
Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2013, Article ID 541079, 8 pages
http://dx.doi.org/10.1155/2013/541079

Research Article
Strong Convergence Theorems for Solutions of
Equations of Hammerstein Type

Chih-Sheng Chuang

Department of Mathematics, National Cheng Kung University, Tainan 701, Taiwan

Correspondence should be addressed to Chih-Sheng Chuang; cschuang1977@gmail.com

Received 11 March 2013; Accepted 18 April 2013

Academic Editor: Erdal Karapınar

Copyright © 2013 Chih-Sheng Chuang.This is an open access article distributed under the Creative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We consider an auxiliary operator, defined in a real Hilbert space in terms of 𝐾 and 𝐹, that is, monotone and Lipschitz mappings
(resp., monotone and bounded mappings). We use an explicit iterative process that converges strongly to a solution of equation of
Hammerstein type. Furthermore, our results improve related results in the literature.

1. Introduction

Let 𝐻 be a real Hilbert space. A mapping 𝐴 : 𝐷(𝐴) ⊆ 𝐻 →

𝐻 is said to be monotone if ⟨𝐴𝑥 − 𝐴𝑦, 𝑥 − 𝑦⟩ ≥ 0 for
every 𝑥, 𝑦 ∈ 𝐷(𝐴). 𝐴 is called maximal monotone if it is
monotone and the 𝑅(𝐼 + 𝑟𝐴) = 𝐻, the range of (𝐼 + 𝑟𝐴),
for each 𝑟 > 0, where 𝐼 is the identity mapping on 𝐻. 𝐴 is
said to satisfy the range condition if cl(𝐷(𝐴)) ⊆ 𝑅(𝐼 + 𝑟𝐴)

for each 𝑟 > 0. For monotone mappings, there are many
related equations of evolution. Several problems that arise in
differential equations, for instance, elliptic boundary value
problems whose linear parts possess Green’s function, can be
put in operator form as

𝑢 + 𝐾𝐹𝑢 = 0, (1)

where 𝐾 and 𝐹 are monotone mappings. In fact, (1) comes
from the following integral equation ofHammerstein type [1]:

𝑢 (𝑥) + ∫
Ω

𝑘 (𝑥, 𝑦) 𝑓 (𝑦, 𝑢 (𝑦)) 𝑑𝑦 = ℎ (𝑥) , (2)

where 𝑑𝑦 is a 𝜎-finite measure on the measure space Ω; the
real kernel is defined by Ω × Ω, 𝑓 is a real-valued function
defined onΩ×R and is, in general, nonlinear, and ℎ is a given
function onΩ. If we now define an operator 𝐾 by

𝐾V (𝑥) = ∫
Ω

𝑘 (𝑥, 𝑦) V (𝑦) 𝑑𝑦, 𝑥 ∈ Ω, (3)

and the so-called superposition or Nemytskii operator by
𝐹𝑢(𝑦) := 𝑓(𝑦, 𝑢(𝑦)), then (2) can be put in (1) (without loss
of generality, we may assume that ℎ ≡ 0).

Note that equations of Hammerstein type play a cru-
cial role in the theory of optimal control systems and in
automation and network theory, and several existence and
uniqueness theorems have been proved for equations of the
Hammerstein type. For details, one can refer to [2–7].

In 2005, Chidume and Zegeye [8] constructed an iterative
process as follows:

𝑢
𝑛+1

= 𝑢
𝑛
− 𝜆
𝑛
(𝐹𝑢
𝑛
− V
𝑛
) − 𝜆
𝑛
𝜃
𝑛
(𝑢
𝑛
− 𝑤) ,

V
𝑛+1

= V
𝑛
− 𝜆
𝑛
(𝐾V
𝑛
+ 𝑢
𝑛
) − 𝜆
𝑛
𝜃
𝑛
(V
𝑛
− 𝑤) , 𝑛 ∈ N,

(4)

where𝐻 is a realHilbert space,𝐹 and𝐾:𝐻 → 𝐻 are bounded
monotone mappings satisfying the range condition, 𝑤 ∈ 𝐻,
and {𝜆

𝑛
}
𝑛∈N and {𝜃

𝑛
}
𝑛∈N are sequences in (0, 1). Chidume and

Zegeye [8] show that this sequence converges strongly to the
solution of (1) under suitable conditions.

In 2011, Chidume and Ofoedu [9] introduced a coupled
explicit iterative process as follows:

𝑢
𝑛+1

= 𝑢
𝑛
− 𝜆
𝑛
𝛼
𝑛
(𝐹𝑢
𝑛
− V
𝑛
) − 𝜆
𝑛
𝜃
𝑛
(𝑢
𝑛
− 𝑢
1
) ,

V
𝑛+1

= V
𝑛
− 𝜆
𝑛
𝛼
𝑛
(𝐾V
𝑛
+ 𝑢
𝑛
) − 𝜆
𝑛
𝜃
𝑛
(V
𝑛
− V
1
) , 𝑛 ∈ N,

(5)
where 𝐸 is a uniformly smooth real Banach space, 𝐹 and 𝐾:
𝐸 → 𝐸 are bounded and monotone mappings, and {𝜆

𝑛
}
𝑛∈N,
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{𝜃
𝑛
}
𝑛∈N, and {𝛼

𝑛
}
𝑛∈N are sequences in (0, 1). Chidume and

Ofoedu [9] gave a strong convergence theorem for approx-
imation of the solution of (1) under suitable conditions.

In 2012, Chidume and Djitté [10] consider the following
iterative process:

𝑢
𝑛+1

= 𝑢
𝑛
− 𝜆
𝑛
(𝐹𝑢
𝑛
− V
𝑛
) − 𝜆
𝑛
𝜃
𝑛
(𝑢
𝑛
− 𝑢
1
) ,

V
𝑛+1

= V
𝑛
− 𝜆
𝑛
(𝐾V
𝑛
+ 𝑢
𝑛
) − 𝜆
𝑛
𝜃
𝑛
(V
𝑛
− V
1
) , 𝑛 ∈ N,

(6)

where 𝐻 is a real Hilbert space, 𝐾 and 𝐹 are bounded and
maximal monotone mappings, {𝜆

𝑛
}
𝑛∈N and {𝜃

𝑛
}
𝑛∈N are seq-

uences in (0, 1) and Chidume and Djitté [10] show that
this iterative process converges to an approximate solution
of nonlinear equations of Hammerstein type under suitable
conditions.

Motivated by the previous works, in this paper, we con-
sider an auxiliary operator, defined in a real Hilbert space in
terms of 𝐾 and 𝐹, that is monotone and Lipschitz mapping,
or monotone and bounded mappings. We use an explicit
iterative process that converges strongly to a solution of
equation of Hammerstein type. Furthermore, our results
improve related results in the literature.

2. Preliminaries

Throughout this paper, letN be the set of positive integers and
letR be the set of real numbers. Let𝐻 be a (real)Hilbert space
with inner product ⟨⋅, ⋅⟩ and norm || ⋅ ||, respectively.

Lemma 1. Let𝐻 be a real Hilbert space. One has ||𝑥 + 𝑦||
2
≤

||𝑥||
2
+ 2⟨𝑦, 𝑥 + 𝑦⟩ for all 𝑥, 𝑦 ∈ 𝐻.

Lemma 2 (see [11]). Let {𝑎
𝑛
}
𝑛∈N be a sequence of nonnegative

real numbers, {𝛼
𝑛
}
𝑛∈N a sequence of real numbers in [0, 1]with

∑
∞

𝑛=1
𝛼
𝑛

= ∞, and {𝑢
𝑛
}
𝑛∈N a sequence of nonnegative real

numbers with∑∞
𝑛=1

𝑢
𝑛
< ∞, {𝑡

𝑛
}
𝑛∈N a sequence of real numbers

with lim sup 𝑡
𝑛
≤ 0. Suppose that 𝑎

𝑛+1
≤ (1−𝛼

𝑛
)𝑎
𝑛
+𝛼
𝑛
𝑡
𝑛
+𝑢
𝑛

for each 𝑛 ∈ N. Then, lim
𝑛→∞

𝑎
𝑛
= 0.

Let ℓ∞ be the Banach space of bounded sequences with
the supremum norm. A linear functional 𝜇 on ℓ

∞ is called
a mean if 𝜇(𝑒) = ||𝜇|| = 1, where 𝑒 = (1, 1, 1, . . .). For 𝑥 = (𝑥

1
,

𝑥
2
, 𝑥
3
, . . .), the value 𝜇(𝑥) is also denoted by 𝜇

𝑛
(𝑥
𝑛
). Amean 𝜇

on ℓ∞ is called a Banach limit if it satisfies 𝜇
𝑛
(𝑥
𝑛
) = 𝜇
𝑛
(𝑥
𝑛+1

).
If𝜇 is a Banach limit on ℓ∞, then for𝑥 = (𝑥

1
, 𝑥
2
, 𝑥
3
, . . .) ∈ ℓ

∞,

lim inf
𝑛→∞

𝑥
𝑛
≤ 𝜇
𝑛
(𝑥
𝑛
) ≤ lim sup
𝑛→∞

𝑥
𝑛
. (7)

In particular, if 𝑥=(𝑥
1
, 𝑥
2
, 𝑥
3
, . . .) ∈ ℓ

∞ and lim
𝑛→∞

𝑥
𝑛
=

𝑎 ∈ R, then we have 𝜇(𝑥) = 𝜇
𝑛
(𝑥
𝑛
) = 𝑎. For details, we can

refer to [12].

Lemma 3 (see [13]). Let 𝛼 be a real number and (𝑥
0
, 𝑥
1
, . . .) ∈

ℓ
∞ such that 𝜇

𝑛
𝑥
𝑛

≤ 𝛼 for all Banach limit 𝜇 on ℓ
∞. If

lim sup
𝑛→∞

(𝑥
𝑛+1

− 𝑥
𝑛
) ≤ 0, then, lim sup

𝑛→∞
𝑥
𝑛
≤ 𝛼.

Lemma 4 (see [14]). Let𝐶 be a nonempty closed convex subset
of a Hilbert space 𝐻, let {𝑥

𝑛
}
𝑛∈N be a bounded sequence in 𝐻,

and let 𝜇 be a Banach limit on ℓ
∞. Let 𝑔 : 𝐶 → R be defined

by 𝑔(𝑧) = 𝜇
𝑛
||𝑥
𝑛
− 𝑧||
2 for each 𝑧 ∈ 𝐶. Then there exists a

unique 𝑧
0
∈ 𝐶 such that 𝑔(𝑧

0
) = min{𝑔(𝑧) : 𝑧 ∈ 𝐶}.

Lemma 5 (see [15]). Let𝐻 be a Hilbert space, let {𝑥
𝑛
}
𝑛∈N be a

bounded sequence in𝐻, and let 𝜇 be amean on ℓ∞.Then, there
exists a unique point 𝑧

0
∈ 𝐻 such that 𝜇

𝑛
⟨𝑥
𝑛
, 𝑦⟩ = ⟨𝑧

0
, 𝑦⟩ for

each 𝑦 ∈ 𝐻. Indeed, 𝑧
0
∈ co{𝑥

𝑛
: 𝑛 ∈ N}.

Let𝐻 be a real Hilbert space. Let𝑊:= 𝐻×𝐻 with norm

‖𝑧‖ := (‖𝑢‖
2
+ ‖V‖
2
)
1/2

, where 𝑧 = (𝑢, V) ∈ 𝑊. (8)

Hence, 𝑊 is a real Hilbert space with inner product ⟨𝑤
1
,

𝑤
2
⟩ = ⟨𝑢

1
, 𝑢
2
⟩ + ⟨V

1
, V
2
⟩ for all 𝑤

1
= (𝑢
𝑙
, V
1
), 𝑤
2
= (𝑢
2
, V
2
) ∈

𝑊 [8].

Lemma 6. Let𝐻 be a real Hilbert space, and let𝑊:= 𝐻×𝐻.
Let 𝐹, 𝐾 : 𝐻 → 𝐻 be two mappings, and let 𝐴 : 𝑊 → 𝑊 be
defined by

𝐴𝑤 := (𝐹𝑢 − V, 𝐾V + 𝑢) for each 𝑤 = (𝑢, V) ∈ 𝑊. (9)

(i) If 𝐹 and 𝐾 are monotone mappings, then 𝐴 is a
monotone mapping [8, Lemma 3.1].

(ii) If 𝐹 and𝐾 are bounded mappings, then𝐴 is a bounded
mapping [8, Lemma 3.1].

(iii) If 𝐹 and 𝐾 are Lipschitz mappings with Lipschitz con-
stants 𝐿

1
and 𝐿

2
, respectively, then 𝐴 is a Lipschitz

mapping. Indeed, the Lipschitz constant of𝐴 is 2(𝐿+1),
where 𝐿 := max{𝐿

1
, 𝐿
2
} [16, Remark 13.6].

3. Main Results (I)

Let 𝐻 be a real Hilbert space. Let 𝐹, 𝐾 : 𝐻 → 𝐻 be two
mappings, and let 𝐴 : 𝐻 × 𝐻 → 𝐻 ×𝐻 be defined by 𝐴𝑤 =

(𝐹𝑢 − V, 𝐾V + 𝑢) for each 𝑤 = (𝑢, V) ∈ 𝐻 × 𝐻. Then, we
observe that 𝑢 ∈ 𝐻 is a solution of 𝑢 +𝐾𝐹𝑢 = 0 if and only if
𝑤 = (𝑢, V) is a solution of 𝐴𝑤 = 0 in𝐻 ×𝐻 for V = 𝐹𝑢.

Theorem 7. Let𝐻 be a real Hilbert space. Let 𝐹,𝐾 : 𝐻 → 𝐻

be Lipschitz and monotone mappings. Suppose that 𝑢+𝐾𝐹𝑢 =

0 has a solution in 𝐻. Let {𝜆
𝑛
}
𝑛∈N be a sequence in (0, 1). Let

{𝛼
𝑛
}
𝑛∈N and {𝜃

𝑛
}
𝑛∈N be sequences in (0, 1]. Let {𝑢

𝑛
}
𝑛∈N and

{V
𝑛
}
𝑛∈N be sequences in𝐻 defined iteratively from arbitrary 𝑢

1
,

V
1
∈ 𝐻 by

𝑢
𝑛+1

= 𝑢
𝑛
− 𝜆
𝑛
𝛼
𝑛
(𝐹𝑢
𝑛
− V
𝑛
) − 𝜆
𝑛
𝜃
𝑛
(𝑢
𝑛
− 𝑢
1
) ,

V
𝑛+1

= V
𝑛
− 𝜆
𝑛
𝛼
𝑛
(𝐾V
𝑛
+ 𝑢
𝑛
) − 𝜆
𝑛
𝜃
𝑛
(V
𝑛
− V
1
) , 𝑛 ∈ N.

(10)
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Suppose that one of the following conditions holds:

(i) lim
𝑛→∞

(
𝛼
2

𝑛

𝜃
𝑛

) = lim
𝑛→∞

𝜆
𝑛
𝛼
𝑛
= 0;

(ii) lim
𝑛→∞

(
𝜆
𝑛

𝜃
𝑛

) = 0;

(iii) lim
𝑛→∞

(
𝛼
𝑛

𝜃
𝑛

) = 0.

(11)

Then, the sequences {𝑢
𝑛
}
𝑛∈N, {V𝑛}𝑛∈N, {𝐹𝑢𝑛}𝑛∈N, and {𝐾V

𝑛
}
𝑛∈N

are bounded.

Proof. Since 𝐹 and𝐾 are Lipschitz mappings, wemay assume
that the Lipschitz constants of 𝐹 and 𝐾 are 𝐿

1
and 𝐿

2
, res-

pectively. Let

𝐿 = max {𝐿
1
, 𝐿
2
} , 𝑟

0
:=

1

32 (𝐿 + 1)
2
. (12)

Let𝑊:= 𝐻 × 𝐻 with the norm ||𝑤|| := (||𝑢||
2
+ ||V||2)1/2

for each 𝑤 = (𝑢, V) ∈ 𝐻 × 𝐻. Take any 𝑢 ∈ 𝐻 such that 𝑢 is
solution of 𝑢 + 𝐾𝐹𝑢 = 0, and let 𝑢 be fixed. Let V = 𝐹𝑢 and
𝑤 = (𝑢, V). We observe that 𝑢 = −𝐾V. For each 𝑛 ∈ N, let
𝑤
𝑛
:= (𝑢
𝑛
, V
𝑛
).

For each 𝑛 ∈ N, it follows from Lemma 1 that
󵄩󵄩󵄩󵄩𝑢𝑛+1 − 𝑢

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩(1 − 𝜆

𝑛
𝜃
𝑛
) (𝑢
𝑛
− 𝑢)+𝜆

𝑛
(𝜃
𝑛
𝑢
1
−𝛼
𝑛
𝐹𝑢
𝑛
+𝛼
𝑛
V
𝑛
−𝜃
𝑛
𝑢)
󵄩󵄩󵄩󵄩

2

≤ (1 − 𝜆
𝑛
𝜃
𝑛
)
2󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢

󵄩󵄩󵄩󵄩

2

+ 2𝜆
𝑛
⟨𝜃
𝑛
𝑢
1
− 𝛼
𝑛
𝐹𝑢
𝑛
+ 𝛼
𝑛
V
𝑛
− 𝜃
𝑛
𝑢, 𝑢
𝑛+1

− 𝑢⟩

≤ (1 − 𝜆
𝑛
𝜃
𝑛
)
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢

󵄩󵄩󵄩󵄩

2

+ 2𝜆
𝑛
⟨𝜃
𝑛
𝑢
1
− 𝛼
𝑛
𝐹𝑢
𝑛
+ 𝛼
𝑛
V
𝑛
− 𝜃
𝑛
𝑢, 𝑢
𝑛+1

− 𝑢⟩ .

(13)

Similarly, we have

󵄩󵄩󵄩󵄩V𝑛+1 − V
󵄩󵄩󵄩󵄩

2

≤ (1 − 𝜆
𝑛
𝜃
𝑛
)
󵄩󵄩󵄩󵄩V𝑛 − V

󵄩󵄩󵄩󵄩

2

+ 2𝜆
𝑛
⟨𝜃
𝑛
V
1
− 𝛼
𝑛
𝐾V
𝑛
− 𝛼
𝑛
𝑢
𝑛
− 𝜃
𝑛
𝑢, V
𝑛+1

− V⟩ .

(14)

For each 𝑛 ∈ N, by (13) and (14), we know that

󵄩󵄩󵄩󵄩𝑤𝑛+1 − 𝑤
󵄩󵄩󵄩󵄩

2

≤ (1 − 𝜆
𝑛
𝜃
𝑛
)
󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑤

󵄩󵄩󵄩󵄩

2

+ 2𝜆
𝑛
⟨𝜃
𝑛
𝑤
1
− 𝛼
𝑛
𝐴𝑤
𝑛
− 𝜃
𝑛
𝑤,𝑤
𝑛+1

− 𝑤⟩

= (1 − 𝜆
𝑛
𝜃
𝑛
)
󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑤

󵄩󵄩󵄩󵄩

2
+ 2𝜆
𝑛
𝜃
𝑛
⟨𝑤
1
− 𝑤,𝑤

𝑛+1
− 𝑤⟩

− 2𝜆
𝑛
𝛼
𝑛
⟨𝐴𝑤
𝑛
, 𝑤
𝑛+1

− 𝑤⟩ .

(15)

For each 𝑛 ∈ N, since 𝐴 is monotone and 𝐴𝑤 = 0, we know
that

⟨𝐴𝑤
𝑛
, 𝑤
𝑛+1

− 𝑤⟩

= ⟨𝐴𝑤
𝑛
, 𝑤
𝑛
− 𝜆
𝑛
𝛼
𝑛
𝐴𝑤
𝑛
− 𝜆
𝑛
𝜃
𝑛
(𝑤
𝑛
− 𝑤
1
) − 𝑤⟩

=⟨𝐴𝑤
𝑛
, 𝑤
𝑛
− 𝑤⟩+⟨𝐴𝑤

𝑛
, −𝜆
𝑛
𝛼
𝑛
𝐴𝑤
𝑛
−𝜆
𝑛
𝜃
𝑛
(𝑤
𝑛
− 𝑤
1
)⟩

≥ ⟨𝐴𝑤
𝑛
, −𝜆
𝑛
𝛼
𝑛
𝐴𝑤
𝑛
− 𝜆
𝑛
𝜃
𝑛
(𝑤
𝑛
− 𝑤
1
)⟩ .

(16)

Hence, for each 𝑛 ∈ N, it follows from (15) and (16) that
󵄩󵄩󵄩󵄩𝑤𝑛+1 − 𝑤

󵄩󵄩󵄩󵄩

2

≤ (1 − 𝜆
𝑛
𝜃
𝑛
)
󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑤

󵄩󵄩󵄩󵄩

2
+ 2𝜆
𝑛
𝜃
𝑛
⟨𝑤
1
− 𝑤,𝑤

𝑛+1
− 𝑤⟩

− 2𝜆
𝑛
𝛼
𝑛
⟨𝐴𝑤
𝑛
, 𝑤
𝑛+1

− 𝑤⟩

≤ (1 − 𝜆
𝑛
𝜃
𝑛
)
󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑤

󵄩󵄩󵄩󵄩

2
+ 2𝜆
𝑛
𝜃
𝑛
⟨𝑤
1
− 𝑤,𝑤

𝑛+1
− 𝑤⟩

+ 2𝜆
𝑛
𝛼
𝑛
⟨𝐴𝑤
𝑛
, 𝜆
𝑛
𝛼
𝑛
𝐴𝑤
𝑛
+ 𝜆
𝑛
𝜃
𝑛
𝑤
𝑛
− 𝜆
𝑛
𝜃
𝑛
𝑤
1
⟩

≤ (1 − 𝜆
𝑛
𝜃
𝑛
)
󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑤

󵄩󵄩󵄩󵄩

2
+ 2𝜆
𝑛
𝜃
𝑛
⟨𝑤
1
− 𝑤,𝑤

𝑛+1
− 𝑤⟩

+ 2𝜆
𝑛
𝛼
𝑛

󵄩󵄩󵄩󵄩𝐴𝑤𝑛
󵄩󵄩󵄩󵄩 ⋅ (𝜆𝑛𝛼𝑛

󵄩󵄩󵄩󵄩𝐴𝑤𝑛
󵄩󵄩󵄩󵄩 + 𝜆
𝑛
𝜃
𝑛

󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑤
1

󵄩󵄩󵄩󵄩)

≤ (1 − 𝜆
𝑛
𝜃
𝑛
)
󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑤

󵄩󵄩󵄩󵄩

2
+ 2𝜆
𝑛
𝜃
𝑛
⟨𝑤
1
− 𝑤,𝑤

𝑛+1
− 𝑤⟩

+ 4𝜆
𝑛
𝛼
𝑛 (𝐿 + 1)

󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑤
󵄩󵄩󵄩󵄩

⋅ (2𝜆
𝑛
𝛼
𝑛 (𝐿 + 1)

󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑤
󵄩󵄩󵄩󵄩 + 𝜆
𝑛
𝜃
𝑛

󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑤
1

󵄩󵄩󵄩󵄩)

= (1 − 𝜆
𝑛
𝜃
𝑛
)
󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑤

󵄩󵄩󵄩󵄩

2
+ 2𝜆
𝑛
𝜃
𝑛
⟨𝑤
1
− 𝑤,𝑤

𝑛+1
− 𝑤⟩

+ 8𝜆
2

𝑛
𝛼
2

𝑛
(𝐿 + 1)

2󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑤
󵄩󵄩󵄩󵄩

2

+ 4𝜆
2

𝑛
𝛼
𝑛
𝜃
𝑛 (𝐿 + 1)

󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑤
󵄩󵄩󵄩󵄩 ⋅

󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑤
1

󵄩󵄩󵄩󵄩 .

(17)

For conditions (i)–(iii), we only need to consider one
case since the proof is similar. Now, we assume that
lim
𝑛→∞

(𝜆
𝑛
/𝜃
𝑛
) = 0. Then, there exists 𝑛

0
∈ N such that 𝜆

𝑛
/

𝜃
𝑛
<𝑟
0
for each 𝑛 ≥ 𝑛

0
. Choose 𝑟>0 such that 𝑤

1
∈ 𝐵(𝑤, 𝑟/4)

and 𝑤
𝑛0
∈𝐵(𝑤, 𝑟/4). Let 𝐵 := 𝐵(𝑤, 𝑟).

Now,wewant to show that𝑤
𝑛
∈ 𝐵 for each 𝑛 ≥ 𝑛

0
. Clearly,

𝑤
𝑛0

∈ 𝐵(𝑤, 𝑟). Suppose that 𝑤
𝑛
∈ 𝐵 for some 𝑛 ≥ 𝑛

0
. Then,

𝑤
𝑛+1

∈ 𝐵. Indeed, if not, then we have
󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑤

󵄩󵄩󵄩󵄩 ≤ 𝑟 <
󵄩󵄩󵄩󵄩𝑤𝑛+1 − 𝑤

󵄩󵄩󵄩󵄩 . (18)

Hence, by (17) and (18), we get

󵄩󵄩󵄩󵄩𝑤𝑛+1 − 𝑤
󵄩󵄩󵄩󵄩

2
≤ (1 − 𝜆

𝑛
𝜃
𝑛
)
󵄩󵄩󵄩󵄩𝑤𝑛+1 − 𝑤

󵄩󵄩󵄩󵄩

2

+ 2𝜆
𝑛
𝜃
𝑛

󵄩󵄩󵄩󵄩𝑤1 − 𝑤
󵄩󵄩󵄩󵄩 ⋅

󵄩󵄩󵄩󵄩𝑤𝑛+1 − 𝑤
󵄩󵄩󵄩󵄩

+ 8𝜆
2

𝑛
𝛼
2

𝑛
(𝐿 + 1)

2 󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑤
󵄩󵄩󵄩󵄩 ⋅

󵄩󵄩󵄩󵄩𝑤𝑛+1 − 𝑤
󵄩󵄩󵄩󵄩

+ 4𝜆
2

𝑛
𝛼
𝑛
𝜃
𝑛 (𝐿 + 1)

󵄩󵄩󵄩󵄩𝑤𝑛+1 − 𝑤
󵄩󵄩󵄩󵄩 ⋅

󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑤
1

󵄩󵄩󵄩󵄩 .

(19)
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By (19), we have

𝜆
𝑛
𝜃
𝑛

󵄩󵄩󵄩󵄩𝑤𝑛+1 − 𝑤
󵄩󵄩󵄩󵄩

≤ 2𝜆
𝑛
𝜃
𝑛

󵄩󵄩󵄩󵄩𝑤1 − 𝑤
󵄩󵄩󵄩󵄩 + 8𝜆

2

𝑛
𝛼
2

𝑛
(𝐿 + 1)

2 󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑤
󵄩󵄩󵄩󵄩

+ 4𝜆
2

𝑛
𝛼
𝑛
𝜃
𝑛 (𝐿 + 1)

󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑤
1

󵄩󵄩󵄩󵄩

≤ 2𝜆
𝑛
𝜃
𝑛
⋅
𝑟

4
+ 8𝜆
2

𝑛
𝛼
2

𝑛
(𝐿 + 1)

2
𝑟 + 4𝜆

2

𝑛
𝛼
𝑛
𝜃
𝑛 (𝐿 + 1)

⋅ (
󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑤

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑤1 − 𝑤

󵄩󵄩󵄩󵄩)

≤ 2𝜆
𝑛
𝜃
𝑛
⋅
𝑟

4
+ 8𝜆
2

𝑛
𝛼
2

𝑛
(𝐿 + 1)

2
𝑟 + 4𝜆

2

𝑛
𝛼
𝑛
𝜃
𝑛 (𝐿 + 1) ⋅

5𝑟

4
.

(20)

This implies that

𝑟 <
󵄩󵄩󵄩󵄩𝑤𝑛+1 − 𝑤

󵄩󵄩󵄩󵄩

≤
1

2
𝑟 + 8𝜆

𝑛

𝛼
2

𝑛

𝜃
𝑛

(𝐿 + 1)
2
𝑟 +

5𝜆
𝑛
𝛼
𝑛
𝜃
𝑛

𝜃
𝑛

(𝐿 + 1) 𝑟

≤
1

2
𝑟 +

8𝜆
𝑛

𝜃
𝑛

(𝐿 + 1)
2
𝑟 +

8𝜆
𝑛

𝜃
𝑛

(𝐿 + 1) 𝑟

≤ 𝑟.

(21)

This leads to a contradiction. So, 𝑤
𝑛+1

∈ 𝐵. Hence, by math-
ematical induction, we know that {𝑤

𝑛
}
𝑛≥𝑛0

⊆ 𝐵. Therefore,
{𝑢
𝑛
}
𝑛∈N and {V

𝑛
}
𝑛∈N are bounded sequences. Furthermore,

{𝐹𝑢
𝑛
}
𝑛∈N and {𝐾V

𝑛
}
𝑛∈N are bounded sequences since 𝐹 and𝐾

are Lipschitzmappings. For conditions (ii) and (iii), the proof
is similar. Therefore, the proof is completed.

Remark 8. (i) Theorem 7 improves the conditions of [17,
Theorem 3.1] if the space 𝐸 in [17] is reduced to a real Hilbert
space. Indeed, [17, Theorem 3.1] assumes that lim

𝑛→∞
𝜆
𝑛
=

lim
𝑛→∞

𝛼
𝑛
= lim
𝑛→∞

(𝜆
𝑛
/𝜃
𝑛
) = lim

𝑛→∞
(𝛼
𝑛
/𝜃
𝑛
) = 0.

(ii) Furthermore, we know that it is impossible to assume
that𝛼

𝑛
= 𝜃
𝑛
= 1 in [17,Theorem 3.1]. However, we can choose

𝛼
𝑛

= 𝜃
𝑛

= 1 in our result. Indeed, if 𝛼
𝑛

= 𝜃
𝑛

= 1 and
𝜆
𝑛
= 𝛽
𝑛
, then we have the following result as a special case of

Theorem 7.

Corollary 9. Let𝐻 be a real Hilbert space. Let𝐹,𝐾 : 𝐻 → 𝐻

be Lipschitz and monotone mappings. Suppose that 𝑢+𝐾𝐹𝑢 =

0 has a solution in 𝐻. Let {𝛽
𝑛
}
𝑛∈N be a sequence in (0, 1). Let

{𝑢
𝑛
}
𝑛∈N and {V

𝑛
}
𝑛∈N be sequences in𝐻 defined iteratively from

arbitrary 𝑢
1
, V
1
∈ 𝐻 by

𝑢
𝑛+1

= 𝑢
𝑛
− 𝛽
𝑛
(𝐹𝑢
𝑛
− V
𝑛
) − 𝛽
𝑛
(𝑢
𝑛
− 𝑢
1
) ,

V
𝑛+1

= V
𝑛
− 𝛽
𝑛
(𝐾V
𝑛
+ 𝑢
𝑛
) − 𝛽
𝑛
(V
𝑛
− V
1
) , 𝑛 ∈ N.

(22)

If lim
𝑛→∞

𝛽
𝑛

= 0, then the sequences {𝑢
𝑛
}
𝑛∈N, {V𝑛}𝑛∈N,

{𝐹𝑢
𝑛
}
𝑛∈N, and {𝐾V

𝑛
}
𝑛∈N are bounded.

In fact, following the same argument as the proof of
Theorem 7, we can get the following result.

Theorem10. Let𝐻 be a realHilbert space. Let𝐹,𝐾 : 𝐻 → 𝐻

be Lipschitz and monotone mappings. Suppose that 𝑢+𝐾𝐹𝑢 =

0 has a solution in 𝐻. Let {𝛼
𝑛
}
𝑛∈N and {𝜃

𝑛
}
𝑛∈N be sequences

in (0, 1]. Let {𝑢
𝑛
}
𝑛∈N and {V

𝑛
}
𝑛∈N be sequences in 𝐻 defined

iteratively from arbitrary 𝑢
1
, V
1
∈ 𝐻 by

𝑢
𝑛+1

= 𝑢
𝑛
− 𝛼
𝑛
(𝐹𝑢
𝑛
− V
𝑛
) − 𝜃
𝑛
(𝑢
𝑛
− 𝑢
1
) ,

V
𝑛+1

= V
𝑛
− 𝛼
𝑛
(𝐾V
𝑛
+ 𝑢
𝑛
) − 𝜃
𝑛
(V
𝑛
− V
1
) , 𝑛 ∈ N.

(23)

Suppose that one of the following conditions holds:

(i) lim
𝑛→∞

(
𝛼
2

𝑛

𝜃
𝑛

) = lim
𝑛→∞

𝛼
𝑛
= 0;

(ii) lim
𝑛→∞

(
𝛼
𝑛

𝜃
𝑛

) = 0.

(24)

Then, the sequences {𝑢
𝑛
}
𝑛∈N, {V𝑛}𝑛∈N, {𝐹𝑢𝑛}𝑛∈N, and {𝐾V

𝑛
}
𝑛∈N

are bounded.

Remark 11. Corollary 9 is also a special case of Theorem 10.

Theorem 12. Let𝐻 be a real Hilbert space. Let𝐹,𝐾 : 𝐻 → 𝐻

be Lipschitz and monotone mappings. Suppose that 𝑢+𝐾𝐹𝑢 =

0 has a solution in 𝐻. Let {𝜆
𝑛
}
𝑛∈N be a sequence in (0, 1). Let

{𝛼
𝑛
}
𝑛∈N and {𝜃

𝑛
}
𝑛∈N be sequences in (0, 1]. Let {𝑢

𝑛
}
𝑛∈N and

{V
𝑛
}
𝑛∈N be sequences in𝐻 defined iteratively from arbitrary 𝑢

1
,

V
1
∈ 𝐻 by

𝑢
𝑛+1

= 𝑢
𝑛
− 𝜆
𝑛
𝛼
𝑛
(𝐹𝑢
𝑛
− V
𝑛
) − 𝜆
𝑛
𝜃
𝑛
(𝑢
𝑛
− 𝑢
1
) ,

V
𝑛+1

= V
𝑛
− 𝜆
𝑛
𝛼
𝑛
(𝐾V
𝑛
+ 𝑢
𝑛
) − 𝜆
𝑛
𝜃
𝑛
(V
𝑛
− V
1
) , 𝑛 ∈ N.

(25)

Assume that

(i) ∑∞
𝑛=1

𝜆
𝑛
𝜃
𝑛
= ∞; lim

𝑛→∞
𝜆
𝑛
𝛼
𝑛
= lim
𝑛→∞

𝜆
𝑛
𝜃
𝑛
= 0;

(ii) one of the following conditions holds:

(a) lim
𝑛→∞

(
𝛼
2

𝑛

𝜃
𝑛

) = 0;

(b) lim
𝑛→∞

(
𝜆
𝑛

𝜃
𝑛

) = 0;

(c) lim
𝑛→∞

(
𝛼
𝑛

𝜃
𝑛

) = 0;

(26)

(iii) one of the following conditions holds:

(d)
∞

∑

𝑛=1

𝜆
2

𝑛
𝛼
2

𝑛
< ∞;

(e) lim
𝑛→∞

(
𝜆
𝑛
𝛼
2

𝑛

𝜃
𝑛

) = 0.

(27)

Then, there exists a subset 𝐾min of 𝐻 × 𝐻 such that if (𝑢, V) ∈
𝐾min with V = 𝐹𝑢, then the sequence {𝑢

𝑛
} converges strongly

to 𝑢.
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Proof. Let 𝐵 and 𝑛
0
be the same as the proof of Theorem 7.

Let 𝜇 be a Banach limit on ℓ∞. Let {𝑥
𝑛
}
𝑛∈N be a sequence with

𝑥
1
= 𝑤
1
and𝑥
𝑛
= 𝑤
𝑛0+𝑛−2

for each 𝑛 ≥ 2. Clearly, {𝑥
𝑛
}
𝑛∈N ⊆ 𝐵.

By Lemma 4, there is a unique 𝑥 ∈ 𝐵 such that

𝜇
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
󵄩󵄩󵄩󵄩

2
= min
𝑦∈𝐵

𝜇
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦
󵄩󵄩󵄩󵄩

2
. (28)

Let 𝐾min = {𝑥}, and we assume that 𝑤 = (𝑢, V) ∈ 𝐾min. Let
𝑡 ∈ [0, 1]. Then, 𝑡𝑤

1
+ (1 − 𝑡)𝑤 ∈ 𝐵. Hence, for each 𝑡 ∈ (0, 1),

it follows from Lemma 1 that

𝜇
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑤
󵄩󵄩󵄩󵄩

2
≤ 𝜇
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑡𝑤
1
− (1 − 𝑡) 𝑤

󵄩󵄩󵄩󵄩

2

≤ 𝜇
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑤
󵄩󵄩󵄩󵄩

2

− 2𝑡𝜇
𝑛
⟨𝑤
1
− 𝑤, 𝑥

𝑛
− 𝑡𝑤
1
− (1 − 𝑡) 𝑤⟩ .

(29)

By Lemma 5, there exists 𝑧
0
∈ 𝐻 such that𝜇

𝑛
⟨𝑥
𝑛
, 𝑦⟩ = ⟨𝑧

0
, 𝑦⟩

for each 𝑦 ∈ 𝐻. By (29), for each 𝑡 ∈ (0, 1),

⟨𝑤
1
− 𝑤, 𝑧

0
− 𝑡𝑤
1
− (1 − 𝑡) 𝑤⟩

= 𝜇
𝑛
⟨𝑤
1
− 𝑤, 𝑥

𝑛
− 𝑡𝑤
1
− (1 − 𝑡) 𝑤⟩ ≤ 0.

(30)

In (30), letting 𝑡 → 0, we get

𝜇
𝑛
⟨𝑤
1
− 𝑤, 𝑥

𝑛
− 𝑤⟩ = ⟨𝑤

1
− 𝑤, 𝑧

0
− 𝑤⟩ ≤ 0. (31)

Clearly,

lim sup
𝑛→∞

(⟨𝑤
1
− 𝑤, 𝑥

𝑛+1
− 𝑤⟩ − ⟨𝑤

1
− 𝑤, 𝑥

𝑛
− 𝑤⟩) ≤ 0.

(32)

By (31), (32), and Lemma 3, we know that lim sup
𝑛→∞

⟨𝑤
1
−

𝑤, 𝑥
𝑛
− 𝑤⟩ ≤ 0.

Hence,

lim sup
𝑛→∞

⟨𝑤
1
− 𝑤,𝑤

𝑛
− 𝑤⟩ ≤ 0. (33)

By (17), (33), and Lemma 2, we know that lim
𝑛→∞

||𝑤
𝑛
−𝑤|| =

0. Therefore, {𝑢
𝑛
} converges strongly to 𝑢.

Remark 13. (i) The conclusion of Theorem 12 is still true if
∑
∞

𝑛=1
𝜆
𝑛
𝜃
𝑛
= ∞, lim

𝑛→∞
(𝛼
2

𝑛
/𝜃
𝑛
) = 0, and lim

𝑛→∞
𝜆
𝑛
𝛼
𝑛
=

lim
𝑛→∞

𝜆
𝑛
𝜃
𝑛
= 0.

(ii) The conclusion of Theorem 12 is still true if
∑
∞

𝑛=1
𝜆
𝑛
𝜃
𝑛
= ∞, lim

𝑛→∞
(𝛼
𝑛
/𝜃
𝑛
) = 0, and lim

𝑛→∞
𝜆
𝑛
= 0.

Remark 14. Following the same argument as in Remark 8,
we know that Theorem 12 improves the conditions of [17,
Theorem 3.2] if the space 𝐸 is reduced to a real Hilbert space.

InTheorem 12, if 𝛼
𝑛
= 𝜃
𝑛
= 1 and 𝜆

𝑛
= 𝛽
𝑛
for each 𝑛 ∈ N,

then we have the following result.

Corollary 15. Let𝐻 be a real Hilbert space. Let 𝐹, 𝐾 : 𝐻 →

𝐻 be Lipschitz and monotone mappings. Suppose that 𝑢 +

𝐾𝐹𝑢 = 0 has a solution 𝑢 in 𝐻. Let {𝛽
𝑛
}
𝑛∈N be a sequence

in (0, 1). Let {𝑢
𝑛
}
𝑛∈N and {V

𝑛
}
𝑛∈N be sequences in 𝐻 defined

iteratively from arbitrary 𝑢
1
, V
1
∈ 𝐻 by

𝑢
𝑛+1

= 𝑢
𝑛
− 𝛽
𝑛
(𝐹𝑢
𝑛
− V
𝑛
) − 𝛽
𝑛
(𝑢
𝑛
− 𝑢
1
) ,

V
𝑛+1

= V
𝑛
− 𝛽
𝑛
(𝐾V
𝑛
+ 𝑢
𝑛
) − 𝛽
𝑛
(V
𝑛
− V
1
) , 𝑛 ∈ N.

(34)

Assume that lim
𝑛→∞

𝛽
𝑛
= 0 and ∑

∞

𝑛=1
𝛽
𝑛
= ∞. Then there

exists a subset 𝐾min of 𝐻 × 𝐻 such that if (𝑢, V) ∈ 𝐾min with
V = 𝐹𝑢, then the sequence {𝑢

𝑛
} converges strongly to 𝑢.

InTheorem 12, if 𝛼
𝑛
= 1 for each 𝑛 ∈ N, then we have the

following result.

Corollary 16. Let𝐻 be a realHilbert space. Let𝐹,𝐾 : 𝐻 → 𝐻

be Lipschitz and monotone mappings. Suppose that 𝑢+𝐾𝐹𝑢 =

0 has a solution in 𝐻. Let {𝜆
𝑛
}
𝑛∈N be a sequence in (0, 1). Let

{𝜃
𝑛
}
𝑛∈N be a sequence in (0, 1]. Let {𝑢

𝑛
}
𝑛∈N and {V

𝑛
}
𝑛∈N be

sequences in 𝐻 defined iteratively from arbitrary 𝑢
1
, V
1
∈ 𝐻

by

𝑢
𝑛+1

= 𝑢
𝑛
− 𝜆
𝑛
(𝐹𝑢
𝑛
− V
𝑛
) − 𝜆
𝑛
𝜃
𝑛
(𝑢
𝑛
− 𝑢
1
) ,

V
𝑛+1

= V
𝑛
− 𝜆
𝑛
(𝐾V
𝑛
+ 𝑢
𝑛
) − 𝜆
𝑛
𝜃
𝑛
(V
𝑛
− V
1
) , 𝑛 ∈ N.

(35)

Assume that ∑
∞

𝑛=1
𝜆
𝑛
𝜃
𝑛

= ∞, lim
𝑛→∞

𝜆
𝑛
𝜃
𝑛

= 0, and
lim
𝑛→∞

(𝜆
𝑛
/𝜃
𝑛
) = 0. Then, there exists a subset𝐾min of𝐻×𝐻

such that if (𝑢, V) ∈ 𝐾min with V = 𝐹𝑢, then the sequence {𝑢
𝑛
}

converges strongly to 𝑢.

In fact, following the same argument as the proof of
Theorem 12, we get the following result.

Theorem 17. Let𝐻 be a real Hilbert space. Let𝐹,𝐾 : 𝐻 → 𝐻

be Lipschitz and monotone mappings. Suppose that 𝑢+𝐾𝐹𝑢 =

0 has a solution in 𝐻. Let {𝛼
𝑛
}
𝑛∈N and {𝜃

𝑛
}
𝑛∈N be sequences

in (0, 1]. Let {𝑢
𝑛
}
𝑛∈N and {V

𝑛
}
𝑛∈N be sequences in 𝐻 defined

iteratively from arbitrary 𝑢
1
, V
1
∈ 𝐻 by

𝑢
𝑛+1

= 𝑢
𝑛
− 𝛼
𝑛
(𝐹𝑢
𝑛
− V
𝑛
) − 𝜃
𝑛
(𝑢
𝑛
− 𝑢
1
) ,

V
𝑛+1

= V
𝑛
− 𝛼
𝑛
(𝐾V
𝑛
+ 𝑢
𝑛
) − 𝜃
𝑛
(V
𝑛
− V
1
) , 𝑛 ∈ N.

(36)

Assume that ∑∞
𝑛=1

𝜃
𝑛
= ∞, lim

𝑛→∞
𝜃
𝑛
= 0, and lim

𝑛→∞
(𝛼
2

𝑛
/

𝜃
𝑛
) = 0. Then, there exists a subset 𝐾min of 𝐻 × 𝐻 such that

if (𝑢, V) ∈ 𝐾min with V = 𝐹𝑢, then the sequence {𝑢
𝑛
} converges

strongly to 𝑢.

Remark 18. Corollary 15 is also a special case of Theorem 17.

4. Main Results (II)

In this section, we consider that 𝐹 and 𝐾 are bounded
mappings.

Theorem 19. Let𝐻 be a real Hilbert space. Let𝐹,𝐾 : 𝐻 → 𝐻

be bounded andmonotonemappings. Suppose that𝑢+𝐾𝐹𝑢 = 0

has a solution in 𝐻. Let {𝜆
𝑛
}
𝑛∈N be a sequence in (0, 1). Let

{𝛼
𝑛
}
𝑛∈N and {𝜃

𝑛
}
𝑛∈N be sequences in (0, 1]. Let {𝑢

𝑛
}
𝑛∈N and
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{V
𝑛
}
𝑛∈N be sequences in𝐻 defined iteratively from arbitrary 𝑢

1
,

V
1
∈ 𝐻 by

𝑢
𝑛+1

= 𝑢
𝑛
− 𝜆
𝑛
𝛼
𝑛
(𝐹𝑢
𝑛
− V
𝑛
) − 𝜆
𝑛
𝜃
𝑛
(𝑢
𝑛
− 𝑢
1
) ,

V
𝑛+1

= V
𝑛
− 𝜆
𝑛
𝛼
𝑛
(𝐾V
𝑛
+ 𝑢
𝑛
) − 𝜆
𝑛
𝜃
𝑛
(V
𝑛
− V
1
) , 𝑛 ∈ N.

(37)

Suppose that one of the following conditions holds:

(i) lim
𝑛→∞

(
𝛼
2

𝑛

𝜃
𝑛

) = lim
𝑛→∞

𝜆
𝑛
𝛼
𝑛
= 0;

(ii) lim
𝑛→∞

(
𝜆
𝑛

𝜃
𝑛

) = 0;

(iii) lim
𝑛→∞

(
𝜆
𝑛

𝜃
𝑛

) = lim
𝑛→∞

𝜆
𝑛
𝛼
𝑛
= 0;

(iv) lim
𝑛→∞

(
𝛼
𝑛

𝜃
𝑛

) = 0.

(38)

Then, the sequences {𝑢
𝑛
}
𝑛∈N, {V𝑛}𝑛∈N, {𝐹𝑢𝑛}𝑛∈N, and {𝐾V

𝑛
}
𝑛∈N

are bounded.

Proof. Since 𝐹 and 𝐾 are bounded, we know that 𝐴 is
bounded. Hence, ||𝐴|| < ∞. From the proof of Theorem 7,
we know that

󵄩󵄩󵄩󵄩𝑤𝑛+1 − 𝑤
󵄩󵄩󵄩󵄩

2

≤ (1 − 𝜆
𝑛
𝜃
𝑛
)
󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑤

󵄩󵄩󵄩󵄩

2
+ 2𝜆
𝑛
𝜃
𝑛
⟨𝑤
1
− 𝑤,𝑤

𝑛+1
− 𝑤⟩

+ 2𝜆
𝑛
𝛼
𝑛

󵄩󵄩󵄩󵄩𝐴𝑤𝑛
󵄩󵄩󵄩󵄩 ⋅ (𝜆𝑛𝛼𝑛

󵄩󵄩󵄩󵄩𝐴𝑤𝑛
󵄩󵄩󵄩󵄩 + 𝜆
𝑛
𝜃
𝑛

󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑤
1

󵄩󵄩󵄩󵄩)

≤ (1 − 𝜆
𝑛
𝜃
𝑛
)
󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑤

󵄩󵄩󵄩󵄩

2
+ 2𝜆
𝑛
𝜃
𝑛
⟨𝑤
1
− 𝑤,𝑤

𝑛+1
− 𝑤⟩

+ 2𝜆
2

𝑛
𝛼
2

𝑛
‖𝐴‖
2
⋅
󵄩󵄩󵄩󵄩𝑤𝑛

󵄩󵄩󵄩󵄩

2
+ 2𝜆
2

𝑛
𝛼
𝑛
𝜃
𝑛 ‖𝐴‖ ⋅

󵄩󵄩󵄩󵄩𝑤𝑛
󵄩󵄩󵄩󵄩 ⋅

󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑤
1

󵄩󵄩󵄩󵄩

(39)

for each 𝑛 ∈ N.
Choose 𝑟

0
> 0 such that max{||𝑤

1
||, ||𝑤||} ≤ 𝑟

0
/8. For

conditions (i)–(iv), we only need to consider one case since
the proof is similar. Now, we assume that lim

𝑛→∞
(𝜆
𝑛
/𝜃
𝑛
) =

0. Then, there exists 𝑛
0
∈ N such that

𝜆
𝑛

𝜃
𝑛

< max{ 8

81‖𝐴‖
2
,

1

10 ‖𝐴‖
} (40)

for each 𝑛 ≥ 𝑛
0
. Choose 𝑟 > 1 such that 𝑟

0
< 𝑟 and ||𝑤

𝑛0
|| ≤

𝑟/8. Let 𝐵 := 𝐵(𝑤, 𝑟). Clearly, ||𝑤
𝑛0
− 𝑤|| ≤ 𝑟/4.

Now,wewant to show that𝑤
𝑛
∈ 𝐵 for each 𝑛 ≥ 𝑛

0
. Clearly,

𝑤
𝑛0

∈ 𝐵(𝑤, 𝑟). Suppose that 𝑤
𝑛
∈ 𝐵 for some 𝑛 ≥ 𝑛

0
. Then,

𝑤
𝑛+1

∈ 𝐵. Indeed, if not, then we have

󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑤
󵄩󵄩󵄩󵄩 ≤ 𝑟 <

󵄩󵄩󵄩󵄩𝑤𝑛+1 − 𝑤
󵄩󵄩󵄩󵄩 . (41)

Clearly, ||𝑤
𝑛
|| ≤ ||𝑤

𝑛
− 𝑤|| + ||𝑤|| ≤ 9𝑟/8. Hence, by (39) and

(41), we get

󵄩󵄩󵄩󵄩𝑤𝑛+1 − 𝑤
󵄩󵄩󵄩󵄩

2

≤ (1 − 𝜆
𝑛
𝜃
𝑛
)
󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑤

󵄩󵄩󵄩󵄩

2
+ 2𝜆
𝑛
𝜃
𝑛

󵄩󵄩󵄩󵄩𝑤1 − 𝑤
󵄩󵄩󵄩󵄩 ⋅

󵄩󵄩󵄩󵄩𝑤𝑛+1 − 𝑤
󵄩󵄩󵄩󵄩

+ 2𝜆
2

𝑛
𝛼
2

𝑛
‖𝐴‖
2
⋅
󵄩󵄩󵄩󵄩𝑤𝑛

󵄩󵄩󵄩󵄩

2
+ 2𝜆
2

𝑛
𝛼
𝑛
𝜃
𝑛 ‖𝐴‖ ⋅

󵄩󵄩󵄩󵄩𝑤𝑛
󵄩󵄩󵄩󵄩 ⋅

󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑤
1

󵄩󵄩󵄩󵄩

≤ (1 − 𝜆
𝑛
𝜃
𝑛
) 𝑟
2
+ 2𝜆
𝑛
𝜃
𝑛

𝑟

4
⋅
󵄩󵄩󵄩󵄩𝑤𝑛+1 − 𝑤

󵄩󵄩󵄩󵄩

+ 2𝜆
2

𝑛
𝛼
2

𝑛
‖𝐴‖
2
⋅
81

64
𝑟
2
+ 2𝜆
2

𝑛
𝛼
𝑛
𝜃
𝑛 ‖𝐴‖ ⋅

10

8
𝑟
2

≤ (1 − 𝜆
𝑛
𝜃
𝑛
)
󵄩󵄩󵄩󵄩𝑤𝑛+1 − 𝑤

󵄩󵄩󵄩󵄩

2
+ 𝜆
𝑛
𝜃
𝑛

𝑟

2
⋅
󵄩󵄩󵄩󵄩𝑤𝑛+1 − 𝑤

󵄩󵄩󵄩󵄩

+ 𝜆
2

𝑛
𝛼
2

𝑛
‖𝐴‖
2
⋅
81

32
𝑟
2
+ 𝜆
2

𝑛
𝛼
𝑛
𝜃
𝑛 ‖𝐴‖ ⋅

5

2
𝑟
2
.

(42)

This implies that

󵄩󵄩󵄩󵄩𝑤𝑛+1 − 𝑤
󵄩󵄩󵄩󵄩

2
≤

𝑟

2
⋅
󵄩󵄩󵄩󵄩𝑤𝑛+1 − 𝑤

󵄩󵄩󵄩󵄩 +
81

32
⋅
𝜆
𝑛
𝛼
2

𝑛

𝜃
𝑛

‖𝐴‖
2
⋅ 𝑟
2

+
5

2
⋅
𝜆
𝑛
𝛼
𝑛
𝜃
𝑛

𝜃
𝑛

‖𝐴‖ ⋅ 𝑟
2
.

(43)

Furthermore, we get

𝑟 <
󵄩󵄩󵄩󵄩𝑤𝑛+1 − 𝑤

󵄩󵄩󵄩󵄩 ≤
𝑟

2
+
81

32

𝜆
𝑛
𝛼
2

𝑛

𝜃
𝑛

‖𝐴‖
2
⋅ 𝑟 +

5

2
⋅
𝜆
𝑛
𝛼
𝑛
𝜃
𝑛

𝜃
𝑛

‖𝐴‖ ⋅ 𝑟

≤
𝑟

2
+
81

32

𝜆
𝑛

𝜃
𝑛

‖𝐴‖
2
⋅ 𝑟 +

5

2
⋅
𝜆
𝑛

𝜃
𝑛

‖𝐴‖ ⋅ 𝑟

≤ 𝑟.

(44)

This leads to a contradiction. So, 𝑤
𝑛+1

∈ 𝐵. Hence, by math-
ematical induction, we know that {𝑤

𝑛
}
𝑛≥𝑛0

⊆ 𝐵. Therefore,
{𝑢
𝑛
}
𝑛∈N and {V

𝑛
}
𝑛∈N are bounded sequences. Furthermore,

{𝐹𝑢
𝑛
}
𝑛∈N and {𝐾V

𝑛
}
𝑛∈N are bounded sequences since 𝐹 and

𝐾 are bounded mappings.

Remark 20. (i) Theorem 19 improves the conditions of [9,
Theorem 3.1] if the space 𝐸 is reduced to a real Hilbert space.
Indeed, [9, Theorem 3.1] assumes that lim

𝑛→∞
(𝜆
𝑛
/𝜃
𝑛
) =

lim
𝑛→∞

(𝛼
𝑛
/𝜃
𝑛
) = 0.

(ii) Furthermore, we know that it is impossible to assume
that 𝛼

𝑛
= 𝜃
𝑛
= 1 in [9,Theorem 3.1]. However, we can choose

𝛼
𝑛

= 𝜃
𝑛

= 1 in our result. Indeed, if 𝛼
𝑛

= 𝜃
𝑛

= 1 and
𝜆
𝑛
= 𝛽
𝑛
, then we have the following result as special case of

Theorem 19.

Corollary 21. Let𝐻 be a real Hilbert space. Let 𝐹,𝐾 : 𝐻→𝐻

be bounded and monotone mappings. Suppose that 𝑢 +𝐾𝐹𝑢 =

0 has a solution in 𝐻. Let {𝛽
𝑛
}
𝑛∈N be a sequence in (0, 1).
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Let {𝑢
𝑛
}
𝑛∈N and {V

𝑛
}
𝑛∈N be sequences in 𝐻 defined iteratively

from arbitrary 𝑢
1
, V
1
∈ 𝐻 by

𝑢
𝑛+1

= 𝑢
𝑛
− 𝛽
𝑛
(𝐹𝑢
𝑛
− V
𝑛
) − 𝛽
𝑛
(𝑢
𝑛
− 𝑢
1
) ,

V
𝑛+1

= V
𝑛
− 𝛽
𝑛
(𝐾V
𝑛
+ 𝑢
𝑛
) − 𝛽
𝑛
(V
𝑛
− V
1
) , 𝑛 ∈ N.

(45)

If lim
𝑛→∞

𝛽
𝑛

= 0, then the sequences {𝑢
𝑛
}
𝑛∈N, {V𝑛}𝑛∈N,

{𝐹𝑢
𝑛
}
𝑛∈N, and {𝐾V

𝑛
}
𝑛∈N are bounded.

Following the same argument as the proof ofTheorem 19,
we get the following result. Note that Corollary 21 is also a
special case of the following result.

Theorem22. Let𝐻 be a realHilbert space. Let𝐹,𝐾 : 𝐻 → 𝐻

be bounded and monotone mappings. Suppose that 𝑢 +𝐾𝐹𝑢 =

0 has a solution in 𝐻. Let {𝛼
𝑛
}
𝑛∈N and {𝜃

𝑛
}
𝑛∈N be sequences

in (0, 1]. Let {𝑢
𝑛
}
𝑛∈N and {V

𝑛
}
𝑛∈N be sequences in 𝐻 defined

iteratively from arbitrary 𝑢
1
, V
1
∈ 𝐻 by

𝑢
𝑛+1

= 𝑢
𝑛
− 𝛼
𝑛
(𝐹𝑢
𝑛
− V
𝑛
) − 𝜃
𝑛
(𝑢
𝑛
− 𝑢
1
) ,

V
𝑛+1

= V
𝑛
− 𝛼
𝑛
(𝐾V
𝑛
+ 𝑢
𝑛
) − 𝜃
𝑛
(V
𝑛
− V
1
) , 𝑛 ∈ N.

(46)

Suppose that one of the following conditions holds:

(i) lim
𝑛→∞

(
𝛼
2

𝑛

𝜃
𝑛

) = lim
𝑛→∞

𝛼
𝑛
= 0;

(ii) lim
𝑛→∞

(
𝛼
𝑛

𝜃
𝑛

) = 0.

(47)

Then, the sequences {𝑢
𝑛
}
𝑛∈N, {V𝑛}𝑛∈N, {𝐹𝑢𝑛}𝑛∈N, and {𝐾V

𝑛
}
𝑛∈N

are bounded.

Following the similar argument as the proof of
Theorem 12, we get the following result.

Theorem23. Let𝐻 be a realHilbert space. Let𝐹,𝐾 : 𝐻 → 𝐻

be bounded andmonotonemappings. Suppose that𝑢+𝐾𝐹𝑢 = 0

has a solution in 𝐻. Let {𝜆
𝑛
}
𝑛∈N be a sequence in (0, 1). Let

{𝛼
𝑛
}
𝑛∈N and {𝜃

𝑛
}
𝑛∈N be sequences in (0, 1]. Let {𝑢

𝑛
}
𝑛∈N and

{V
𝑛
}
𝑛∈N be sequences in𝐻 defined iteratively from arbitrary 𝑢

1
,

V
1
∈ 𝐻 by

𝑢
𝑛+1

= 𝑢
𝑛
− 𝜆
𝑛
𝛼
𝑛
(𝐹𝑢
𝑛
− V
𝑛
) − 𝜆
𝑛
𝜃
𝑛
(𝑢
𝑛
− 𝑢
1
) ,

V
𝑛+1

= V
𝑛
− 𝜆
𝑛
𝛼
𝑛
(𝐾V
𝑛
+ 𝑢
𝑛
) − 𝜆
𝑛
𝜃
𝑛
(V
𝑛
− V
1
) , 𝑛 ∈ N.

(48)

Assume that

(i) ∑∞
𝑛=1

𝜆
𝑛
𝜃
𝑛
= ∞; lim

𝑛→∞
𝜆
𝑛
𝛼
𝑛
= lim
𝑛→∞

𝜆
𝑛
𝜃
𝑛
= 0;

(ii) one of the following conditions holds:

(a) lim
𝑛→∞

(
𝛼
2

𝑛

𝜃
𝑛

) = 0;

(b) lim
𝑛→∞

(
𝜆
𝑛

𝜃
𝑛

) = 0;

(c) lim
𝑛→∞

(
𝛼
𝑛

𝜃
𝑛

) = 0;

(49)

(iii) one of the following conditions holds:

(d)
∞

∑

𝑛=1

𝜆
2

𝑛
𝛼
2

𝑛
< ∞;

∞

∑

𝑛=1

𝜆
2

𝑛
𝛼
𝑛
𝜃
𝑛
< ∞;

(e)
∞

∑

𝑛=1

𝜆
2

𝑛
𝛼
𝑛
< ∞;

(f) lim
𝑛→∞

(
𝜆
𝑛
𝛼
2

𝑛

𝜃
𝑛

) = 0.

(50)

Then, there exists a subset 𝐾min of 𝐻 × 𝐻 such that if (𝑢, V) ∈
𝐾min with V = 𝐹𝑢, then the sequence {𝑢

𝑛
} converges strongly to

𝑢.

Remark 24. (i) The conclusion of Theorem 23 is still true if
∑
∞

𝑛=1
𝜆
𝑛
𝜃
𝑛
= ∞, lim

𝑛→∞
(𝛼
2

𝑛
/𝜃
𝑛
) = 0, and lim

𝑛→∞
𝜆
𝑛
𝛼
𝑛
=

lim
𝑛→∞

𝜆
𝑛
𝜃
𝑛
=0. Furthermore, the conclusion ofTheorem 23

is still true if ∑∞
𝑛=1

𝜆
𝑛
𝜃
𝑛

= ∞, lim
𝑛→∞

(𝛼
𝑛
/𝜃
𝑛
) = 0, and

lim
𝑛→∞

𝜆
𝑛
= 0.

(ii) Theorem 23 improves the conditions of [9, Theorem
3.2] if the space 𝐸 is reduced to a real Hilbert space.
Indeed, [9, Theorem 3.2] assumes that lim

𝑛→∞
(𝜆
𝑛
/𝜃
𝑛
) =

lim
𝑛→∞

(𝛼
𝑛
/𝜃
𝑛
) = 0.

The following is a special case of Theorem 23.

Corollary 25. Let 𝐻 be a real Hilbert space. Let 𝐹, 𝐾 :

𝐻 → 𝐻 be bounded and monotone mappings. Suppose that
𝑢 + 𝐾𝐹𝑢 = 0 has a solution in 𝐻. Let {𝛽

𝑛
}
𝑛∈N be a sequence

in (0, 1). Let {𝑢
𝑛
}
𝑛∈N and {V

𝑛
}
𝑛∈N be sequences in 𝐻 defined

iteratively from arbitrary 𝑢
1
, V
1
∈ 𝐻 by

𝑢
𝑛+1

= 𝑢
𝑛
− 𝛽
𝑛
(𝐹𝑢
𝑛
− V
𝑛
) − 𝛽
𝑛
(𝑢
𝑛
− 𝑢
1
) ,

V
𝑛+1

= V
𝑛
− 𝛽
𝑛
(𝐾V
𝑛
+ 𝑢
𝑛
) − 𝛽
𝑛
(V
𝑛
− V
1
) , 𝑛 ∈ N.

(51)

Assume that ∑∞
𝑛=1

𝛽
𝑛
= ∞ and lim

𝑛→∞
𝛽
𝑛
= 0. Then, there

exists a subset 𝐾min of 𝐻 × 𝐻 such that if (𝑢, V) ∈ 𝐾min with
V = 𝐹𝑢, then the sequence {𝑢

𝑛
} converges strongly to 𝑢.

The following is also a special case of Theorem 23.

Corollary 26. Let𝐻 be a real Hilbert space. Let𝐹,𝐾 : 𝐻→𝐻

be bounded andmonotonemappings. Suppose that𝑢+𝐾𝐹𝑢 = 0

has a solution in 𝐻. Let {𝜆
𝑛
}
𝑛∈N be a sequence in (0, 1). Let

{𝜃
𝑛
}
𝑛∈N be a sequence in (0, 1]. Let {𝑢

𝑛
}
𝑛∈N and {V

𝑛
}
𝑛∈N be

sequences in 𝐻 defined iteratively from arbitrary 𝑢
1
, V
1
∈ 𝐻

by

𝑢
𝑛+1

= 𝑢
𝑛
− 𝜆
𝑛
𝛼
𝑛
(𝐹𝑢
𝑛
− V
𝑛
) − 𝜆
𝑛
𝜃
𝑛
(𝑢
𝑛
− 𝑢
1
) ,

V
𝑛+1

= V
𝑛
− 𝜆
𝑛
𝛼
𝑛
(𝐾V
𝑛
+ 𝑢
𝑛
) − 𝜆
𝑛
𝜃
𝑛
(V
𝑛
− V
1
) , 𝑛 ∈ N.

(52)

Assume that ∑
∞

𝑛=1
𝜆
𝑛
𝜃
𝑛

= ∞, lim
𝑛→∞

𝜆
𝑛
𝜃
𝑛

= 0, and
lim
𝑛→∞

(𝜆
𝑛
/𝜃
𝑛
) = 0. Then, there exists a subset𝐾min of𝐻×𝐻

such that if (𝑢, V) ∈ 𝐾min with V = 𝐹𝑢, then the sequence {𝑢
𝑛
}

converges strongly to 𝑢.
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Furthermore, we get the following result. Note that
Corollary 25 is also a special case of the following result.

Theorem27. Let𝐻 be a realHilbert space. Let𝐹,𝐾 : 𝐻 → 𝐻

be bounded and monotone mappings. Suppose that 𝑢 +𝐾𝐹𝑢 =

0 has a solution in 𝐻. Let {𝛼
𝑛
}
𝑛∈N and {𝜃

𝑛
}
𝑛∈N be sequences

in (0, 1]. Let {𝑢
𝑛
}
𝑛∈N and {V

𝑛
}
𝑛∈N be sequences in 𝐻 defined

iteratively from arbitrary 𝑢
1
, V
1
∈ 𝐻 by

𝑢
𝑛+1

= 𝑢
𝑛
− 𝛼
𝑛
(𝐹𝑢
𝑛
− V
𝑛
) − 𝜃
𝑛
(𝑢
𝑛
− 𝑢
1
) ,

V
𝑛+1

= V
𝑛
− 𝛼
𝑛
(𝐾V
𝑛
+ 𝑢
𝑛
) − 𝜃
𝑛
(V
𝑛
− V
1
) , 𝑛 ∈ N.

(53)

Assume that ∑∞
𝑛=1

𝜃
𝑛
= ∞, lim

𝑛→∞
𝜃
𝑛
= 0, and lim

𝑛→∞
(𝛼
2

𝑛
/

𝜃
𝑛
) = 0. Then, there exists a subset 𝐾min of 𝐻 × 𝐻 such that

if (𝑢, V) ∈ 𝐾min with V = 𝐹𝑢, then the sequence {𝑢
𝑛
} converges

strongly to 𝑢.
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