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Using a fixed point theorem in a partially ordered set, we give a new proof of the Hahn-Banach theorem in the case where the range
space is a partially ordered vector space.

1. Introduction

The Hahn-Banach theorem is one of the most fundamental
theorems in the functional analysis theory. This theorem is
well known in the case where the range space is the real num-
ber system as follows.

Let 𝑝 be a sublinear mapping from a vector space 𝑋 into
the real number system 𝑅, 𝑌 a subspace of 𝑋, and 𝑞 a linear
mapping from 𝑌 into 𝑅 such that 𝑞 ≤ 𝑝 on 𝑌. Then there
exists a linear mapping 𝑔 from𝑋 into 𝑅 such that 𝑔 = 𝑞 on 𝑌

and 𝑔 ≤ 𝑝 on 𝑋.
It is known that this theorem is established in the case

where the range space is a Dedekind complete Riesz space as
follows [1–3].

Let 𝑝 be a sublinear mapping from a vector space 𝑋 into
a Dedekind complete Riesz space 𝐸, 𝑌 a subspace of 𝑋 and 𝑞

a linear mapping from 𝑌 into 𝐸 such that 𝑞 ≤ 𝑝 on 𝑌. Then
there exists a linear mapping 𝑔 from𝑋 into 𝐸 such that 𝑔 = 𝑞

on 𝑌 and 𝑔 ≤ 𝑝 on 𝑋.
On the other hand, Hirano et al. [4] showed the Hahn-

Banach theorem by using the Markov-Kakutani fixed point
theorem [5] in the case where the range space is the real num-
ber system.

In this paper, motivated by Hirano et al. [4], we give
a proof of the Hahn-Banach theorem using a fixed point
theorem. We show the Hahn-Banach theorem in the case

where the range space is a Dedekind complete partially
ordered vector space (Theorem 10). Moreover, we show the
Mazur-Orlicz theorem in a Dedekind complete partially
ordered vector space (Theorem 11).

2. Preliminaries

Let (𝐸, ≤) be a partially ordered set and 𝐹 a subset of 𝐸. The
set𝐹 is called a chain if any two elements are comparable; that
is, 𝑥 ≤ 𝑦 or 𝑦 ≤ 𝑥 for any 𝑥, 𝑦 ∈ 𝐹. An element 𝑥 ∈ 𝐸 is called
a lower bound of 𝐹 if 𝑥 ≤ 𝑦 for any 𝑦 ∈ 𝐹. An element 𝑥 ∈ 𝐸

is called the minimum of 𝐹 if 𝑥 is a lower bound of 𝐹 and
𝑥 ∈ 𝐹. If there exists a lower bound of 𝐹, then 𝐹 is said to
be bounded from below. An element 𝑥 ∈ 𝐸 is called an upper
bound of 𝐹 if 𝑦 ≤ 𝑥 for any 𝑦 ∈ 𝐹. An element 𝑥 ∈ 𝐸 is called
themaximum of 𝐹 if 𝑥 is an upper bound and 𝑥 ∈ 𝐹. If there
exists an upper bound of 𝐹, then 𝐹 is said to be bounded from
above. If the set of all lower bounds of 𝐹 has the maximum,
then the maximum is called an infimum of 𝐹 and denoted by
inf 𝐹. If the set of all upper bounds of 𝐹 has the minimum,
then the minimum is called a supremum of 𝐹 and denoted by
sup 𝐹. An element 𝑥 ∈ 𝐹 is called a minimal of 𝐹 if 𝑦 ≤ 𝑥

and 𝑦 ∈ 𝐹 implies 𝑦 = 𝑥. A partially ordered set 𝐸 is said
to be complete if every nonempty chain of 𝐸 has an infimum;
𝐸 is said to be chain complete if every nonempty chain of 𝐸
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which is bounded from below has an infimum; 𝐸 is said to
be Dedekind complete if every nonempty subset of 𝐸 which is
bounded from below has an infimum. A mapping 𝑓 from 𝐸

into 𝐸 is said to be decreasing if 𝑓(𝑥) ≤ 𝑥 for any 𝑥 ∈ 𝐸. For
further information of a partially ordered set, see [1, 2, 6–10].

In a complete partially ordered set, the following theorem
is obtained; see [11–14].

Theorem 1 (Bourbaki-Kneser). Let 𝐸 be a complete partially
ordered set. Let 𝑓 be a decreasing mapping from 𝐸 into 𝐸. Then
𝑓 has a fixed point.

A partially ordered set 𝐸 is called a partially ordered
vector space if𝐸 is a vector space and𝑥+𝑧 ≤ 𝑦+𝑧 and𝛼𝑥 ≤ 𝛼𝑦

hold whenever 𝑥, 𝑦, 𝑧 ∈ 𝐸, 𝑥 ≤ 𝑦 and 𝛼 is a nonnegative real
number. If a partially ordered vector space 𝐸 is a lattice, that
is, any two elements in 𝐸 have a supremum and an infimum,
then 𝐸 is called a Riesz space.

Let 𝑋 be a vector space and 𝐸 a partially ordered vector
space. A mapping 𝑓 from 𝑋 into 𝐸 is said to be concave if
𝑓(𝑡𝑥 + (1 − 𝑡)𝑦) ≥ 𝑡𝑓(𝑥) + (1 − 𝑡)𝑓(𝑦) for any 𝑥, 𝑦 ∈ 𝑋 and
𝑡 ∈ [0, 1]. A mapping 𝑝 from 𝑋 into 𝐸 is said to be sublinear
if the following conditions are satisfied.

(S1) For any 𝑥, 𝑦 ∈ 𝑋, 𝑝(𝑥 + 𝑦) ≤ 𝑝(𝑥) + 𝑝(𝑦).

(S2) For any 𝑥 ∈ 𝑋 and nonnegative real number 𝛼,
𝑝(𝛼𝑥) = 𝛼𝑝(𝑥).

Let 𝐸𝑋 be the set of mappings from𝑋 into 𝐸.Throughout
this paper, 𝐸𝑋 is ordered as follows. For 𝑓, 𝑔 ∈ 𝐸

𝑋, let 𝑓 ≤ 𝑔

mean that 𝑓(𝑥) ≤ 𝑔(𝑥) for any 𝑥 ∈ 𝑋. It is easy to check that
𝐸
𝑋 is also a partially ordered vector space.
The following lemmas are useful for the proof of our

main results.

Lemma2. Let𝑋 be a vector space,𝐸 a chain complete partially
ordered vector space, and 𝑍 a nonempty chain of 𝐸𝑋 which is
bounded from below. Then there exists inf{ℎ(𝑥) | ℎ ∈ 𝑍} for
any 𝑥 ∈ 𝑋. Moreover, if 𝑝 ∈ 𝐸

𝑋 is defined by 𝑝(𝑥) = inf{ℎ(𝑥) |

ℎ ∈ 𝑍} for any 𝑥 ∈ 𝑋, then 𝑝 = inf 𝑍; that is, 𝐸𝑋 is chain
complete.

Proof. Let 𝑥 ∈ 𝑋 be fixed. Since 𝑍 is a nonempty chain, so is
{ℎ(𝑥) | ℎ ∈ 𝑍}. Let 𝑓 be a lower bound of 𝑍. Since 𝑓(𝑥) ≤

ℎ(𝑥) for any ℎ ∈ 𝑍, {ℎ(𝑥) | ℎ ∈ 𝑍} is bounded from below.
Therefore, since 𝐸 is chain complete, there exists inf{ℎ(𝑥) |

ℎ ∈ 𝑍}.
Define 𝑝 ∈ 𝐸

𝑋 by 𝑝(𝑥) = inf{ℎ(𝑥) | ℎ ∈ 𝑍} for any 𝑥 ∈ 𝑋.
Then it is clear that 𝑝 ≤ ℎ for any ℎ ∈ 𝑍; that is, 𝑝 is a lower
bound of𝑍. Let 𝑞 be a lower bound of𝑍. Since 𝑞(𝑥) ≤ ℎ(𝑥) for
any 𝑥 ∈ 𝑋 and ℎ ∈ 𝑍, 𝑞(𝑥) is a lower bound of {ℎ(𝑥) | ℎ ∈ 𝑍}

for any 𝑥 ∈ 𝑋. Therefore, 𝑞(𝑥) ≤ inf{ℎ(𝑥) | ℎ ∈ 𝑍} = 𝑝(𝑥) for
any 𝑥 ∈ 𝑋 and thus 𝑝 = inf 𝑍.

Lemma 3. Let 𝑋 be a vector space, 𝐸 a Dedekind complete
partially ordered vector space, and 𝑍 a nonempty subset in
𝐸
𝑋 which is bounded from below. Then there exists inf{ℎ(𝑥) |

ℎ ∈ 𝑍} for any 𝑥 ∈ 𝑋. Moreover, if 𝑝 ∈ 𝐸
𝑋 is defined by

𝑝(𝑥) = inf{ℎ(𝑥) | ℎ ∈ 𝑍} for any 𝑥 ∈ 𝑋, then 𝑝 = inf 𝑍; that
is, 𝐸𝑋 is Dedekind complete.

Proof. The proof is similar to that of Lemma 2.

Lemma 4. Let𝑋, 𝐸, 𝐸𝑋,𝑍, and 𝑝 be the same as in Lemma 2.
Suppose that

(1) for any ℎ ∈ 𝑍, 𝑥 ∈ 𝑋 and 𝛼 > 0, there exists ℎ
󸀠
∈ 𝑍

such that ℎ(𝛼𝑥) = 𝛼ℎ
󸀠
(𝑥);

(2) 𝑝(0) = 0;
(3) for any ℎ

1
, ℎ
2

∈ 𝑍 and 𝑥, 𝑦 ∈ 𝑋, there exists ℎ ∈ 𝑍

such that ℎ(𝑥 + 𝑦) ≤ ℎ
1
(𝑥) + ℎ

2
(𝑦).

Then 𝑝 is sublinear.

Proof. Let 𝑥 ∈ 𝑋 and 𝛼 > 0 be fixed. It is clear from (1) that
{ℎ(𝛼𝑥) | ℎ ∈ 𝑍} ⊂ {𝛼ℎ

󸀠
(𝑥) | ℎ

󸀠
∈ 𝑍}. Since 𝛼𝑥 ∈ 𝑋 and

1/𝛼 > 0, by (1), for any ℎ
󸀠
∈ 𝑍 there exists ℎ ∈ 𝑍 such that

𝛼ℎ
󸀠
(𝑥) = 𝛼ℎ

󸀠
(
1

𝛼
𝛼𝑥) = 𝛼

1

𝛼
ℎ (𝛼𝑥) = ℎ (𝛼𝑥) (1)

and hence {𝛼ℎ
󸀠
(𝑥) | ℎ

󸀠
∈ 𝑍} ⊂ {ℎ(𝛼𝑥) | ℎ ∈ 𝑍}. Therefore, we

conclude that {ℎ(𝛼𝑥) | ℎ ∈ 𝑍} = {𝛼ℎ
󸀠
(𝑥) | ℎ

󸀠
∈ 𝑍}. Thus we

obtain that

𝑝 (𝛼𝑥) = inf {ℎ (𝛼𝑥) | ℎ ∈ 𝑍} = inf {𝛼ℎ
󸀠
(𝑥) | ℎ

󸀠
∈ 𝑍}

= 𝛼 inf {ℎ󸀠 (𝑥) | ℎ
󸀠
∈ 𝑍} = 𝛼𝑝 (𝑥) .

(2)

Moreover, (2) shows that 𝑝(0𝑥) = 𝑝(0) = 0 = 0𝑝(𝑥).
Therefore, (S2) holds.

Let 𝑥, 𝑦 ∈ 𝑋 be fixed. By (3), for any ℎ
1
, ℎ
2

∈ 𝑍,
there exists ℎ ∈ 𝑍 such that ℎ(𝑥 + 𝑦) ≤ ℎ

1
(𝑥) + ℎ

2
(𝑦). Thus

we have

𝑝 (𝑥 + 𝑦) ≤ ℎ
1 (𝑥) + ℎ

2
(𝑦) (3)

for any ℎ
1
, ℎ
2

∈ 𝑍. This shows that 𝑝(𝑥 + 𝑦) − ℎ
2
(𝑦) is a

lower bound of {ℎ(𝑥) | ℎ ∈ 𝑍} for any ℎ
2

∈ 𝑍 and hence
we have

𝑝 (𝑥 + 𝑦) − ℎ
2
(𝑦) ≤ 𝑝 (𝑥) (4)

for anyℎ
2
∈ 𝑍.This shows that𝑝(𝑥+𝑦)−𝑝(𝑥) is a lower bound

of {ℎ(𝑦) | ℎ ∈ 𝑍} and hence we have 𝑝(𝑥 + 𝑦) − 𝑝(𝑥) ≤ 𝑝(𝑦).
Therefore, (S1) holds. This completes the proof.

Lemma 5. Let𝑋, 𝐸, 𝐸𝑋,𝑍, and 𝑝 be the same as in Lemma 3.
Suppose that

(1) for any ℎ ∈ 𝑍, 𝑥 ∈ 𝑋 and 𝛼 > 0, there exists ℎ
󸀠
∈ 𝑍

such that ℎ(𝛼𝑥) = 𝛼ℎ
󸀠
(𝑥);

(2) 𝑝(0) = 0;
(3) for any ℎ

1
, ℎ
2

∈ 𝑍 and 𝑥, 𝑦 ∈ 𝑋, there exists ℎ ∈ 𝑍

such that ℎ(𝑥 + 𝑦) ≤ ℎ
1
(𝑥) + ℎ

2
(𝑦).

Then 𝑝 is sublinear.

Proof. The proof is similar to that of Lemma 4.
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3. Main Results

To obtain our main results, we need the following.

Lemma 6. Let 𝑔 be a sublinear mapping from a vector space
𝑋 into a chain complete partially ordered vector space 𝐸 and
𝑦 ∈ 𝑋. Let 𝜙 be a mapping from 𝑋 into 𝐸 defined by

𝜙 (𝑥) = inf {𝑔 (𝑥 + 𝑡𝑦) − 𝑔 (𝑡𝑦) | 𝑡 ≥ 0} (5)

for any 𝑥 ∈ 𝑋.Then 𝜙 is sublinear and 𝑔
∗

≤ 𝜙 ≤ 𝑔 on𝑋, where
𝑔
∗ is a mapping from 𝑋 into 𝐸 defined by 𝑔

∗
(𝑥) = −𝑔(−𝑥) for

𝑥 ∈ 𝑋.

Proof. For any 𝑥 ∈ 𝑋 and 𝑡 ≥ 0, put 𝜏
𝑡
(𝑥) = 𝑔(𝑥+ 𝑡𝑦) −𝑔(𝑡𝑦).

Then𝑍 = {𝜏
𝑡
| 𝑡 ≥ 0} is a nonempty chain and bounded from

below in 𝐸
𝑋. Indeed, since 𝑔 = 𝜏

0
∈ 𝑍, 𝑍 is nonempty. If

𝑠 ≤ 𝑡, then

𝜏
𝑠 (𝑥) − 𝜏

𝑡 (𝑥) = 𝑔 (𝑥 + 𝑠𝑦) − 𝑔 (𝑠𝑦) − (𝑔 (𝑥 + 𝑡𝑦) − 𝑔 (𝑡𝑦))

= 𝑔 (𝑥 + 𝑠𝑦) + (𝑔 (𝑡𝑦) − 𝑔 (𝑠𝑦)) − 𝑔 (𝑥 + 𝑡𝑦)

= 𝑔 (𝑥 + 𝑠𝑦) + (𝑡 − 𝑠) 𝑔 (𝑦) − 𝑔 (𝑥 + 𝑡𝑦)

= 𝑔 (𝑥 + 𝑠𝑦) + 𝑔 ((𝑡 − 𝑠) 𝑦) − 𝑔 (𝑥 + 𝑡𝑦)

≥ 𝑔 (𝑥 + 𝑠𝑦 + (𝑡 − 𝑠) 𝑦) − 𝑔 (𝑥 + 𝑡𝑦) = 0

(6)

for any 𝑥 ∈ 𝑋. Thus 𝑍 is a chain in 𝐸
𝑋. Since

𝜏
𝑡 (𝑥) = 𝑔 (𝑥 + 𝑡𝑦) − 𝑔 (𝑡𝑦) ≥ 𝑔 (𝑡𝑦)

− 𝑔 (−𝑥) − 𝑔 (𝑡𝑦) = −𝑔 (−𝑥) = 𝑔
∗
(𝑥)

(7)

for any 𝑥 ∈ 𝑋 and 𝑡 ≥ 0, 𝑔∗ is a lower bound of 𝑍. Hence
𝑍 is bounded from below in 𝐸

𝑋. Lemma 2 shows that 𝜙(𝑥) =

inf 𝑍 is well defined.
We next check (1), (2), and (3) in Lemma 4. Let 𝑡 ≥ 0,

𝑥 ∈ 𝑋, and 𝛼 > 0. We have

𝜏
𝑡 (𝛼𝑥) = 𝑔 (𝛼𝑥 + 𝑡𝑦) − 𝑔 (𝑡𝑦)

= 𝛼 (𝑔(𝑥 +
𝑡

𝛼
𝑦) − 𝑔(

𝑡

𝛼
𝑦))

= 𝛼𝜏
𝑡/𝛼 (𝑥) .

(8)

Clearly, 𝜏
𝑡/𝛼

∈ 𝑍 and hence (1) in Lemma 4 holds. Since
𝜙(0) = inf {0 | 𝑡 ≥ 0} = 0, (2) in Lemma 4 holds. Let 𝑡

1
, 𝑡
2
≥ 0

and 𝑥
1
, 𝑥
2
∈ 𝑋. Since we have

𝜏
𝑡
1
+𝑡
2

(𝑥
1
+ 𝑥
2
) = 𝑔 (𝑥

1
+ 𝑥
2
+ (𝑡
1
+ 𝑡
2
) 𝑦)

− 𝑔 ((𝑡
1
+ 𝑡
2
) 𝑦) ≤ 𝑔 (𝑥

1
+ 𝑡
1
𝑦)

+ 𝑔 (𝑥
2
+ 𝑡
2
𝑦) − (𝑡

1
+ 𝑡
2
) 𝑔 (𝑦)

= 𝑔 (𝑥
1
+ 𝑡
1
𝑦) − 𝑔 (𝑡

1
𝑦)

+ 𝑔 (𝑥
2
+ 𝑡
2
𝑦) − 𝑔 (𝑡

2
𝑦)

= 𝜏
𝑡
1

(𝑥
1
) + 𝜏
𝑡
2

(𝑥
2
) ,

(9)

(3) in Lemma 4 holds. Therefore, Lemma 4 implies that 𝜙 is
sublinear.

Finally, it is clear that 𝜙 ≤ 𝑔.This inequality and (7) imply
that 𝑔∗ ≤ 𝜙 ≤ 𝑔 on 𝑋.

ByTheorem 1 and Lemma 6, we obtain the following. For
the case that 𝐸 is a Dedekind complete Riesz space, see [2].

Theorem 7. Let 𝑓 be a sublinear mapping from a vector space
𝑋 into a chain complete partially ordered vector space 𝐸. Then
there exists a linear mapping 𝑔 from 𝑋 into 𝐸 such that 𝑔 ≤ 𝑓

on 𝑋.

Proof. Let 𝑌 be a subset of 𝐸𝑋 defined by

𝑌 = {ℎ ∈ 𝐸
𝑋

| ℎ is sublinear, 𝑓
∗

≤ ℎ ≤ 𝑓} , (10)

where 𝑓
∗ is defined by 𝑓

∗
(𝑥) = −𝑓(−𝑥) for any 𝑥 ∈ 𝑋. Then

it is clear that 𝑓 ∈ 𝑌 and hence 𝑌 is nonempty. Moreover 𝑌

is complete. In fact, let 𝑍 ⊂ 𝑌 be a nonempty chain. Since
for any ℎ ∈ 𝑍, 𝑓∗ ≤ ℎ, 𝑍 is bounded from below. It follows
from Lemma 2 that there exists inf 𝑍 ∈ 𝐸

𝑋. By Lemma 4,
inf 𝑍 is sublinear. Since 𝑓

∗
≤ ℎ ≤ 𝑓 for any ℎ ∈ 𝑍, we have

𝑓
∗

≤ inf 𝑍 ≤ 𝑓. Thus inf 𝑍 ∈ 𝑌 and hence 𝑌 is complete.
Furthermore𝑌 has aminimal. In fact, we suppose that𝑌 does
not have a minimal element. Then, for any ℎ ∈ 𝑌, there exists
ℎ̂ ∈ 𝑌 such that ℎ̂ ≤ ℎ and ℎ̂ ̸= ℎ. We define a mapping 𝑇

from 𝑌 into 𝑌 by 𝑇ℎ = ℎ̂. Since the mapping 𝑇 is decreasing,
there exists ℎ

0
∈ 𝑌 satisfying 𝑇ℎ

0
= ℎ
0
by Theorem 1. This is

a contradiction.
Let 𝑔 be a minimal in 𝑌. Let 𝑥 ∈ 𝑋. Let 𝜙 be a mapping

from 𝑋 into 𝐸 defined by

𝜙 (𝑧) = inf {𝑔 (𝑧 + 𝑡𝑥) − 𝑔 (𝑡𝑥) | 𝑡 ≥ 0} (11)

for any 𝑧 ∈ 𝑋, then 𝜙 is sublinear and 𝑔
∗

≤ 𝜙 ≤ 𝑔 on 𝑋 by
Lemma 6. Moreover 𝜙 ∈ 𝑌. In fact, since 𝑔 ≤ 𝑓 and 𝑓

∗
≤ 𝑔
∗,

we have 𝑓
∗

≤ 𝑔
∗

≤ 𝜙 ≤ 𝑔 ≤ 𝑓 for any 𝑓 ∈ 𝑍. This shows that
𝜙 ∈ 𝑌. Since 𝑔 is minimal, 𝜙 = 𝑔. Then we have

𝑔 (−𝑥) = 𝜙 (−𝑥)

= inf {𝑔 (−𝑥 + 𝑡𝑥) − 𝑔 (𝑡𝑥) | 𝑡 ≥ 0}

≤ 𝑔 (−𝑥 + 𝑥) − 𝑔 (𝑥)

= 𝑔 (0) − 𝑔 (𝑥) = −𝑔 (𝑥) .

(12)

Since 𝑔 is sublinear and 0 = 𝑔(0) ≤ 𝑔(𝑥 + 𝑧) + 𝑔(−𝑥 − 𝑧), we
have

−𝑔 (𝑥 + 𝑧) ≤ 𝑔 (−𝑥 − 𝑧)

≤ 𝑔 (−𝑥) + 𝑔 (−𝑧)

≤ −𝑔 (𝑥) − 𝑔 (𝑧) .

(13)

Thus 𝑔(𝑥)+𝑔(𝑧) ≤ 𝑔(𝑥+𝑧). Since 𝑔 is sublinear, we also have
𝑔(𝑥 + 𝑧) ≤ 𝑔(𝑥) + 𝑔(𝑧) for any 𝑥, 𝑧 ∈ 𝑋. Then we obtain that
for any 𝑥, 𝑧 ∈ 𝑋, 𝑔(𝑥+𝑧) = 𝑔(𝑥)+𝑔(𝑧). Let 𝑥 ∈ 𝑋 and 𝛼 > 0.
Since

0 = 𝑔 (𝛼𝑥 − 𝛼𝑥) = 𝛼𝑔 (𝑥) + 𝑔 (−𝛼𝑥) , (14)
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we have 𝑔(−𝛼𝑥) = −𝛼𝑔(𝑥). Then for any real number 𝛼, we
have 𝑔(𝛼𝑥) = 𝛼𝑔(𝑥). Thus 𝑔 is linear. Therefore, 𝑔 is a linear
mapping from 𝑋 into 𝐸 such that 𝑔 ≤ 𝑓 on 𝑋.

Since Dedekind completeness implies chain complete-
ness, we obtain the following.

Corollary 8. Let𝑓 be a sublinearmapping from a vector space
𝑋 into a Dedekind complete partially ordered vector space 𝐸.
Then there exists a linear mapping 𝑔 from 𝑋 into 𝐸 such that
𝑔 ≤ 𝑓 on 𝑋.

To give the Hahn-BanachTheorem in the case where the
range space is a Dedekind complete partially ordered vector
space, we need the following.

Lemma 9. Let 𝑝 be a sublinear mapping from a vector space
𝑋 into a Dedekind complete partially ordered vector space𝐸,𝐾
a nonempty convex subset of𝑋, and 𝑞 a concave mapping from
𝐾 into 𝐸 such that 𝑞 ≤ 𝑝 on 𝐾. For any 𝑥 ∈ 𝑋, let

𝜙 (𝑥) = inf {𝑝 (𝑥 + 𝑡𝑦) − 𝑡𝑞 (𝑦) 𝑡 ≥ 0, 𝑦 ∈ 𝐾} . (15)

Then 𝜙 is a sublinear mapping such that 𝜙 ≤ 𝑝 on𝑋. Moreover,
if 𝑔 is a linear mapping from 𝑋 into 𝐸, then 𝑔 ≤ 𝜙 on 𝑋 is
equivalent to 𝑔 ≤ 𝑝 on 𝑋 and 𝑞 ≤ 𝑔 on 𝐾.

Proof. First, we show that 𝜙 is well defined and 𝜙(𝑥) ≥

−𝑝(−𝑥) for any 𝑥 ∈ 𝑋. Let 𝑍 = {𝜏
𝑡,𝑦

| 𝑡 ≥ 0 and 𝑦 ∈ 𝐾},
where

𝜏
𝑡,𝑦 (𝑥) = 𝑝 (𝑥 + 𝑡𝑦) − 𝑡𝑞 (𝑦) (16)

for any 𝑥 ∈ 𝑋 and 𝑡 ≥ 0. For any 𝜏
𝑡,𝑦

∈ 𝑍 and 𝑥 ∈ 𝑋,

𝜏
𝑡,𝑦 (𝑥) = 𝑝 (𝑥 + 𝑡𝑦) − 𝑡𝑞 (𝑦)

≥ 𝑝 (𝑡𝑦) − 𝑝 (−𝑥) − 𝑡𝑞 (𝑦) ≥ −𝑝 (−𝑥) ,

(17)

and thus 𝜙(𝑥) ≥ −𝑝(−𝑥) and𝑍 is bounded from below in 𝐸
𝑋.

Since 𝐸 is Dedekind complete, 𝜙 is well defined by Lemma 3.
We next check (1), (2), and (3) in Lemma 5.

(1) Let 𝜏
𝑡,𝑦

∈ 𝑍. For any 𝑥 ∈ 𝑋 and 𝛼 > 0, we have

𝜏
𝑡,𝑦 (𝛼𝑥) = 𝑝 (𝛼𝑥 + 𝑡𝑦) − 𝑡𝑞 (𝑦)

= 𝛼 (𝑝(𝑥 +
𝑡

𝛼
𝑦) −

𝑡

𝛼
𝑞 (𝑦))

= 𝛼𝜏
𝑡/𝛼,𝑦 (𝑥) .

(18)

(2) By the definition of 𝜙, 𝜙(𝑥) ≤ 𝑝(𝑥) for any 𝑥 ∈ 𝑋.
Therefore 𝜙(0) ≤ 𝑝(0) = 0. Since 𝑝 ≥ 𝑞 on𝐾, we have

𝜙 (0) = inf {𝑝 (𝑡𝑦) − 𝑡𝑞 (𝑦) 𝑡 ≥ 0, 𝑦 ∈ 𝐾}

= inf {𝑡𝑝 (𝑦) − 𝑡𝑞 (𝑦) 𝑡 ≥ 0, 𝑦 ∈ 𝐾 ≥ 0} .

(19)

Hence we have 𝜙(0) = 0.

(3) Let 𝜏
𝑡
1
,𝑦
1

, 𝜏
𝑡
2
,𝑦
2

∈ 𝑍 satisfying 𝑡
1
+𝑡
2

̸= 0. Let𝑥
1
, 𝑥
2
∈ 𝑋.

Since 𝐾 is convex and 𝑞 is concave, we have

𝜏
𝑡
1
,𝑦
1

(𝑥
1
) + 𝜏
𝑡
2
,𝑦
2

(𝑥
2
)

= 𝑝 (𝑥
1
+ 𝑡
1
𝑦
1
) − 𝑡
1
𝑞 (𝑦
1
) + 𝑝 (𝑥

2
+ 𝑡
2
𝑦
2
) − 𝑡
2
𝑞 (𝑦
2
)

≥ 𝑝 (𝑥
1
+ 𝑥
2
+ (𝑡
1
+ 𝑡
2
) 𝑤) − (𝑡

1
+ 𝑡
2
) 𝑞 (𝑤)

= 𝜏
𝑡
1
+𝑡
2
,𝑤

(𝑥
1
+ 𝑥
2
) ,

(20)

where𝑤 = (1/(𝑡
1
+ 𝑡
2
))(𝑡
1
𝑦
1
+ 𝑡
2
𝑦
2
) ∈ 𝐾. Since 𝑝 is sublinear,

we have

𝜏
0,𝑤

(𝑥
1
+ 𝑥
2
) = 𝑝 (𝑥

1
+ 𝑥
2
) ≤ 𝑝 (𝑥

1
) + 𝑝 (𝑥

2
)

= 𝜏
0,𝑦
1

(𝑥
1
) + 𝜏
0,𝑦
2

(𝑥
2
) .

(21)

Therefore, for any 𝑥
1
, 𝑥
2

∈ 𝑋 and 𝑡
1
, 𝑡
2

≥ 0, we have
𝜏
𝑡
1
,𝑦
1

(𝑥
1
) + 𝜏
𝑡
2
,𝑦
2

(𝑥
2
) ≥ 𝜏
𝑡
1
+𝑡
2
,𝑤
(𝑥
1
+ 𝑥
2
).

Thus by Lemma 5, 𝜙 is sublinear. Moreover, by the defini-
tion of 𝜙, we have 𝜙 ≤ 𝑝 on 𝑋.

Let 𝑔 be a linear mapping from 𝑋 into 𝐸. Suppose that
𝑔 ≤ 𝜙 on𝑋. Since𝜙 ≤ 𝑝 on𝑋, we have𝑔 ≤ 𝑝 on𝑋.Moreover,
since for any 𝑦 ∈ 𝐾,

−𝑔 (𝑦) = 𝑔 (−𝑦) ≤ 𝜙 (−𝑦)

≤ 𝑝 (−𝑦 + 𝑦) − 𝑞 (𝑦) = −𝑞 (𝑦) ,

(22)

we have 𝑔 ≥ 𝑞 on 𝐾. To prove the converse, suppose that
𝑔 ≤ 𝑝 on 𝑋 and 𝑞 ≤ 𝑔 on 𝐾. For any 𝑥 ∈ 𝑋, 𝑦 ∈ 𝐾 and 𝑡 ≥ 0,
we have

𝑔 (𝑥) = 𝑔 (𝑥 + 𝑡𝑦) − 𝑡𝑔 (𝑦) ≤ 𝑝 (𝑥 + 𝑡𝑦) − 𝑡𝑞 (𝑦) . (23)

This implies that 𝑔 ≤ 𝜙 on 𝑋.

By Corollary 8 and Lemma 9, we have the Hahn-Banach
theorem in the case where the range space is a Dedekind
complete partially ordered vector space. For the case that 𝐸

is a Dedekind complete Riesz space, see [2].

Theorem 10. Let 𝑝 be a sublinear mapping from a vector space
𝑋 into a Dedekind complete partially ordered vector space 𝐸, 𝑌
a subspace of 𝑋, and 𝑞 a linear mapping from 𝑌 into 𝐸 such
that 𝑞 ≤ 𝑝 on 𝑌. Then there exists a linear mapping 𝑔 from 𝑋

into 𝑌 such that 𝑔 = 𝑞 on 𝑌 and 𝑔 ≤ 𝑝 on 𝑋.

Proof. Let 𝜙 be a mapping from 𝑋 into 𝐸 defined by

𝜙 (𝑥) = inf {𝑝 (𝑥 + 𝑡𝑦) − 𝑡𝑞 (𝑦) 𝑡 ≥ 0, 𝑦 ∈ 𝐾} (24)

for any 𝑥 ∈ 𝑋. By Lemma 9, 𝜙 is a sublinear mapping such
that 𝜙 ≤ 𝑝 on𝑋. By Corollary 8, there exists a linear mapping
𝑔 such that 𝑔 ≤ 𝜙 on𝑋. Then putting𝐾 = 𝑌 in Lemma 9, we
have 𝑔 ≤ 𝑝 on 𝑋 and 𝑞 ≤ 𝑔 on 𝑌. Since 𝑌 is a subspace, for
any 𝑦 ∈ 𝑌, we have −𝑦 ∈ 𝑌. Then 𝑞(−𝑦) ≤ 𝑔(−𝑦). Since 𝑞 and
𝑔 are linear, we have −𝑞(𝑦) ≤ −𝑔(𝑦). Then 𝑔 ≤ 𝑞 on 𝑌. Thus
𝑔 = 𝑞 on 𝑌.
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Moreover, by Corollary 8, we obtain the Mazur-Orlicz
theorem in a Dedekind complete partially ordered vector
space. For the case that𝐸 is a Dedekind complete Riesz space,
see [1, 15].

Theorem 11. Let 𝑝 be a sublinear mapping from a vector space
𝑋 into a Dedekind complete partially ordered vector space 𝐸.
Let {𝑥

𝑗
| 𝑗 ∈ 𝐽} be a family of elements of 𝑋 and {𝑦

𝑗
| 𝑗 ∈ 𝐽}

a family of elements of 𝐸. Then the following (1) and (2) are
equivalent.

(1) There exists a linear mapping 𝑔 from𝑋 into𝐸 such that
𝑔 ≤ 𝑝 on 𝑋 and 𝑦

𝑗
≤ 𝑔(𝑥

𝑗
) for any 𝑗 ∈ 𝐽.

(2) For any natural number 𝑛, nonnegative real numbers
𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑛
≥ 0 and 𝑗

1
, 𝑗
2
, . . . , 𝑗

𝑛
∈ 𝐽, one has

𝑛

∑

𝑖=1

𝛼
𝑖
𝑦
𝑗
𝑖

≤ 𝑝(

𝑛

∑

𝑖=1

𝛼
𝑖
𝑥
𝑗
𝑖

) . (25)

Proof. Let 𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑛
≥ 0 and 𝑗

1
, 𝑗
2
, . . . , 𝑗

𝑛
∈ 𝐽 for a natural

number 𝑛. By (1), we have
𝑛

∑

𝑖=1

𝛼
𝑖
𝑦
𝑗
𝑖

≤

𝑛

∑

𝑖=1

𝛼
𝑖
𝑔 (𝑥
𝑗
𝑖

)

= 𝑔(

𝑛

∑

𝑖=1

𝛼
𝑖
𝑥
𝑗
𝑖

) ≤ 𝑝(

𝑛

∑

𝑖=1

𝛼
𝑖
𝑥
𝑗
𝑖

) .

(26)

Thus (2) is established.
Next by (2), for any 𝑥 ∈ 𝑋, we have
𝑛

∑

𝑖=1

𝛼
𝑖
𝑦
𝑗
𝑖

≤ 𝑝(

𝑛

∑

𝑖=1

𝛼
𝑖
𝑥
𝑗
𝑖

) = 𝑝(𝑥 +

𝑛

∑

𝑖=1

𝛼
𝑖
𝑥
𝑗
𝑖

− 𝑥)

≤ 𝑝(𝑥 +

𝑛

∑

𝑖=1

𝛼
𝑖
𝑥
𝑗
𝑖

) + 𝑝 (−𝑥) ,

−𝑝 (−𝑥) ≤ 𝑝(𝑥 +

𝑛

∑

𝑖=1

𝛼
𝑖
𝑥
𝑗
𝑖

) −

𝑛

∑

𝑖=1

𝛼
𝑖
𝑦
𝑗
𝑖

(27)

for any natural number 𝑛, 𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑛
≥ 0 and 𝑗

1
, 𝑗
2
, . . . ,

𝑗
𝑛
∈ 𝐽. Put

𝑝
0 (𝑥)

= inf {𝑝(𝑥 +

𝑛

∑

𝑖=1

𝛼
𝑖
𝑥
𝑗
𝑖

) −

𝑛

∑

𝑖=1

𝛼
𝑖
𝑦
𝑗
𝑖

| 𝑛 ∈ 𝑁,

𝛼
𝑖
≥ 0, 𝑗
𝑖
∈ 𝐽, 𝑖 = 1, 2, . . . , 𝑛}

(28)

for 𝑥 ∈ 𝑋, where 𝑁 is the set of all natural numbers. By
Lemma 3, 𝑝

0
is well defined. Since 𝑝 is sublinear, 𝑝

0
is also

sublinear. Thus by Corollary 8, there exists a linear mapping
𝑔 from 𝑋 into 𝐸 such that 𝑔 ≤ 𝑝

0
on 𝑋. Since 𝑝

0
(−𝑥
𝑗
) ≤

𝑝(−𝑥
𝑗
+ 𝑥
𝑗
) − 𝑦
𝑗
= −𝑦
𝑗
, we have

𝑦
𝑗
≤ −𝑝
0
(−𝑥
𝑗
) ≤ −𝑔 (−𝑥

𝑗
) = 𝑔 (𝑥

𝑗
) . (29)

Since 𝑝
0
(𝑥) ≤ 𝑝(𝑥) for any 𝑥 ∈ 𝑋, we have 𝑔(𝑥) ≤ 𝑝(𝑥)

for any 𝑥 ∈ 𝑋. Thus (1) is established.
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matičeskĭı Žurnal, vol. 16, pp. 132–138, 1975 (Russian).

[9] T. Kawasaki, M. Toyoda, and T. Watanabe, “The Hahn-Banach
theorem and the separation theorem in a partially ordered
vector space,” Journal of Nonlinear Analysis and Optimization,
vol. 2, no. 1, pp. 111–117, 2011.

[10] W. A. J. Luxemburg and A. C. Zaanen, Riesz Spaces I, North
Holland, Amsterdam, The Netherlands, 1971.

[11] N. Bourbaki, Topologie Générale, Hermann, Paris, France, 1940.
[12] W. A. Kirk, Fixed Point Theory: A Brief Survey, Universidas de

Los Andes, Mérida, Mexico, 1990.
[13] H. Kneser, “Eine direkte ableitung des zornschen lemmas aus

dem auswahlaxiom,”Mathematische Zeitschrift, vol. 53, pp. 110–
113, 1950.

[14] T. C. Lim, “On minimal (maximal) common fixed points of a
commuting family of decreasing (increasing)maps,”Differential
and Difference Equations and Applications, pp. 683–684, 2006.

[15] A. L. Peressini, Ordered Topological Vector Spaces, Harper &
Row, New York, NY, USA, 1967.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


