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The positive definite solutions of the nonlinear matrix equation 𝑋
𝑠

+ 𝐴
∗

𝑓(𝑋)𝐴 = 𝑄 are discussed. A necessary and sufficient
condition for the existence of positive definite solutions for this equation is derived.Then, the uniqueness of the Hermitian positive
definite solution is studied based on an iterative method proposed in this paper. Lastly the perturbation analysis for this equation
is discussed.

1. Introduction

Denote the set of all 𝑛 × 𝑛 positive definite matrices by 𝑃(𝑛).
In this paper, we consider the matrix equation

𝑋
𝑠

+ 𝐴
∗

𝑓 (𝑋)𝐴 = 𝑄, (1)
where 𝐴 is nonsingular, 𝑄 is a Hermitian positive definite
matrix, 𝑠 is a positive real number, 𝑓 is a continuous map
from 𝑃(𝑛) into 𝑃(𝑛), and𝑓 is either monotone (meaning that
0 ≤ 𝑋 ≤ 𝑌 implies that 𝑓(𝑋) ≤ 𝑓(𝑌)) or antimonotone
(meaning that 0 ≤ 𝑋 ≤ 𝑌 implies that 𝑓(𝑋) ≥ 𝑓(𝑌)).

Nonlinear matrix equation of the form (1) often arises in
dynamic programming, control theory, stochastic filtering,
statistics, and so on. In recent years, many authors have been
much interested in studying this class of matrix equations [1–
10].

Equation (1) has been investigated in some special cases.
For the case 𝑠 = 1, Ran and Reurings [1] derived some
sufficient conditions for the existence and uniqueness of
a positive definite solution of (1). In addition, an iterative
method for obtainingHermitian positive definite solutions of
(1) with𝑓(𝑋) = 𝑋

−𝑡 is proposed by Yueting [10]. Liu and Gao
[9] proved the existence of the symmetric positive definite
solutions of (1) with 𝑓(𝑋) = ±𝑋

−𝑡 and 𝑄 = 𝐼. Many other
authors investigated (1) for particular choices of the map 𝑓

[2–4, 6–8].

In Section 2, we will derive a necessary and sufficient
condition for the existence of positive definite solutions of
(1). In Section 3, we will propose an iterative method and
investigate the uniqueness of the Hermitian positive definite
solution. Finally, in Section 4,wewill discuss the perturbation
analysis of (1).

The following notations are used throughout this paper.
For a positive definite matrix 𝐴, 𝜆max(𝐴) and 𝜆min(𝐴) stand
for the maximal and minimal eigenvalues of matrix 𝐴,
respectively. 𝐴∗ is the conjugate transpose of the matrix 𝐴,
and 𝐴

−∗ is the inversion of 𝐴∗. ‖𝐴‖ denotes the spectral
norm of 𝐴. 𝐴 > 0 (𝐴 ≥ 0) denotes that 𝐴 is a positive
definite (semidefinite) matrix, and 𝐴 > 𝐵 (𝐴 ≥ 𝐵) means
that 𝐴 − 𝐵 > 0 (𝐴 − 𝐵 ≥ 0). The notation 𝐿

𝐴,𝐵
denotes the

line segment joining 𝐴 and 𝐵; that is,

𝐿
𝐴,𝐵

= {𝑡𝐴 + (1 − 𝑡) 𝐵 | 𝑡 ∈ [0, 1]} . (2)

2. On the Positive Definite Solutions of (1)
In this section, we will derive a necessary and sufficient
condition for the existence of positive definite solutions of (1).

Lemma 1 (see [8]). Assume that 𝐴 ≥ 𝐵 ≥ 0 (𝐴 > 𝐵 ≥ 0); if
𝑟 ∈ (0, 1], then 𝐴

𝑟

≥ 𝐵
𝑟

(𝐴
𝑟

> 𝐵
𝑟

), and if 𝑟 ∈ [−1, 0), then
𝐴
𝑟

≤ 𝐵
𝑟

(𝐴
𝑟

< 𝐵
𝑟

).
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If there is unique Hermitian positive definite matrix 𝑇,
such that 𝑓(𝑋) = 𝑇

2

, 𝑋 ∈ 𝑃(𝑛), then we denote that 𝑇 =

𝑓
1/2

(𝑋).

Theorem2. Assume that𝑓 is a continuousmap from𝑃(𝑛) into
𝐻𝑃(𝑛), where 𝐻𝑃(𝑛) denotes the set of all 𝑛 × 𝑛 Hermitian
positive definite matrices. Then, (1) has a Hermitian positive
definite solution if and only if there is a nonsingular matrix𝑊,
such that 𝑊∗𝑊 = 𝑊𝑊

∗, and 𝐴 = (𝑓
1/2

(𝑊
∗

𝑊))
−1

𝑍𝑄
1/2,

where

(𝑄
−1/2

)
∗

(𝑊
𝑠

)
∗

(𝑊
𝑠

) 𝑄
−1/2

+ 𝑍
∗

𝑍 = 𝐼. (3)

In this case, (1) has a Hermitian positive definite solution 𝑋 =

𝑊
∗

𝑊.

Proof. If 𝑋 is a Hermitian positive definite solution of (1),
then there is unique Hermitian positive definite matrix 𝑊,
such that 𝑋 = 𝑊

2 (see [11]). So, 𝑓(𝑋) = 𝑓(𝑊
∗

𝑊) ∈ 𝐻𝑃(𝑛),
and therefore there is unique Hermitian positive definite
matrix 𝑇, such that 𝑓(𝑊∗𝑊) = 𝑇

2. Substituting 𝑋 = 𝑊
2

=

𝑊
∗

𝑊 into (1) gives

(𝑊
∗

𝑊)
𝑠

+ 𝐴
∗

𝑓 (𝑊
∗

𝑊)𝐴 = 𝑄. (4)

Then, we have

(𝑊
𝑠

)
∗

(𝑊
𝑠

) + 𝐴
∗

𝑇
∗

𝑇𝐴 = 𝑄. (5)

𝑄 is Hermitian positive definite, and so

(𝑄
−1/2

)
∗

(𝑊
𝑠

)
∗

(𝑊
𝑠

) 𝑄
−1/2

+ (𝑄
−1/2

)
∗

𝐴
∗

𝑇
∗

𝑇𝐴𝑄
−1/2

= 𝐼;

(6)

that is

[
𝑊
𝑠

𝑄
−1/2

𝑇𝐴𝑄
−1/2

]

∗

[
𝑊
𝑠

𝑄
−1/2

𝑇𝐴𝑄
−1/2

] = 𝐼. (7)

Let 𝑍 = 𝑇𝐴𝑄
−1/2. Then, 𝐴 = 𝑇

−1

𝑍𝑄
1/2

= (𝑓
1/2

(𝑊
∗

𝑊))
−1

𝑍𝑄
1/2, and by (7) we know that (𝑄−1/2)∗(𝑊𝑠)∗(𝑊𝑠)𝑄−1/2 +

𝑍
∗

𝑍 = 𝐼.
Conversely, if 𝐴 = (𝑓

1/2

(𝑊
∗

𝑊))
−1

𝑍𝑄
1/2, let 𝑋 = 𝑊

∗

𝑊.
Then,

𝑋
𝑠

+ 𝐴
∗

𝑓 (𝑋)𝐴 = (𝑊
∗

𝑊)
𝑠

+ (𝑄
1/2

)
∗

𝑍
∗

(𝑓
1/2

(𝑊
∗

𝑊))
−∗

× 𝑓 (𝑊
∗

𝑊)(𝑓
1/2

(𝑊
∗

𝑊))
−1

𝑍𝑄
1/2

= (𝑊
𝑠

)
∗

𝑊
𝑠

+ (𝑄
1/2

)
∗

𝑍
∗

𝑍𝑄
1/2

= (𝑄
1/2

)
∗

× ((𝑊
𝑠

𝑄
−1/2

)
∗

(𝑊
𝑠

𝑄
−1/2

) + 𝑍
∗

𝑍)𝑄
1/2

= 𝑄.

(8)

So,𝑋 = 𝑊
∗

𝑊 is a Hermitian positive definite solution of
(1).

If 𝑠 = 1, then the restriction𝑊∗𝑊 = 𝑊𝑊
∗ inTheorem 2

can be omitted.

3. Iterative Method

In order to discuss an iterative method for solving (1), we
assume that for a given matrix 𝐵, the equation 𝑓(𝑋) = 𝐵

always has a positive definite solution and its solution is
easy to obtain. We are interested in the inverse iteration, and
consider the following iterative method:

𝑋
𝑘+1

= 𝑓
−1

(𝐴
−∗

(𝑄 − 𝑋
𝑠

𝑘
) 𝐴
−1

) , 𝑘 = 0, 1, 2, . . . (9)

In this section, we assume that 𝐴, 𝑄, 𝑓 in (1) satisfy
𝑓
−1

(𝐴
−∗

𝑄𝐴
−1

) ≤ 𝑄
1/𝑠.

Theorem 3. Suppose that 𝑓−1 exists and that 𝑓 is antimono-
tone. Let 𝑠 = 1. Equation (1) has a positive definite solution
in the interval (0, 𝜆max(𝑄)𝐼) if and only if there is a number
𝜒 ∈ (0, 𝜆max(𝑄)), such that𝑋𝑘 ≤ 𝜒𝐼 for all 𝑘. Moreover, in this
case, the iteration (9) with 𝑋

0
= 0 converges to the smallest

positive definite solution of (1).

Proof. Since 𝑓−1 exists and 𝑓 is anti-monotone, then 𝑓
−1 is

also anti-monotone. Assume that there is a number 𝜒 as in
the theorem. Since𝑋

0
= 0, one has

𝑋
1
= 𝑓
−1

(𝐴
−∗

𝑄𝐴
−1

) ≥ 𝑋
0
= 0. (10)

Furthermore, we get

𝑋
2
= 𝑓
−1

(𝐴
−∗

(𝑄 − 𝑋
1
) 𝐴
−1

)

≥ 𝑓
−1

(𝐴
−∗

(𝑄 − 𝑋
0
) 𝐴
−1

) = 𝑋
1
.

(11)

Now, if𝑋
𝑘
≥ 𝑋
𝑘−1

, we have

𝑋
𝑘+1

= 𝑓
−1

(𝐴
−∗

(𝑄 − 𝑋
𝑘
) 𝐴
−1

)

≥ 𝑓
−1

(𝐴
−∗

(𝑄 − 𝑋
𝑘−1

) 𝐴
−1

) = 𝑋
𝑘
.

(12)

Then, the sequence {𝑋
𝑘
} is a monotonically nondecreasing

sequence and bounded above by some positive definite
matrix 𝜒𝐼. Consequently, the sequence {𝑋

𝑘
} converges to a

positive definite matrix𝑋, which is a solution of (1); that is,

𝑋 = 𝑓
−1

(𝐴
−∗

(𝑄 − 𝑋)𝐴
−1

) . (13)

Conversely, let (1) have a positive definite solution 𝑋 ∈

(0, 𝜆max(𝑄)𝐼), and let 𝜒 ∈ (0, 𝜆max(𝑄)) be the largest
eigenvalue of 𝑋. In order to prove that 𝑋

𝑘
≤ 𝜒𝐼 for every

𝑋
𝑘
generated from (9), we will prove that𝑋

𝑘
≤ 𝑋. Consider

𝑋
0
= 0 < 𝑋,

𝑋
1
= 𝑓
−1

(𝐴
−∗

(𝑄 − 𝑋
0
) 𝐴
−1

)

≤ 𝑓
−1

(𝐴
−∗

(𝑄 − 𝑋)𝐴
−1

) = 𝑋.

(14)

Assume that𝑋
𝑘
≤ 𝑋, for some fixed 𝑘, and then we have

𝑋
𝑘+1

= 𝑓
−1

(𝐴
−∗

(𝑄 − 𝑋
𝑘
) 𝐴
−1

)

≤ 𝑓
−1

(𝐴
−∗

(𝑄 − 𝑋)𝐴
−1

) = 𝑋.

(15)

So,𝑋
𝑘+1

∈ (0, 𝑋). Then, the theorem is proved.
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Lemma 4 (see [1]). Let 𝑓 : 𝑈 → 𝑀(𝑛)(𝑈 ⊂ 𝑀(𝑛) 𝑜𝑝𝑒𝑛) be
differentiable at any point of 𝑈. Then,

󵄩󵄩󵄩󵄩𝑓 (𝑋) − 𝑓 (𝑌)
󵄩󵄩󵄩󵄩 ≤ sup
𝑍∈𝐿𝑋,𝑌

󵄩󵄩󵄩󵄩D𝑓 (𝑍)
󵄩󵄩󵄩󵄩 ‖𝑋 − 𝑌‖ , (16)

for all𝑋,𝑌 ∈ 𝑈.

Lemma 5. Suppose that 𝑓
−1 exists and that 𝑓 is anti-

monotone. If (1) with 𝑠 ≥ 1 has a Hermitian positive definite
solution𝑋, then𝑋 ∈ [𝑓

−1

(𝐴
−∗

𝑄𝐴
−1

), 𝑄
1/𝑠

].

Proof. Since 𝑓−1 exists and 𝑓 is anti-monotone, then 𝑓
−1 is

also anti-monotone. Assume that (1) has a Hermitian positive
definite solution𝑋. Since𝑓maps into𝑃(𝑛), we have𝑓(𝑋) > 0

and 𝐴
∗

𝑓(𝑋)𝐴 ≥ 0. Therefore, 𝑋𝑠 = 𝑄 − 𝐴
∗

𝑓(𝑋)𝐴 ≤ 𝑄. By
Lemma 1 we know that 𝑋 ≤ 𝑄

1/𝑠. On the other hand, we
have 𝐴∗𝑓(𝑋)𝐴 ≤ 𝑄, 𝑓(𝑋) ≤ 𝐴

−∗

𝑄𝐴
−1. Then, we obtain𝑋 ≥

𝑓
−1

(𝐴
−∗

𝑄𝐴
−1

) because 𝑓−1 is anti-monotone.

Theorem 6. Suppose that 𝑓
−1 exists and that 𝑓 is anti-

monotone, and suppose that 𝑓, 𝑓
−1 are differentiable at

any point of Ω
1

= [𝑓
−1

(𝐴
−∗

𝑄𝐴
−1

), 𝑄
1/𝑠

] and Ω
2

=

[𝑓(𝑄
1/𝑠

), 𝐴
−∗

𝑄𝐴
−1

], respectively. Let

𝑀
1
= sup
𝑍∈Ω1

󵄩󵄩󵄩󵄩D𝑓 (𝑍)
󵄩󵄩󵄩󵄩 , 𝑀

2
= sup
𝑋∈Ω2

󵄩󵄩󵄩󵄩󵄩
D𝑓
−1

(𝑋)
󵄩󵄩󵄩󵄩󵄩
, (17)

and 𝑎 = 𝑀
1
𝑀
2
‖𝐴
−1

‖
2

‖𝐴‖
2.

(i) If (1) with 𝑠 > 1 has a Hermitian positive definite
solution 𝑋 and 𝑎 < 1, then 𝑋 is the unique solution
of (1).

(ii) Assume that there is a closed setΩ ⊆ Ω
1
satisfying that

𝑔 : Ω → Ω and 𝑔(𝑋) = 𝑓
−1

(𝐴
−∗

(𝑄 − 𝑋
𝑠

)𝐴
−1

); if
𝑎 < 1, then (1) with 𝑠 > 1 has a unique solution 𝑋 in
Ω. Furthermore, one considers the iterative method (9)
with𝑋

0
∈ Ω. The sequence {𝑋

𝑘
} in (9) converges to the

unique solution𝑋; moreover,

󵄩󵄩󵄩󵄩𝑋𝑛 − 𝑋
󵄩󵄩󵄩󵄩 ≤

𝑎
𝑛

1 − 𝑎

󵄩󵄩󵄩󵄩𝑋1 − 𝑋
0

󵄩󵄩󵄩󵄩 ,

󵄩󵄩󵄩󵄩𝑋𝑛 − 𝑋
󵄩󵄩󵄩󵄩 ≤

𝑎

1 − 𝑎

󵄩󵄩󵄩󵄩𝑋𝑛 − 𝑋
𝑛−1

󵄩󵄩󵄩󵄩 .

(18)

Proof. (i) Assume that 𝑋 and 𝑋 are two different Hermi-
tian positive definite solutions of (1), and by Lemma 5,
𝑋,𝑋 ∈ [𝑓

−1

(𝐴
−∗

𝑄𝐴
−1

), 𝑄
1/𝑠

] = Ω
1
; then, 𝑓(𝑋), 𝑓(𝑋) ∈

[𝑓(𝑄
1/𝑠

), 𝐴
−∗

𝑄𝐴
−1

] = Ω
2
. Let 𝑇

1
= 𝐴
−∗

(𝑄 − 𝑋
𝑠

)𝐴
−1

, 𝑇
2
=

𝐴
−∗

(𝑄 − 𝑋
𝑠

)𝐴
−1, and

𝑀
2
= sup
𝑋∈Ω2

󵄩󵄩󵄩󵄩󵄩
D𝑓
−1

(𝑋)
󵄩󵄩󵄩󵄩󵄩
. (19)

From Lemma 4,

󵄩󵄩󵄩󵄩󵄩
𝑋 − 𝑋

󵄩󵄩󵄩󵄩󵄩
=

󵄩󵄩󵄩󵄩󵄩
𝑓
−1

(𝐴
−∗

(𝑄 − 𝑋
𝑠

) 𝐴
−1

)

−𝑓
−1

(𝐴
−∗

(𝑄 − 𝑋
𝑠

)𝐴
−1

)
󵄩󵄩󵄩󵄩󵄩

≤ sup
𝑍∈𝐿𝑇1,𝑇2

󵄩󵄩󵄩󵄩󵄩
D𝑓
−1

(𝑍)
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐴
−∗

(𝑄 − 𝑋
𝑠

) 𝐴
−1

−𝐴
−∗

(𝑄 − 𝑋
𝑠

)𝐴
−1
󵄩󵄩󵄩󵄩󵄩

= sup
𝑍∈𝐿
𝑓(𝑋),𝑓(𝑋)

󵄩󵄩󵄩󵄩󵄩
D𝑓
−1

(𝑍)
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐴
−∗

(𝑋
𝑠

− 𝑋
𝑠

)𝐴
−1
󵄩󵄩󵄩󵄩󵄩

≤ sup
𝑍∈Ω2

󵄩󵄩󵄩󵄩󵄩
D𝑓
−1

(𝑍)
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐴
−∗

(𝑋
𝑠

− 𝑋
𝑠

)𝐴
−1
󵄩󵄩󵄩󵄩󵄩

≤ 𝑀
2

󵄩󵄩󵄩󵄩󵄩
𝐴
−1
󵄩󵄩󵄩󵄩󵄩

2 󵄩󵄩󵄩󵄩󵄩
𝑋
𝑠

− 𝑋
𝑠
󵄩󵄩󵄩󵄩󵄩
.

(20)

Let

𝑀
1
= sup
𝑍∈Ω1

󵄩󵄩󵄩󵄩D𝑓 (𝑍)
󵄩󵄩󵄩󵄩 . (21)

Then,

󵄩󵄩󵄩󵄩󵄩
𝑋
𝑠

− 𝑋
𝑠
󵄩󵄩󵄩󵄩󵄩
=

󵄩󵄩󵄩󵄩󵄩
𝑄 − 𝐴

∗

𝑓 (𝑋)𝐴 − 𝑄 + 𝐴
∗

𝑓 (𝑋)𝐴
󵄩󵄩󵄩󵄩󵄩

≤ ‖𝐴‖
2
󵄩󵄩󵄩󵄩󵄩
𝑓 (𝑋) − 𝑓 (𝑋)

󵄩󵄩󵄩󵄩󵄩

≤ ‖𝐴‖
2 sup
𝑍∈𝐿
𝑋,𝑋

󵄩󵄩󵄩󵄩D𝑓 (𝑍)
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑋 − 𝑋

󵄩󵄩󵄩󵄩󵄩

≤ ‖𝐴‖
2 sup
𝑍∈Ω1

󵄩󵄩󵄩󵄩D𝑓 (𝑍)
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑋 − 𝑋

󵄩󵄩󵄩󵄩󵄩

≤ ‖𝐴‖
2

𝑀
1

󵄩󵄩󵄩󵄩󵄩
𝑋 − 𝑋

󵄩󵄩󵄩󵄩󵄩
.

(22)

By 𝑎 < 1 we have

󵄩󵄩󵄩󵄩󵄩
𝑋 − 𝑋

󵄩󵄩󵄩󵄩󵄩
≤ 𝑀
2

󵄩󵄩󵄩󵄩󵄩
𝐴
−1
󵄩󵄩󵄩󵄩󵄩

2

‖𝐴‖
2

𝑀
1

󵄩󵄩󵄩󵄩󵄩
𝑋 − 𝑋

󵄩󵄩󵄩󵄩󵄩

= 𝑎
󵄩󵄩󵄩󵄩󵄩
𝑋 − 𝑋

󵄩󵄩󵄩󵄩󵄩
<
󵄩󵄩󵄩󵄩󵄩
𝑋 − 𝑋

󵄩󵄩󵄩󵄩󵄩
,

(23)

which is a contradiction; so, 𝑋 = 𝑋. That is, 𝑋 is the unique
solution of (1).
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(ii) Let 𝑌
1
, 𝑌
2
∈ Ω ⊆ Ω

1
. Then, 𝑓(𝑔(𝑌

1
)), 𝑓(𝑔(𝑌

2
)) ∈ Ω

2
;

from Lemma 4,

󵄩󵄩󵄩󵄩𝑔 (𝑌1) − 𝑔 (𝑌
2
)
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
𝑓
−1

(𝐴
−∗

(𝑄 − 𝑌
𝑠

1
) 𝐴
−1

)

−𝑓
−1

(𝐴
−∗

(𝑄 − 𝑌
𝑠

2
) 𝐴
−1

)
󵄩󵄩󵄩󵄩󵄩

≤ sup
𝑍∈𝐿𝑓(𝑔(𝑌1)),𝑓(𝑔(𝑌2))

󵄩󵄩󵄩󵄩󵄩
D𝑓
−1

(𝑍)
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐴
−∗

(𝑌
𝑠

2
− 𝑌
𝑠

1
) 𝐴
−1
󵄩󵄩󵄩󵄩󵄩

≤ sup
𝑍∈Ω2

󵄩󵄩󵄩󵄩󵄩
D𝑓
−1

(𝑍)
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐴
−1
󵄩󵄩󵄩󵄩󵄩

2 󵄩󵄩󵄩󵄩𝑌
𝑠

2
− 𝑌
𝑠

1

󵄩󵄩󵄩󵄩

≤ 𝑀
2

󵄩󵄩󵄩󵄩󵄩
𝐴
−1
󵄩󵄩󵄩󵄩󵄩

2 󵄩󵄩󵄩󵄩𝑄 − 𝐴
∗

𝑓 (𝑌
2
) 𝐴 − 𝑄 + 𝐴

∗

𝑓 (𝑌
1
) 𝐴

󵄩󵄩󵄩󵄩

≤ 𝑀
2

󵄩󵄩󵄩󵄩󵄩
𝐴
−1
󵄩󵄩󵄩󵄩󵄩

2

‖𝐴‖
2 󵄩󵄩󵄩󵄩𝑓 (𝑌

1
) − 𝑓 (𝑌

2
)
󵄩󵄩󵄩󵄩

≤ 𝑀
2

󵄩󵄩󵄩󵄩󵄩
𝐴
−1
󵄩󵄩󵄩󵄩󵄩

2

‖𝐴‖
2 sup
𝑍∈𝐿𝑌1,𝑌2

󵄩󵄩󵄩󵄩D𝑓 (𝑍)
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑌1 − 𝑌
2

󵄩󵄩󵄩󵄩

≤ 𝑀
2

󵄩󵄩󵄩󵄩󵄩
𝐴
−1
󵄩󵄩󵄩󵄩󵄩

2

‖𝐴‖
2 sup
𝑍∈Ω1

󵄩󵄩󵄩󵄩D𝑓 (𝑍)
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑌1 − 𝑌
2

󵄩󵄩󵄩󵄩

≤ 𝑀
2

󵄩󵄩󵄩󵄩󵄩
𝐴
−1
󵄩󵄩󵄩󵄩󵄩

2

‖𝐴‖
2

𝑀
1

󵄩󵄩󵄩󵄩𝑌1 − 𝑌
2

󵄩󵄩󵄩󵄩

= 𝑎
󵄩󵄩󵄩󵄩𝑌1 − 𝑌

2

󵄩󵄩󵄩󵄩 .

(24)

The intervalΩ is a completemetric space because it is a closed
subset of 𝑃(𝑛). And 𝑎 < 1; so, 𝑔 is a contraction on Ω. Then,
it follows from contractive mapping principle that the map 𝑔
has a unique fixed point 𝑋 in Ω. Furthermore, the sequence
{𝑋
𝑘
} in (9) converges to the unique solution of (1); moreover,

󵄩󵄩󵄩󵄩𝑋𝑛 − 𝑋
󵄩󵄩󵄩󵄩 ≤

𝑎
𝑛

1 − 𝑎

󵄩󵄩󵄩󵄩𝑋1 − 𝑋
0

󵄩󵄩󵄩󵄩 ,

󵄩󵄩󵄩󵄩𝑋𝑛 − 𝑋
󵄩󵄩󵄩󵄩 ≤

𝑎

1 − 𝑎

󵄩󵄩󵄩󵄩𝑋𝑛 − 𝑋
𝑛−1

󵄩󵄩󵄩󵄩 .

(25)

4. Perturbation Analysis

Let

𝑋
𝑠

+ 𝐴
∗

𝑓 (𝑋)𝐴 = 𝑄 (26)

be the perturbation equation of (1). Let 𝐴, 𝐴 be nonsingular
matrices and𝑄, 𝑄 be positive definite, and 0 < 𝑠 < 1. Suppose
that 𝑓−1 : 𝑃(𝑛) → 𝑃(𝑛) exists and 𝑓 is anti-monotone.

Lemma 7 (see [12]). If 0 < 𝑟 < 1, the operators 𝑋, 𝑌 satisfy
𝑋 ≥ 𝑎𝐼 and 𝑌 ≥ 𝑎𝐼 for some positive number 𝑎; then,

󵄩󵄩󵄩󵄩𝑋
𝑟

− 𝑌
𝑟󵄩󵄩󵄩󵄩 ≤ 𝑟𝑎

𝑟−1

‖𝑋 − 𝑌‖ . (27)

Theorem 8. Let 𝑋, 𝑋 be the positive definite solutions of (1)
and its perturbation equation (26), respectively. Map 𝑓

−1 is
differentiable at any point of Ω

4
with

Ω
4
= {𝛼𝑋 + (1 − 𝛼) 𝑌 | 𝛼 ∈ [0, 1] ,

𝑋 ∈ 𝑓 ([𝑓
−1

(𝐴
−∗

𝑄𝐴
−1

) , 𝑄
1/𝑠

]) ,

𝑌 ∈ 𝑓 ([𝑓
−1

(𝐴
−∗

𝑄𝐴
−1

) , 𝑄
1/𝑠

])} .

(28)

Let

𝑀
4
= sup
𝑍∈Ω4

󵄩󵄩󵄩󵄩󵄩
D𝑓
−1

(𝑍)
󵄩󵄩󵄩󵄩󵄩
. (29)

If𝑀
4
‖𝐴
−1

‖‖𝐴
−1

‖𝑠�̃�
𝑠−1

< 1, one has

󵄩󵄩󵄩󵄩󵄩
𝑋 − 𝑋

󵄩󵄩󵄩󵄩󵄩

‖𝑋‖

≤
𝑇

𝜆min (𝑓
−1 (𝐴−∗𝑄𝐴−1)) (𝑀

−1

4
−
󵄩󵄩󵄩󵄩𝐴
−1
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐴−1

󵄩󵄩󵄩󵄩󵄩
𝑠�̃�𝑠−1)

,

(30)

where 𝑇 = ‖𝐴
−1

− 𝐴
−1

‖(‖𝑄 − �̃�
𝑠

𝐼‖‖𝐴
−1

‖ + ‖𝑄 − �̃�
𝑠

𝐼‖‖𝐴
−1

‖) +

‖𝐴
−1

‖‖𝐴
−1

‖‖𝑄−𝑄‖, �̃� = min{𝜆min(𝑓
−1

(𝐴
−∗

𝑄𝐴
−1

)), 𝜆min(𝑓
−1

(𝐴
−∗

𝑄𝐴
−1

))}.

Proof. 𝑋, 𝑋 are the positive definite solutions of (1) and (26),
respectively. Let𝑇

1
= 𝐴
−∗

(𝑄−𝑋
𝑠

)𝐴
−1

, 𝑇
2
= 𝐴
−∗

(𝑄−𝑋
𝑠

)𝐴
−1.

From Lemma 4,
󵄩󵄩󵄩󵄩󵄩
𝑋 − 𝑋

󵄩󵄩󵄩󵄩󵄩
=

󵄩󵄩󵄩󵄩󵄩
𝑓
−1

(𝐴
−∗

(𝑄 − 𝑋
𝑠

) 𝐴
−1

)

−𝑓
−1

(𝐴
−∗

(𝑄 − 𝑋
𝑠

)𝐴
−1

)
󵄩󵄩󵄩󵄩󵄩

≤ sup
𝑍∈𝐿𝑇1,𝑇2

󵄩󵄩󵄩󵄩󵄩
D𝑓
−1

(𝑍)
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐴
−∗

(𝑄 − 𝑋
𝑠

) 𝐴
−1

−𝐴
−∗

(𝑄 − 𝑋
𝑠

)𝐴
−1
󵄩󵄩󵄩󵄩󵄩
.

(31)

By Lemma 5,

𝑋 ∈ [𝑓
−1

(𝐴
−∗

𝑄𝐴
−1

) , 𝑄
1/𝑠

] ,

𝑋 ∈ [𝑓
−1

(𝐴
−∗

𝑄𝐴
−1

) , 𝑄
1/𝑠

] .

(32)

Let

Ω
4
= {𝛼𝑋 + (1 − 𝛼) 𝑌 | 𝛼 ∈ [0, 1] ,

𝑋 ∈ 𝑓 ([𝑓
−1

(𝐴
−∗

𝑄𝐴
−1

) , 𝑄
1/𝑠

]) ,

𝑌 ∈ 𝑓 ([𝑓
−1

(𝐴
−∗

𝑄𝐴
−1

) , 𝑄
1/𝑠

])} ,

𝑀
4
= sup
𝑍∈Ω4

󵄩󵄩󵄩󵄩󵄩
D𝑓
−1

(𝑍)
󵄩󵄩󵄩󵄩󵄩
.

(33)
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Then, we have

sup
𝑍∈𝐿𝑇1,𝑇2

󵄩󵄩󵄩󵄩󵄩
D𝑓
−1

(𝑍)
󵄩󵄩󵄩󵄩󵄩
= sup
𝑍∈𝐿
𝑓(𝑋),𝑓(�̃�)

󵄩󵄩󵄩󵄩󵄩
D𝑓
−1

(𝑍)
󵄩󵄩󵄩󵄩󵄩

≤ sup
𝑍∈Ω4

󵄩󵄩󵄩󵄩󵄩
D𝑓
−1

(𝑍)
󵄩󵄩󵄩󵄩󵄩
≤ 𝑀
4
.

(34)

Notice that

𝑋 ≥ 𝑓
−1

(𝐴
−∗

𝑄𝐴
−1

) ≥ 𝜆min (𝑓
−1

(𝐴
−∗

𝑄𝐴
−1

)) 𝐼,

𝑋 ≥ 𝑓
−1

(𝐴
−∗

𝑄𝐴
−1

) ≥ 𝜆min (𝑓
−1

(𝐴
−∗

𝑄𝐴
−1

)) 𝐼.

(35)

Let �̃� = min{𝜆min(𝑓
−1

(𝐴
−∗

𝑄𝐴
−1

)), 𝜆min(𝑓
−1

(𝐴
−∗

𝑄𝐴
−1

))}.
Then, 𝑋,𝑋 ≥ �̃�𝐼. By Lemma 1, 𝑋𝑠, 𝑋𝑠 ≥ �̃�

𝑠

𝐼 since 0 < 𝑠 < 1.
And from Lemma 7,
󵄩󵄩󵄩󵄩󵄩
𝐴
−∗

(𝑄 − 𝑋
𝑠

) 𝐴
−1

− 𝐴
−∗

(𝑄 − 𝑋
𝑠

)𝐴
−1
󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
𝐴
−∗

(𝑄 − 𝑋
𝑠

) (𝐴
−1

− 𝐴
−1

)

+ 𝐴
−∗

(𝑄 − 𝑋
𝑠

− 𝑄 + 𝑋
𝑠

)𝐴
−1

+ (𝐴
−∗

− 𝐴
−∗

) (𝑄 − 𝑋
𝑠

)𝐴
−1
󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝐴
−1
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑄 − 𝑋
𝑠󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐴
−1

− 𝐴
−1
󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
𝐴
−1
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐴
−1
󵄩󵄩󵄩󵄩󵄩
(
󵄩󵄩󵄩󵄩󵄩
𝑄 − 𝑄

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑋
𝑠

− 𝑋
𝑠
󵄩󵄩󵄩󵄩󵄩
)

+
󵄩󵄩󵄩󵄩󵄩
𝐴
−1

− 𝐴
−1
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐴
−1
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑄 − 𝑋

𝑠
󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
𝐴
−1

− 𝐴
−1
󵄩󵄩󵄩󵄩󵄩
(
󵄩󵄩󵄩󵄩𝑄 − 𝑋

𝑠󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐴
−1
󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑄 − 𝑋

𝑠
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐴
−1
󵄩󵄩󵄩󵄩󵄩
)

+
󵄩󵄩󵄩󵄩󵄩
𝐴
−1
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐴
−1
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑄 − 𝑄

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝐴
−1
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐴
−1
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑋
𝑠

− 𝑋
𝑠
󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝐴
−1

− 𝐴
−1
󵄩󵄩󵄩󵄩󵄩
(
󵄩󵄩󵄩󵄩󵄩
𝑄 − �̃�

𝑠

𝐼
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐴
−1
󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑄 − �̃�

𝑠

𝐼
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐴
−1
󵄩󵄩󵄩󵄩󵄩
)

+
󵄩󵄩󵄩󵄩󵄩
𝐴
−1
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐴
−1
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑄 − 𝑄

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝐴
−1
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐴
−1
󵄩󵄩󵄩󵄩󵄩
𝑠�̃�
𝑠−1

󵄩󵄩󵄩󵄩󵄩
𝑋 − 𝑋

󵄩󵄩󵄩󵄩󵄩
.

(36)

Therefore,
󵄩󵄩󵄩󵄩󵄩
𝑋 − 𝑋

󵄩󵄩󵄩󵄩󵄩
≤ 𝑀
4
(
󵄩󵄩󵄩󵄩󵄩
𝐴
−1

− 𝐴
−1
󵄩󵄩󵄩󵄩󵄩

× (
󵄩󵄩󵄩󵄩󵄩
𝑄 − �̃�

𝑠

𝐼
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐴
−1
󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑄 − �̃�

𝑠

𝐼
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐴
−1
󵄩󵄩󵄩󵄩󵄩
)

+
󵄩󵄩󵄩󵄩󵄩
𝐴
−1
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐴
−1
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑄 − 𝑄

󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
𝐴
−1
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐴
−1
󵄩󵄩󵄩󵄩󵄩
𝑠�̃�
𝑠−1

󵄩󵄩󵄩󵄩󵄩
𝑋 − 𝑋

󵄩󵄩󵄩󵄩󵄩
) .

(37)

That is,

(𝑀
−1

4
−
󵄩󵄩󵄩󵄩󵄩
𝐴
−1
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐴
−1
󵄩󵄩󵄩󵄩󵄩
𝑠�̃�
𝑠−1

)
󵄩󵄩󵄩󵄩󵄩
𝑋 − 𝑋

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝐴
−1

− 𝐴
−1
󵄩󵄩󵄩󵄩󵄩
(
󵄩󵄩󵄩󵄩󵄩
𝑄 − �̃�

𝑠

𝐼
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐴
−1
󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑄 − �̃�

𝑠

𝐼
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐴
−1
󵄩󵄩󵄩󵄩󵄩
)

+
󵄩󵄩󵄩󵄩󵄩
𝐴
−1
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐴
−1
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑄 − 𝑄

󵄩󵄩󵄩󵄩󵄩
.

(38)

If𝑀
4
‖𝐴
−1

‖‖𝐴
−1

‖𝑠�̃�
𝑠−1

< 1, by𝑋 ≥ 𝜆min(𝑓
−1

(𝐴
−∗

𝑄𝐴
−1

))𝐼we
have
󵄩󵄩󵄩󵄩󵄩
𝑋 − 𝑋

󵄩󵄩󵄩󵄩󵄩

‖𝑋‖

≤
𝑇

𝜆min (𝑓
−1 (𝐴−∗𝑄𝐴−1)) (𝑀

−1

4
−
󵄩󵄩󵄩󵄩𝐴
−1
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐴−1

󵄩󵄩󵄩󵄩󵄩
𝑠�̃�𝑠−1)

,

(39)

where

𝑇 =
󵄩󵄩󵄩󵄩󵄩
𝐴
−1

− 𝐴
−1
󵄩󵄩󵄩󵄩󵄩
(
󵄩󵄩󵄩󵄩󵄩
𝑄 − �̃�

𝑠

𝐼
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐴
−1
󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑄 − �̃�

𝑠

𝐼
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐴
−1
󵄩󵄩󵄩󵄩󵄩
)

+
󵄩󵄩󵄩󵄩󵄩
𝐴
−1
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐴
−1
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑄 − 𝑄

󵄩󵄩󵄩󵄩󵄩
.

(40)
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