𝑢 (in 𝑋) , (21)

that is, the continuous function 𝛽 is differentiable from right
at 0, and the limit

lim
𝑡↓0

𝑓 (𝑥
0
+ 𝛽 (𝑡)) − 𝑓 (𝑥

0
)

𝑡
≅ 𝑓


(𝑥
0
; 𝑢) exists. (22)

Note that the arc directional derivative 𝑓
(𝑥
0
; ⋅) is a

mapping from 𝑋 into R. Moreover, how can we make 𝐾 to
be a semiconnected set? Indeed, we can construct a function
𝜏 concerned with 𝛽 defined as follows.

For any 𝑥, 𝑦 ∈ 𝐾 and 𝑡 ∈ [0, 1], we choose a vector

𝜏 (𝑥, 𝑦, 𝑡) :=
𝛽 (𝑡)

𝑡
=

𝛽 (𝑡) − 𝛽 (0)

𝑡 − 0
, (23)

then

lim
𝑡↓0

𝜏 (𝑥, 𝑦, 𝑡) = 𝛽


(0
+

) = 𝑢,

𝑑

𝑑𝑡
[𝑡𝜏 (𝑥, 𝑦, 𝑡)]

𝑡=0+
= 𝛽


(0
+

) = 𝑢.

(24)

Let 𝑓 : 𝑋 → R, −𝑔 : 𝑋 → R
−
and ℎ

𝑖
: 𝑋 → R

−
, 𝑖 =

1, 2, . . . , 𝑚, be semipreinvex maps on a semiconnected subset
𝐾 in 𝑋. Consider a constrained programming problem as
(𝑃).

The following Fritz John type theorem is essential in this
section for programming problem (𝑃).

Theorem 6 (Necessary Optimality Condition). Suppose that
𝑓,−𝑔 and ℎ

𝑖
, 𝑖 = 1, 2, . . . , 𝑚 are arc-directionally differentiable

at 𝑥
0
∈ 𝐾 and semipreinvex on 𝐾 with respect to a continuous

arc 𝛽 defined as in Definition 5. If 𝑥
0
minimizes locally for the

semipreinvex programming problem (𝑃), then there exist 𝜆∗ ∈

(0,∞) and {𝛾
𝑖
}
𝑚

𝑖=1
⊆ [0,∞) such that

𝑓


(𝑥
0
; 𝑢) − 𝜆

∗

𝑔


(𝑥
0
; 𝑢) +

𝑚

∑
𝑖=1

𝛾
𝑖
ℎ


𝑖
(𝑥
0
; 𝑢) ≥ 0, (25)

where 𝑢 = 𝛽(0+) and

𝑚

∑
𝑖=1

𝛾
𝑖
ℎ
𝑖
(𝑥
0
) = 0. (26)

Proof. By Theorem 4, the minimum solution to (𝑃) is also
a minimum to (𝑃

𝜆
∗). Then 𝑥

0
is the local minimal solution

to (𝑃
𝜆
∗). By Theorem 3, we have 𝑥

0
is the global minimal

solution to (𝑃
𝜆
). It follows that the system

[𝑓 (𝑥) − 𝜆
∗

𝑔 (𝑥)] − [𝑓 (𝑥
0
) − 𝜆
∗

𝑔 (𝑥
0
)] < 0,

ℎ
𝑖
(𝑥) ≤ 0, 𝑖 = 1, 2, . . . , 𝑚

(27)

has no solution in 𝐾, then we have

[𝑓 (𝑥) − 𝜆
∗

𝑔 (𝑥)] − [𝑓 (𝑥
0
) − 𝜆
∗

𝑔 (𝑥
0
)] +

𝑚

∑
𝑖=1

𝛾
𝑖
ℎ
𝑖
(𝑥) < 0

(28)

has no solution in 𝐾 for any {𝛾
𝑖
}
𝑚

𝑖=1
⊆ [0,∞). Thus for any

𝑥 ∈ 𝐾,

[𝑓 (𝑥) − 𝜆
∗

𝑔 (𝑥)] − [𝑓 (𝑥
0
) − 𝜆
∗

𝑔 (𝑥
0
)] +

𝑚

∑
𝑖=1

𝛾
𝑖
ℎ
𝑖
(𝑥) ≥ 0

(29)
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for some {𝛾
𝑖
}
𝑚

𝑖=1
⊆ [0,∞). Putting 𝑥 = 𝑥

0
in (29), we get

𝑚

∑
𝑖=1

𝛾
𝑖
ℎ
𝑖
(𝑥
0
) ≥ 0. (30)

Since 𝛾
𝑖
≥ 0 and ℎ

𝑖
(𝑥
0
) ≤ 0, it follows that

𝑚

∑
𝑖=1

𝛾
𝑖
ℎ
𝑖
(𝑥
0
) = 0. (31)

So (26) is proved.
As 𝐾 is a semiconnected set, for any 𝑥 ∈ 𝐾 and 𝑡 ∈ [0, 1],

we have

𝑥
0
+ 𝑡𝜏 (𝑥

0
, 𝑥, 𝑡) ∈ 𝐾. (32)

For 𝑡 ̸= 0, the point 𝑥 = 𝑥
0
+ 𝑡𝜏(𝑥

0
, 𝑥, 𝑡) ̸= 𝑥

0
does not solve

the system (27). So substituting 𝑥 in (29) and using the result
(26), we obtain

[𝑓 (𝑥
0
+ 𝑡𝜏 (𝑥

0
, 𝑥, 𝑡)) − 𝑓 (𝑥

0
)]

− 𝜆
∗

[𝑔 (𝑥
0
+ 𝑡𝜏 (𝑥

0
, 𝑥, 𝑡)) − 𝑔 (𝑥

0
)]

+

𝑚

∑
𝑖=1

𝛾
𝑖
(ℎ
𝑖
(𝑥
0
+ 𝑡𝜏 (𝑥

0
, 𝑥, 𝑡)) − ℎ

𝑖
(𝑥
0
)) ≥ 0.

(33)

Since𝑓 and 𝑔 are arc-directionally differentiable with respect
to 𝛽, choose a vector 𝜏(𝑥

0
, 𝑥, 𝑡) as (23), so that (24) hold. It

follows that if we divide (33) by 𝑡 ̸= 0 and take the limit as 𝑡 ↓ 0,
then we have

𝑓


(𝑥
0
; 𝑢) − 𝜆

∗

𝑔


(𝑥
0
; 𝑢) +

𝑚

∑
𝑖=1

𝛾
𝑖
ℎ


𝑖
(𝑥
0
; 𝑢) ≥ 0, (34)

which proves (25) and the proof of theorem is completed.

Theorem 7 (Sufficient Optimality Condition). Let 𝑓, −𝑔 and
ℎ
𝑖
, 𝑖 = 1, 2, . . . , 𝑚 be arc-directionally differentiable at 𝑥

0
∈

𝐾 and semipreinvex on 𝐾 with respect to a continuous arc 𝛽

defined as inDefinition 5. If there exist𝜆 ∈ (0,∞) and {𝛾
𝑖
}
𝑚

𝑖=1
⊆

[0,∞) satisfying

𝑓


(𝑥
0
; 𝑢) − 𝜆𝑔



(𝑥
0
; 𝑢) +

𝑚

∑
𝑖=1

𝛾
𝑖
ℎ


𝑖
(𝑥
0
; 𝑢) ≥ 0, (35)

with 𝑢 = 𝛽(0+) and

𝑚

∑
𝑖=1

𝛾
𝑖
ℎ
𝑖
(𝑥
0
) = 0, (36)

then 𝑥
0
is an optimal solution for problem (𝑃).

Proof. Suppose to the contrary that 𝑥
0
is not optimal for

problem (𝑃) and 𝜆 = 𝑓(𝑥
0
)/𝑔(𝑥
0
). Then 𝑓(𝑥

0
) − 𝜆𝑔(𝑥

0
) = 0.

Therefore,

0 ≤ min
𝑥∈𝑋

(𝑓 (𝑥) − 𝜆𝑔 (𝑥)) ≤ 𝑓 (𝑥
0
) − 𝜆𝑔 (𝑥

0
) = 0, (37)

thus 𝜈(𝜆) = min
𝑥∈𝑋

(𝑓(𝑥) − 𝜆𝑔(𝑥)) = 0.

ByTheorem 4, 𝑥
0
was not optimal for problem (𝑃

𝜆
).Then

there is an 𝑥 ∈ 𝑋 such that

𝑓 (𝑥) − 𝜆𝑔 (𝑥) < 𝑓 (𝑥
0
) − 𝜆𝑔 (𝑥

0
) ,

ℎ
𝑖
(𝑥) ≤ 0

(38)

for 𝑖 = 1, 2, . . . , 𝑚. Moreover, we have

[𝑓 (𝑥) − 𝜆𝑔 (𝑥)] − [𝑓 (𝑥
0
) − 𝜆𝑔 (𝑥

0
)] < 0, (39)

𝑚

∑
𝑖=1

𝛾
𝑖
[ℎ
𝑖
(𝑥) − ℎ

𝑖
(𝑥
0
)] ≤ 0 (since

𝑚

∑
𝑖=1

𝛾
𝑖
ℎ
𝑖
(𝑥
0
) = 0)

(40)

for any {𝛾
𝑖
}
𝑚

𝑖=1
⊆ [0,∞). Thus

[𝑓 (𝑥) − 𝜆𝑔 (𝑥)] − [𝑓 (𝑥
0
) − 𝜆𝑔 (𝑥

0
)]

+

𝑚

∑
𝑖=1

𝛾
𝑖
[ℎ
𝑖
(𝑥) − ℎ

𝑖
(𝑥
0
)] < 0.

(41)

Since the semi-preinvex maps 𝑓, −𝑔 and ℎ
𝑖
, 𝑖 = 1, 2, . . . , 𝑚

are arc-directionally differentiable, it follows that for
(𝑥, 𝑥
0
, 𝑡) ∈ 𝐾 × 𝐾 × [0, 1] there corresponds a vector

𝜏(𝑥, 𝑥
0
, 𝑡) ∈ 𝑋 such that

𝑓 (𝑥
0
+ 𝑡𝜏 (𝑥, 𝑥

0
, 𝑡)) ≤ (1 − 𝑡) 𝑓 (𝑥

0
) + 𝑡𝑓 (𝑥) ,

−𝑔 (𝑥
0
+ 𝑡𝜏 (𝑥, 𝑥

0
, 𝑡)) ≤ (1 − 𝑡) (−𝑔) (𝑥

0
) + 𝑡 (−𝑔) (𝑥) ,

ℎ
𝑖
(𝑥
0
+ 𝑡𝜏 (𝑥, 𝑥

0
, 𝑡)) ≤ (1 − 𝑡) ℎ

𝑖
(𝑥
0
) + 𝑡ℎ

𝑖
(𝑥) ,

(42)

and so

𝑓 (𝑥
0
+ 𝑡𝜏 (𝑥, 𝑥

0
, 𝑡)) − 𝑓 (𝑥

0
)

𝑡
≤ 𝑓 (𝑥) − 𝑓 (𝑥

0
) ,

(−𝑔) (𝑥
0
+ 𝑡𝜏 (𝑥, 𝑥

0
, 𝑡)) + 𝑔 (𝑥

0
)

𝑡
≤ (−𝑔) (𝑥) + 𝑔 (𝑥

0
) ,

ℎ
𝑖
(𝑥
0
+ 𝑡𝜏 (𝑥, 𝑥

0
, 𝑡)) − ℎ

𝑖
(𝑥
0
)

𝑡
≤ ℎ
𝑖
(𝑥) − ℎ

𝑖
(𝑥
0
) .

(43)

Letting 𝑡 ↓ 0, we have lim
𝑡↓0

𝜏(𝑥, 𝑥
0
, 𝑡) = 𝛽(0+) = 𝑢 and the

last inequalities imply

𝑓


(𝑥
0
, 𝑢) ≤ 𝑓 (𝑥) − 𝑓 (𝑥

0
) ,

−𝑔


(𝑥
0
, 𝑢) ≤ − [𝑔 (𝑥) − 𝑔 (𝑥

0
)] ,

ℎ


𝑖
(𝑥
0
, 𝑢) ≤ ℎ

𝑖
(𝑥) − ℎ

𝑖
(𝑥
0
) .

(44)

Consequently, from (41) and (44), we obtain

𝑓


(𝑥
0
; 𝑢) − 𝜆𝑔



(𝑥
0
; 𝑢) +

𝑚

∑
𝑖=1

𝛾
𝑖
ℎ


𝑖
(𝑥
0
; 𝑢) < 0, (45)

which contradicts the fact of (35). Therefore 𝑥
0
is an optimal

solution of problem (𝑃).
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Since any global minimal is a local minimal, applying
Theorems 6 and 7, we can obtain the necessary and sufficient
conditions for problem (𝑃).

Theorem8. Suppose that𝑓,−𝑔 and ℎ
𝑖
, 𝑖 = 1, 2, . . . , 𝑚 are arc-

directionally differentiable at at 𝑥
0
∈ 𝐾 and semi-preinvex on

𝐾 with respect to a continuous arc 𝛽 defined as in Definition 5.
If 𝑥
0
minimizes globally for the semi-preinvex programming

problem (𝑃) if and only if there exists (𝜆, 𝛾
𝑖
) ∈ R+ × (R+ ∪ {0}),

𝑖 = 1, 2, . . . , 𝑚, such that

𝑓


(𝑥
0
; 𝑢) − 𝜆𝑔



(𝑥
0
; 𝑢) +

𝑚

∑
𝑖=1

𝛾
𝑖
ℎ


𝑖
(𝑥
0
; 𝑢) ≥ 0, (46)

where 𝑢 = 𝛽(0+) and

𝑚

∑
𝑖=1

𝛾
𝑖
ℎ
𝑖
(𝑥
0
) = 0. (47)

Remark 9. Our results also hold for preinvex functions.
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