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Previous studies of road congestion pricing problem assume that transportation networks are managed by a central administrative
authority with an objective of improving the performance of the whole network. In practice, a transportation network may be
comprised of multiple independent local regions with relative independent objectives. In this paper, we investigate the cooperative
and competitive behaviors among multiple regions in congestion pricing considering stochastic conditions; especially demand
uncertainty is taken into account in transportation modelling. The corresponding congestion pricing models are formulated as a
bilevel programming problem. In the upper level, congestion pricing model either aims to maximize the regional social welfare
in competitive schemes or attempts to maximize the total social welfare of multiple regions in cooperative schemes. In the lower
level, travellers are assumed to follow a reliability-based stochastic user equilibrium principle considering risks of late arrival under
uncertain conditions. Numerical examples are carried out to compare the effects of different pricing schemes and to analyze the
impact of travel time reliability. It is found that cooperative pricing strategy performs better than competitive strategy in improving
network performance, and the pricing effects of both schemes are quite sensitive to travel time reliability.

1. Introduction

Congestion pricing is widely regarded as an effective strategy
to alleviate traffic congestion in transportation networks. It
is also viewed as one of the most efficient means by trans-
portation economists as it employs the price mechanism.
Congestion pricing, thus, has been paid extensive attention
in the literature [1]. In the congestion pricing scheme, the
decision maker (e.g. road authority) aims to optimize system
performance, where the travelers’ path choice decisions are
considered.

Previous studies of congestion pricing mainly focused on
enhancing the system performance of the entire transporta-
tion network [2–8] and few of them considered interactions
among different stakeholders [9]. Researchers also studied
parking pricing and parking permission management, based
on the assumption that all parking facilities are controlled
by a central authority [6, 7, 10, 11]. Actually, a transportation
network may be comprised of several regions, where the

authority in each region manages its own subnetwork inde-
pendently. Thus conventional pricing models may be inap-
plicable for the pricing problem in a real network spanning
multiple regions, because the regional authorities optimize
the toll levels in order to achieve their selfish objectives rather
than improve the performance of the whole network [9].
There are a number of significant efforts on the investigation
of such competition of road pricing problem (e.g., [9, 12–
14]). However, these analyses are carried out under deter-
ministic condition; that is, the demand and supply sides of
a transportation network are assumed to be deterministic.
As such, traffic demand is either treated as a deterministic
value in the fixed demand case or assumed as a deterministic
function of the average travel time/cost in the elastic demand
case [15]. On the supply side, the link capacity is also treated
as a fixed value. The congestion pricing problem under
deterministic condition could be perfectly solved by the
theory of marginal cost pricing (MPC) [16, 17]. Specifically,
if a marginal cost toll is allowed to be charged on each link
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of the network, the corresponding traffic flow pattern will
be driven toward a social optimum (SO) under deterministic
user equilibrium (UE) path choice principle [18] or stochastic
user equilibrium (SUE) path choice principle [19]. Regardless
of the perfect features of MPC, congestion pricing under
deterministic condition cannot capture the uncertain factors
of transportation networks.

It is well known that transportation networks are inher-
ently stochastic in reality. In recent studies, more and more
researchers found that network uncertainty might exert an
important impact on the transportation management and
overlooking this factor leads to a suboptimal optimization
scheme [20, 21]. Therefore, in this paper, we aim to study the
pricing problem of multiple regions on a stochastic network
with demand uncertainty.The literature review provided here
by no means presents a comprehensive survey to general
pricing problems; instead, it focuses on the pricingmodel and
the traffic equilibrium with network uncertainty, particularly
demand uncertainty.

In the past decades, network uncertainties have been
widely recognized and extensively studied in the literature
of transportation field. In a realistic transportation network,
there are a variety of uncertainty sources in both demand
and supply sides. In demand side, traffic demand of a study
period (e.g. morning peak) fluctuates from day to day due to
travelers’ variant activities. In supply side, the link capacities
degrade due to various incidents, such as traffic accidents,
roadworks, earthquakes, and signal failures. Under uncertain
conditions, the travel time during a particular period varies
from day to day. Confronted with the travel time variations,
travelers have to consider the risk of being late to their
destination while making their path choice decisions. To
resist the disturbance of network uncertainties, travelers take
into account not only the travel time/cost but also the travel
time reliability for path choices. That is to say, travel time
reliability also exerts an important impact on travelers’ path
choice decisions. The corresponding reliability-based traffic
assignment problems have been attracting an increasing
attention in the literature [22–28]. From the viewpoint of
a decision maker, the enhancement of network reliability is
also an important target while making road pricing schemes.
Thus, under network uncertainties, how to formulate the
congestion pricingmodel is an interesting and practical topic.

A few studies have been carried out to account for the
congestion pricing problem under uncertainty. For example,
Li et al. [29] proposed a reliability-based optimal toll design
model with respect to stochastic link capacities and OD
demand with varied toll levels. Boyles et al. [30] obtained
first-best tolls in static transportation networks with day-
to-day variation in network capacity. Sumalee and Xu [15]
proposed a closed-form formulation to calculate the first-best
marginal cost toll for the stochastic network under demand
uncertainty. Gardner et al. [31] presented a road pricing
framework for representing uncertainty in long-term travel
demand and in day-to-day network capacity. All these studies
indicated that the congestion pricing scheme under network
uncertainties is different from that under a deterministic
condition. Therefore, the investigation of congestion pricing

problem under network uncertainties could help the decision
maker make appropriate toll design.

The task of this study is to model the competitive and
cooperative behaviors of pricing problem among multiple
regions under demand uncertainty. The network uncertainty
may bring two challenges for the road pricing problem
among multiple regions. On the one hand, road pricing can
alleviate the traffic congestion in terms of minimizing the
expected total travel time related to the stochastic flows.
On the other hand, travelers’ reliability-based path choice
behaviors may play an important role in the pricing scheme
by influencing the flowpattern and the optimization objective
simultaneously. To account for the two potential impacts,
we formulated the stochastic pricing models among multiple
regions based on the conceptual framework proposed by
Zhang et al. [9].

The rest of the paper is organized as follows. In the next
section, the road congestion pricing optimization models are
formulated to characterize the competitive and cooperative
behaviors among multiple regions. Then, a heuristic solution
algorithm is proposed in Section 3. Numerical examples and
results are discussed in Section 4. Finally, conclusions and
further studies are given in Section 5.

2. Model Formulation

This section builds the road congestion pricing models
among multiple regions on the stochastic network with day-
to-day demand fluctuations. It first investigates the impact of
demanduncertainty on the flowpatterns in terms of themean
and covariance of the flow distributions. A reliability-based
traffic assignmentmodel based on the stochastic flowpatterns
is proposed to characterize the travelers’ path choice behav-
iors considering their own risk preference. Subsequently, we
propose the competitive and cooperative pricing schemes for
stochastic road pricing problem amongmultiple regions.The
optimization objective for the pricing model is to maximize
the social welfare (equal to the total user benefit minus the
mean total travel time).

2.1. DemandUncertainty and FlowDistribution. It is assumed
that the daily traffic demands during the same study period
(e.g. morning peak, 8:00 am-9:00 am) between all OD pairs
are multivariate random variables. For each OD pair 𝑟𝑠 ∈ R,
the random traffic demand is expressed as

𝑄
𝑟𝑠
= 𝑞
𝑟𝑠
+ 𝜀
𝑟𝑠
, ∀𝑟s ∈ R,

𝑐V
𝑟𝑠
=

𝜎
𝑞

𝑟𝑠

𝑞
𝑟𝑠

, ∀𝑟𝑠 ∈ R,
(1)

where 𝑞
𝑟𝑠
is themean (or expected) OD demand betweenOD

pair 𝑟𝑠, 𝐸[𝑄
𝑟𝑠
] = 𝑞

𝑟𝑠
; 𝜀
𝑟𝑠
is the random term with 𝐸[𝜀

𝑟𝑠
] =

0; R is the set of OD pairs. For convenience, denote Q and q
as the |R|-vectors of (. . . , 𝑄

𝑟𝑠
, . . . )
𝑇 and (. . . , 𝑞

𝑟𝑠
, . . . )
𝑇 for all

𝑟𝑠 ∈ R, respectively.The covariance between OD demand𝑄
𝑟𝑠

and 𝑄
𝑟𝑠
 is denoted as

𝜎
𝑞

𝑟𝑠,𝑟𝑠

= cov [𝑄

𝑟𝑠
, 𝑄
𝑟𝑠
] , ∀𝑟𝑠, 𝑟𝑠



∈ R. (2)
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The corresponding covariancematrix of traffic demands of all
OD pairs can be expressed as

Σ
q
= {𝜎
𝑞

𝑟𝑠,𝑟𝑠

}
|R|×|R|

. (3)

The value of 𝜎𝑞
𝑟𝑠,𝑟𝑠

may be positive, zero, or negative. It is

assumed that the OD demands of all OD pairs follow multi-
variate normal distribution, that is Q ∼ MVN(q, Σq

, ), where
q and Σq are fixed and known. Let 𝐹𝑘

𝑟𝑠
be the random traffic

flow on path 𝑘 ∈ K
𝑟𝑠
with its mean 𝑓

𝑘

𝑟𝑠
= 𝐸[𝐹

𝑘

𝑟𝑠
], where

K
𝑟𝑠
is the path set between OD pair 𝑟𝑠 and K = ⋃

𝑟𝑠∈R K𝑟𝑠.
For convenience, F and f are denoted as the |K|-vectors of
(. . . , 𝐹

𝑘

𝑟𝑠
, . . . )
𝑇 and (. . . , 𝑓𝑘

𝑟𝑠
, . . . )
𝑇 for all 𝑘 ∈ K

𝑟𝑠
and 𝑟𝑠 ∈

R, respectively. The path flows and OD demands satisfy the
following flow conservation condition:

Q = ΛF, (4)

whereΛ is theOD-path incidencematrix.Then, the following
conservation conditions hold:

q = 𝐸 [Q] = 𝐸 [ΛF] = Λ𝐸 [F] = Λf . (5)

Equation (5) can be rewritten as

𝑞
𝑟𝑠
= ∑

𝑘∈K
𝑟𝑠

𝑓
𝑘

𝑟𝑠
, ∀𝑟𝑠 ∈ R. (6)

It is assumed that the path flow is a product of the correspond-
ing path choice proportion and the OD demand as follows
[27]:

𝐹
𝑘

𝑟𝑠
= 𝑝
𝑘

𝑟𝑠
𝑄
𝑟𝑠
, ∀𝑘 ∈ K

𝑟𝑠
, 𝑟𝑠 ∈ R, (7)

where 𝑝𝑘
𝑟𝑠
is the path choice proportion of the traffic flow on

path 𝑘 ∈ K
𝑟𝑠
of vehicle, which is assumed to be constant of

the probability [24]. Then, it follows from (7) that

𝑓
𝑘

𝑟𝑠
= 𝑝
𝑘

𝑟𝑠
𝑞
𝑟𝑠
, ∀𝑘 ∈ K

𝑟𝑠
, 𝑟𝑠 ∈ R. (8)

The covariance between 𝐹𝑘
𝑟𝑠
and 𝐹𝑘



𝑟𝑠
 can be deduced as

𝜎
𝑓,𝑘,𝑘


𝑟𝑠,𝑟𝑠

= cov [𝐹𝑘

𝑟𝑠
, 𝐹
𝑘


𝑟𝑠
]

= 𝑝
𝑘

𝑟𝑠
𝑝
𝑘


𝑟𝑠
 cov [𝑄

𝑟𝑠
, 𝑄
𝑟𝑠
] = 𝑝

𝑘

𝑟𝑠
𝑝
𝑘


𝑟𝑠
𝜎
𝑞

𝑟𝑠,𝑟𝑠

,

∀𝑘 ∈ K
𝑟𝑠
, 𝑘


∈ K
𝑟𝑠
 , 𝑟𝑠, 𝑟𝑠



∈ R.

(9)

The corresponding covariance matrix of path flows can be
expressed as

Σ
f
= {𝜎
𝑓,𝑘,𝑘


𝑟𝑠,𝑟𝑠

}

|K|×|K|
. (10)

According to (4), the covariance conservation condition
between path flows and OD demands is expressed as

Σ
q
= ΛΣ

f
Λ
𝑇

. (11)

Denote 𝛿𝑘,𝑎
𝑟𝑠

as the element of the link-path incidence matrix.
𝛿
𝑘,𝑎

𝑟𝑠
= 1, if path 𝑘 uses link 𝑎; otherwise, 𝛿𝑘,𝑎

𝑟𝑠
= 0. Then, the

conservation condition of the estimated link and path flows
is expressed as

𝑉
𝑎
= ∑

𝑟𝑠∈R
∑

𝑘∈K
𝑟𝑠

𝛿
𝑘,𝑎

𝑟𝑠
𝐹
𝑘

𝑟𝑠
, ∀𝑎 ∈ A, (12)

where 𝑉
𝑎
is the random traffic flow on link 𝑎. The mean link

flow is denoted as V
𝑎
= 𝐸[𝑉

𝑎
]. It follows from (12) that

V
𝑎
= ∑

𝑟𝑠∈R
∑

𝑘∈K
𝑟𝑠

𝛿
𝑘,𝑎

𝑟𝑠
𝑓
𝑘

𝑟𝑠

= ∑

𝑟𝑠∈R
∑

𝑘∈K
𝑟𝑠

𝛿
𝑘,𝑎

𝑟𝑠
𝑝
𝑘

𝑟𝑠
𝑞
𝑟𝑠
, ∀𝑎 ∈ A.

(13)

It can be seen from (13) that the mean link flow is a linear
function with respect to the path choice proportions, which
can be expressed as follows:

V
𝑎
= V
𝑎
(p) , ∀𝑎 ∈ A, (14)

where p is denoted as the |K|-vector of path choice pro-
portions (. . . , 𝑝𝑘

𝑟𝑠
, . . . )
𝑇, all 𝑘 ∈ K

𝑟𝑠
and 𝑟𝑠 ∈ R. Also, the

conservation condition of the link and path flow covariance
can be obtained as

𝜎
V
𝑎,𝑎
 =cov [𝑉

𝑎
, 𝑉
𝑎
] = cov[ ∑

𝑟𝑠∈R
∑

𝑘∈K
𝛿
𝑘,𝑎

𝑟𝑠
𝐹
𝑘

𝑟𝑠
, ∑

𝑟𝑠

∈R

∑

𝑘

∈K
𝛿
𝑘

,𝑎


𝑟𝑠
 𝐹
𝑘


𝑟𝑠
]

= ∑

𝑟𝑠∈R
∑

𝑘∈K
∑

𝑟𝑠

∈R

∑

𝑘

∈K
𝛿
𝑘,𝑎

𝑟𝑠
𝛿
𝑘

,𝑎


𝑟𝑠
 cov [𝐹𝑘

𝑟𝑠
, 𝐹
𝑘


𝑟𝑠
]

= ∑

𝑟𝑠∈R
∑

𝑘∈K
∑

𝑟𝑠

∈R

∑

𝑘

∈K
𝛿
𝑘,𝑎

𝑟𝑠
𝛿
𝑘

,𝑎


𝑟𝑠
 𝜎
𝑓,𝑘,𝑘


𝑟𝑠,𝑟𝑠


= ∑

𝑟𝑠∈R
∑

𝑘∈K
∑

𝑟𝑠

∈R

∑

𝑘

∈K
𝛿
𝑘,𝑎

𝑟𝑠
𝛿
𝑘

,𝑎


𝑟𝑠
 𝑝
𝑘

𝑟𝑠
𝑝
𝑘


𝑟𝑠
𝜎
𝑞

𝑟𝑠,𝑟𝑠

, ∀𝑎, 𝑎



∈ A,

(15)

where 𝜎V
𝑎,𝑎
 is the covariance between link flows 𝑉

𝑎
and 𝑉

𝑎
 ,

𝑎, 𝑎


∈ A. It can be seen from (15) that the covariance
of link flows is a function with respect to the path choice
proportions, which is expressed as:

𝜎
V
𝑎,𝑎
 = 𝜎

V
𝑎,𝑎
 (p) , ∀𝑎, 𝑎



∈ A. (16)

2.2. Reliability-Based Traffic Assignment Problem. Under
demand uncertainty, the link and path travel times stochas-
tically fluctuate from day to day, indicated as 𝑇

𝑎
(𝑉
𝑎
(p), 𝑢
𝑎
)

and 𝑇𝑘
𝑟𝑠
, respectively. Let A ⊆ A be a subset of links which

are implemented the congestion pricing scheme and u =

(. . . , 𝑢
𝑎
, . . . )
𝑇

𝑎 ∈ A denote the vector of link tolls, where 𝑢
𝑎
is

the toll on link a ∈ A. Then, the link travel time function for
link 𝑎 ∈ A can be defined as the following modified Bureau
of Public Roads (BPR) function:

𝑇
𝑎
(𝑉
𝑎
(p) , 𝑢

𝑎
) = 𝑡
0

𝑎
(1 + 𝛼(

𝑉
𝑎
(p)
𝑐
𝑎

)

𝑛

) +

1

𝛽

𝑢
𝑎
, ∀𝑎 ∈ A,

(17)
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where 𝛼 is a parameter of link performance function and 𝛽 >
0 is a constant which represents the value of time (VOT). To
facilitate the presentation of the essential idea, it is assumed
that the VOTs of all travelers are same. For other links, the
original BPR function is used as the link time function:

𝑇
𝑎
(𝑉
𝑎
(p) , 𝑢

𝑎
) = 𝑡
0

𝑎
(1 + 𝛼(

𝑉
𝑎
(p)
𝑐
𝑎

)

𝑛

) , ∀𝑎 ∈ A \ A,

(18)

where A \ A represents the link set, for which toll is not
charged on the link. According to the method in Clark and
Watling [24], (16) and (17), the mean and covariance of link
travel times can be deduced, which are the functions with
respect top andu.Themeanpath travel time can be expressed
as a function with respect to p and u as follows:

𝑡
𝑘

𝑟𝑠
(p, u) = ∑

𝑎∈A
𝛿
𝑘,𝑎

𝑟𝑠
𝑡
𝑎
(p, u) , ∀𝑘 ∈ K

𝑟𝑠
, 𝑟𝑠 ∈ R, (19)

where 𝑡
𝑎
(p,u) is the travel cost on 𝑎 ∈ A; 𝑡𝑘

𝑟𝑠
(p, u) is the travel

cost on path 𝑘 ∈ K
𝑟𝑠
. Similarly, the variance of path travel

times can be expressed as

𝜎
𝑡,𝑘

𝑟𝑠
(p,u) = cov [𝑇𝑘

𝑟𝑠
, 𝑇
𝑘

𝑟𝑠
]

= cov[∑
𝑎∈A

𝛿
𝑘,𝑎

𝑟𝑠
𝑇
𝑎
(p, u) , ∑

𝑎

∈A
𝛿
𝑘,𝑎


𝑟𝑠
𝑇
𝑎
 (p,u)]

= ∑

𝑎∈A
∑

𝑎

∈A
𝛿
𝑘,𝑎

𝑟𝑠
𝛿
𝑘,𝑎


𝑟𝑠
cov [𝑇

𝑎
(p, u) , 𝑇

𝑎
 (p, u)]

= ∑

𝑎∈A
∑

𝑎

∈A
𝛿
𝑘,𝑎

𝑟𝑠
𝛿
𝑘,𝑎


𝑟𝑠
𝜎
𝑡

𝑎,𝑎
 (p, u) , ∀𝑘 ∈ K, 𝑟𝑠 ∈ R,

(20)

where 𝑇𝑘
𝑟𝑠
is the path travel time on path 𝑘 ∈ K

𝑟𝑠
, 𝐸[𝑇𝑘
𝑟𝑠
] = 𝑡
𝑘

𝑟𝑠
;

𝑇
𝑎
and 𝑇

𝑎
 are link travel times on links 𝑎 ∈ A and 𝑎 ∈ A,

respectively; 𝜎𝑡
𝑎,𝑎
 is the covariance of link travel times on 𝑎 ∈

A and 𝑎 ∈ A.
Since travelers’ path choice decisions will be influenced

by the uncertain OD demand variations, the decision of road
pricing is also dependent on such stochasticity. To consider
this effect, a reliability-based stochastic user equilibrium
(RSUE) model [27] is adopted to account for the travelers’
reliability-based path choice behaviors in the road pricing
problem. In this RSUE model, the effective travel time, �̂�𝑘

𝑟𝑠
,

is used as the path choice criterion, which is defined as the
summation of themean travel time, 𝑡𝑘

𝑟𝑠
, and the safety margin

𝑠
𝑘

𝑟𝑠
[32]:

�̂�
𝑘

𝑟𝑠
(p, u) = 𝑡𝑘

𝑟𝑠
(p,u) + 𝑠𝑘

𝑟𝑠
(p, u) , ∀𝑘 ∈ K, 𝑟𝑠 ∈ R. (21)

The value of 𝑠𝑘
𝑟𝑠

can be obtained by solving the following
chance-constrained minimization problem:

min
𝑠
𝑘

𝑟𝑠

�̂�
𝑘

𝑟𝑠
= 𝑡
𝑘

𝑟𝑠
+ 𝑠
𝑘

𝑟𝑠

s.t. Pr [𝑇𝑘
𝑟𝑠
≤ �̂�
𝑘

𝑟𝑠
] ≥ 𝜌 ∀𝑘 ∈ K, 𝑟𝑠 ∈ R,

(22)

where 𝜌 is the confidence level of travel time reliability. A
high value of 𝜌 means that the travelers would prefer setting
a large safety margin of path travel time in order to guarantee
a high on-time arrival probability. On the other hand, a low
value of 𝜌means the travelers would prefer tolerating a high
risk of on-time arrival. The effective path travel time can be
calculated that

�̂�
𝑘

𝑟𝑠
(p,u) = 𝑡𝑘

𝑟𝑠
(p, u) + Φ−1 (𝜌) 𝜎𝑡,𝑘

𝑟𝑠
(p, u) , ∀𝑘 ∈ K, 𝑟𝑠 ∈ R,

(23)

whereΦ−1(⋅) is the inverse of cumulative function of standard
normal distribution.

The reliability-based stochastic user equilibrium could
be reached, in which for each OD pair no traveler can
decrease his/her perceived disutility by unilaterally changing
their paths. In the Logit-based RSUE model, the path choice
proportion 𝑝𝑘

𝑟𝑠
, which is defined in (7), can thus be specified

by the following formula:

𝑝
𝑘

𝑟𝑠
=

exp (−𝜃�̂�𝑘
𝑟𝑠
(p, u))

∑
𝑗∈K
𝑟𝑠

exp (−𝜃�̂�𝑗
𝑟𝑠 (p, u))

= 𝑤
𝑘

𝑟𝑠
(p, u) , ∀𝑘 ∈ K, 𝑟𝑠 ∈ R,

(24)

where 𝜃 is the dispersion parameter on travelers’ perception
errors of effective travel time. For the sake of convenience, we
denote the path choice function 𝑝𝑘

𝑟𝑠
as 𝑤𝑘
𝑟𝑠
(p, u) and the set

notation can be denoted as:

𝑊(p, u) = (. . . , 𝑤𝑘
𝑟𝑠
(p,u) , . . .)

𝑇

. (25)

Meanwhile, it is well known that level of service on the
network would exert an impact on the OD demand [33].
Therefore, the mean OD demand is viewed as a function with
respect to the expected disutility of travel for each OD pair:

𝑞
𝑟𝑠
(𝜋) = 𝑞

𝑟𝑠
exp (−𝜂𝜋) , (26)

where 𝑞
𝑟𝑠
indicates the potential demand for OD pair 𝑟𝑠, and

𝜂 denotes the elastic coefficient. The expected disutility can
be attained by

𝜋
𝑟𝑠
= −

1

𝜃

In ∑
𝑖

exp (−𝜃 ⋅ �̂�𝑘
𝑟𝑠
(p, u)) . (27)

Then, the vector form of (24) considering elastic demand
yields the following fixed point problem:

(

p
q) = (

𝑊(p, u)
q (t̂𝑘
𝑟𝑠
(p, u))) . (28)

2.3. Optimization of Congestion Charges in a Single Region.
Recently, an increasing number of transportation researchers
have recognized that demand uncertainty plays an important
role in the decision making of transportation management.
Under demanduncertainty, the expected value of total system
travel time, as an important measure, is always adopted to
evaluate the system performance. Meanwhile, the variation
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of total network travel time could bring troubles for trans-
portation planning as well as the mean total travel time.
Theoretically, the uncertainty of demand will directly lead to
variation of the travel time, which influences decisionmaking
for administrators and travelers. For decision maker, it is
difficult to evaluate the level of service of the road as travel
time stochastically fluctuates from day to day. On the other
hand, for the travelers, the variation of the travel time may
result in late arrival to the destination, which influences their
path and departure time choices. In this regard, the variation
of total travel time should be considered in the optimization
objective for the pricing problem. To facilitate the model
formulation, we only take into account the minimization of
mean total travel time as the objective of the pricing problem.
This is not to deny the importance of the higher moment of
the total travel time.

The congestionmodels in previous studies are assumed to
alleviate the traffic congestion over the whole network, which
is managed by a central authority. Therefore, the central
authority will be concerned with the mean total travel time
cost on the network.The corresponding road pricing is objec-
tived comprises of the total user benefit and the mean total
travel time cost:

max
u

SW = ∑

𝑟𝑠∈R
∫

𝑞
𝑟𝑠
(u)

0

𝑞
−1

𝑟𝑠
(𝜔) 𝑑𝜔 − 𝐸 [TTT (p,u)] , (29)

where at RSUE the mean of total travel time (𝐸[TTT(p,u)])
can be calculated as

𝐸 [TTT (p,u)] = 𝐸[∑
𝑎∈A

(𝑇
𝑎
(p) − 1

𝛼

𝑢
𝑎
) ⋅ 𝑉
𝑎
(p (u))] .

(30)

Equation (30) can be calculated using the method proposed
by Clark and Watling [24]. It is noticeable that the following
mathematical inequality generally holds:

𝐸[∑

𝑎∈A
(𝑇
𝑎
(p) − 1

𝛼

𝑢
𝑎
) ⋅ 𝑉
𝑎
(p (u))]

̸= ∑

𝑎∈A
𝐸 [𝑇
𝑎
(p) − 1

𝛼

𝑢
𝑎
] ⋅ 𝐸 [𝑉

𝑎
(p (u))] .

(31)

In practice, the regional road systems may be freely managed
by the separate transportation authorities on the optimiza-
tions of toll level and toll location. Here, we introduce
the stochastic pricing problem where only one local region
performs pricing scheme. As stated by Zhang et al. [9],
the optimization objective function for single region pricing
scheme is different from that of the centric pricing scheme
with a central authority. The former aims to maximize the
social welfare just for its own residents, who live in its local
administrative region whereas the later concerns the social
benefit of all users on the whole network. In this study, we
extend the objective function to the stochastic traffic network
and consider the stochastic flows resulted from the demand
uncertainty. The regional authority only takes into account
the trips with origins that locate at its own regime.Thepricing

problem considering reliability-based user equilibrium can
be formulated as follows (Model A):

max
u

SW = ∑

𝑟𝑠∈R𝑖
∫

𝑞
𝑟𝑠
(u)

0

𝑞
−1

𝑟𝑠
(𝜔) 𝑑𝜔

+ 𝐸
[

[

∑

𝑎∈A𝑖
u
𝑎
⋅ 𝑉
𝑎
(p (u𝑖))

− ∑

𝑟𝑠∈R𝑖
∑

𝑘∈K
𝐹
𝑘

𝑟𝑠
(p (u)) ⋅ 𝑇𝑘

𝑟𝑠
(p (u))]

]

(32)

subject to

(

p
q) = (

𝑊(p, u)
q (t̂𝑘
𝑟𝑠
(p, u))) , (33)

𝑢
𝑎
≤ 𝑢
𝑎
≤ 𝑢
𝑎
, ∀𝑎 ∈ A𝑖, (34)

where R𝑖 denotes the OD pairs with the origins in region; A𝑖

denotes the links in region 𝑖. In the optimization problem, u
is the decision variable, and the path choice proportion (p)
is the constant probability, which can be determined by the
fixed point problem in (33).The constraint (34) sets the upper
and lower bounds for the toll charges.

It should be stressed that the social benefit expressed in
(32) concerns only the local region 𝑖 that implements conges-
tion pricing, while the stochastic equilibrium flow pattern is
characterized by the choice decisions of all users in all regions
in the network.

2.4. Competitive Behavior of Pricing Problem among Multiple
Regions. In this section, we study the competitive behavior
of the scenario that several local authorities implement con-
gestion pricing independently. Let 𝐼 = {1, 2, . . . , |𝐼|} indicate
the set of regions in which congestion pricing schemes are
implemented, and 𝑖 ∈ 𝐼. Let R𝑖 denote the set of O-D pairs
for all residents living in this region, which is a subset of R,
and R = ∪

𝑖∈𝐼
R𝑖. The set of candidate toll links A𝑖 is a subset

of A. Let u𝑖 be the set of tolls 𝑢
𝑎
on the links 𝑎 ∈ A𝑖, and u =

∪
𝑖∈𝐼
u𝑖. Based on the current decisions of other regions, each

region designs its own pricing scheme with the objective of
maximizing its own social benefit. Once an authority makes
change of it’s toll levels, other authorities will make their best
responses of adjusting their toll levels. The competition with
thesesmutual responses can be characterized as a Nash game.

The optimal toll levels for a specific regional authority
𝑖 can be obtained by solving a similar optimization model
as proposed in Section 2.3. For region 𝑖, its authority aims
to maximize its own social welfare by setting toll char-
ges in its regime, in which the network users follow the
reliability-based stochastic user equilibriumprinciple. Taking
the viewpoint of region 𝑖, the Nash equilibrium model is
formulated as follows (Model B):

max
u𝑖

SW (u𝑖 | u𝑖 \ u)
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= ∑

𝑟𝑠∈R𝑖
∫

𝑞
𝑟𝑠
(u𝑖)

0

𝑞
−1

𝑟𝑠
(𝜔) 𝑑𝜔

+ 𝐸
[

[

∑

𝑎∈A𝑖
𝑢
𝑎
⋅ 𝑉
𝑎
(p (u𝑖))

− ∑

𝑟𝑠∈R𝑖
∑

𝑘∈K
𝐹
𝑘

𝑟𝑠
(p (u𝑖)) ⋅ 𝑇𝑘

𝑟𝑠
(p (u𝑖))]

]

(35)

subject to constraints (33) and (34).
In this pricing scheme, eventually, all the regions are self-

best responding to each other, named a Nash equilibrium,
that no player can change his pricing strategy unilaterally to
obtain a better result. The outcome of the Nash game can be
obtained by iteratively solving the above pricing problem for
all the players.

2.5. Cooperative Congestion Pricing among Multiple Regions.
In Section 2.4, we propose a Nash equilibrium model to
capture the competitive behavior among the authorities in
different regions. Each authority sets its own pricing objec-
tive to improve the social welfare independently. But such
competitionmay actually be detrimental to the travelers from
other regions of the increasing travel burden. In this regard,
the competitive pricing scheme may do harms to traffic
efficiency of the whole network. Therefore, the cooperative
manner is recommended. We propose a pricing model in
which the local authorities cooperate to maximize the total
social welfare of travelers in the regions that implement the
pricing schemes. All elements used in this subsection are
the same as those in Section 2.4, except that the regional
authorities behave in a cooperative manner. The congestion
pricing model is formulated as follows (Model C):

max
u𝑖

SW

= ∑

𝑖∈𝐼

{ ∑

𝑟𝑠∈R𝑖
∫

𝑞
𝑟𝑠
(u𝑖)

0

𝑞
−1

𝑟𝑠
(𝜔) 𝑑𝜔}

+∑

𝑖∈𝐼

{

{

{

𝐸
[

[

∑

𝑎∈A𝑖
𝑢
𝑎
⋅ 𝑉
𝑎
(p (u𝑖))

− ∑

𝑟𝑠∈R𝑖
∑

𝑘∈K
𝐹
𝑘

𝑟𝑠
(p (u𝑖)) ⋅ 𝑇𝑘

𝑟𝑠
(p (u𝑖))]

]

}

}

}

,

(36)

where the constraints are also the traffic flow equilibrium
constraint and the boundary constraint for the design vari-
able, which is formulated by (33) and (34).

It should be stressed that, as pointed out by Zhang et al.
[9], whether such cooperation can be achieved depends on
the benefit gain of each player under the cooperative manner.
If all regional authorities can benefit from the cooperation,
the agreement of the cooperationwould be achieved easily. In

contrast, when some regions suffer a loss in the cooperative
scheme, they prefer competing with other regions. However,
if the regions that gainmore benefit are willing to compensate
the regions that suffer loss, the alliance may still hold.

In this section, we propose the competitive and cooper-
ative congestion pricing models under demand uncertainty.
To the best of our knowledge, Zhang et al. [9] have made
comprehensive analyses of noncooperative behaviors of the
road pricing problem among multiple regions. The proposed
models differ from the most related studies, such as Zhang
et al. [9], of the traffic conditions. Our models are based
on the stochastic traffic flows and the corresponding RSUE
principle, while the model in Zhang et al. [9] is based on
the deterministic traffic flows following the user equilib-
rium principle. This study makes twofold contribution to
the literature. First, travelers’ reliability-based path choice
behaviors can be reflected by the RSUE constraint (33).
It makes an obvious difference from the user equilibrium
principle in previous studies by considering travelers’ risk-
taking behavior. Generally, the risk-taking preference is
important for a stochastic transport system because it exerts
an important impact on both individual travel activity and
system-level decision making. Furthermore, the competitive
and cooperative behaviors of the pricing problem on a
stochastic network have been discussed by incorporating the
mean total travel time into the optimization objectives.

3. Solution Algorithm

The proposed pricing optimization models are inherently
bilevel programs, in which the upper level is to optimize
the pricing objective and the lower level is the RSUE
traffic assignment. As the proposed bilevel program is by
nature nonlinear and non-convex, the global optimal solu-
tion is difficult to be obtained by using the conventional
optimization algorithms. Existing effective algorithms for
solving the nonconvex bilevel programming problems are
meta-heuristic, including the genetic algorithm, simulated
annealing method, and sequential quadratic programming,
to name but a few. These methods search the local optimal
solution in an evolutionary manner based on the traffic flow
patterns in the lower-level program. The lower-level traffic
assignment problem formulated as the fixed-point problem
can be solved by the Method of Successive Averages [25, 26].

Since the transportation assignment problem is inte-
grated as a nonlinear constraint, we develop a heuristic
solution algorithm, which combines the penalty function
method, to solve the proposed models. The penalty function
method is used to cope with the equilibrium constraint
and the boundary constraint. The constrained optimization
problem can be further transformed into an unconstrained
one as follows:

minu 𝜇
(𝑗)

1





min {u, u}



2

+ 𝜇
(𝑗)

2
‖min {u, u}‖2

+ 𝜇
(𝑗)

3
‖p −𝑊(p, u)‖2 − SW (p, u) ,

(37)
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where𝜇
1
, 𝜇
2
, and𝜇

3
are three positive penalty coefficients, ‖⋅‖

is the Euclidean normof a vector. For convenience, denote the
penalty term as follows:

𝑦 = 𝜇
(𝑗)

1





min {u, u}



2

+ 𝜇
(𝑗)

2
‖min {u, u}‖2

+ 𝜇
(𝑗)

3
‖p −𝑊(p, u)‖2.

(38)

Obviously, it is difficult to obtain the gradient of the objective
function (37) due to the complexity of 𝑔

1
(p, u), 𝑔

2
(p, u),

and 𝑊(p, u). Therefore, some derivative-free optimization
methods could be employed for solving the minimization
problem (37), such as the simplex search method [34] and
generalized pattern search methods [35, 36]. In this paper,
the simplex search method [34] is used to solve the uncon-
strained optimization problem (37), which is available in the
Matlab optimization toolbox by the subroutine “fminsearch”.
The flowchart of this method is shown in Figure 1.

4. Numerical Examples

4.1. Preliminary. The numerical examples are used to illus-
trate: (a) the difference between two pricing strategies (b)
effects of travelers’ reliability-based path choice behavior on
pricing schemes. In the numerical study, a small network
shown in Figure 2 is employed to demonstrate the property
of the proposed model. There are 6 nodes, 10 links, and 4
O-D pairs on the network. The network is partitioned into
two regions, A and B, by dash line X-X. The candidate links
to be charged are depicted with block dash-dot lines. The
potential traffic demand for each OD pair and the coefficient
of standard deviation (S.D.) of the actual demand are given in
Table 1. Table 2 provides the link performance parameters, 𝑡0

𝑎

and 𝑐
𝑎
.

The elastic coefficient of demand function, 𝜂, is set as 0.05
and the dispersion parameter, 𝜃, is set as 0.1. For the sake of
simplicity, it is assumed that the traffic demands between two
OD pairs are independent with each other (i.e. 𝜎𝑞

𝑟𝑠,𝑟

𝑠

= 0).

𝛼 = 0.15, 𝑛 = 1, 𝛽 = 1, and 𝜂 = 0.05 in (17), (18), and (26).
Meanwhile, the path flows, and link and path travel times
are all assumed mutually independent and follow normal
distributions. The convergence stopping tolerance 𝜏 is set as
10
−3. The solution code is run onWindows 7 system with the

following attributes: Intel Core i5-2520 2.5 GHz×2 and 4GB
RAM.

4.2. Pricing Outcomes of Cooperative and Competitive
Schemes. The pricing outcomes of cooperative and compet-
itive schemes can be obtained by solving Models B and C,
respectively. Let SWA, SWB, SWT denote the social welfare
for Region A, B, and the whole network respectively. The
network is comprised of two regions that both are considered
in the cooperative pricing scheme. So the pricing objective
in Model C is equivalent to that in (29), which is proposed
for the conventional stochastic pricing model with a central
authority. As mentioned by Shao et al. [25], the mean values
of stochastic flows will be equal to those in the deterministic
traffic scenario if the following conditions are satisfied: a
linear link travel time function is adopted and the travel time

Initialization: u(0) , 𝜇(0)
1

, 𝜇(0)
2

, 𝜇(0)
3

, 𝜉 > 1 (enlarge parameter)

Yes

No

Optimal toll levels u

𝑦
(𝑗)

< 𝜏?

𝜇
(𝑗+1)

1
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(𝑗)

1
, 𝜇

(𝑗+1)

2
= 𝜉𝜇

(𝑗)

2
, 𝜇

(𝑗+1)

3
= 𝜉𝜇

(𝑗)

3
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and 𝑗 = 0 (iteration number)

minu 𝜇
(𝑗)

1
‖min{u, u}‖2+𝜇(𝑗)

2
‖min{u, u}‖2+𝜇(𝑗)

3
‖p − 𝑊(p, u)‖2 − 𝑆𝑊(p,u)

Figure 1: The flowchart of the proposed solution algorithm.
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Figure 2: A small network for numerical examples.

Table 1: Potential OD demands in the network.

OD pair 2→ 1 2→ 5 6→ 5 6→ 1
𝑞
𝑟𝑠

800 500 500 600
Coefficient of S.D. 0.5 0.5 1.0 1.0

reliability is set as risk neutral (𝜌 = 50%). It should be stressed
that, in spite of this, the optimization objective for stochastic
pricing scheme is still different from deterministic pricing
scheme due to the fact that the deviations of both flow and
travel time are taken into account in the objective function.
Two scenarios of different travelers’ risk-taking behaviors,
namely 𝜌 = 50% and 𝜌 = 90%, are constructed to test the
pricing effects of two pricing schemes. The pricing results for
cooperative and competitive schemes are provided in Table 3.
Before comparing the results of two pricing schemes, we first
introduce the equilibrium of competitive pricing.

In the competitive scheme, both regions compete with
each other to maximize their own social benefit. The author-
ity in Region A sets pricing scheme on links 1 and 2, and
the authority in Region B implements a pricing scheme on
links 8 and 10. Each region makes a response to the actions
in other regions by updating its tolls. If the toll levels in one
region change, another region would respond by adjusting
its own pricing scheme.This iterative process continues until
reaching a Nash equilibrium. As the competition initiator,
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Table 2: Parameters used in link performance functions.

Number 1 2 3 4 5 6 7 8 9 10
𝑡
0

𝑎
8.0 4.0 4.0 10.0 10.0 14.0 14.0 4.0 4.0 8.0

𝑐
𝑎

300 300 300 400 400 400 400 300 300 200

Table 3: Pricing results for cooperative and competitive schemes.

Confidence level
(𝜌) Pricing scheme Optimal solutions Social welfare of

region A
Social welfare of

region B
Total Social
welfare

𝑢
1

𝑢
2

𝑢
8

𝑢
10 (SWA) (SWB) (SWT)

50% cooperation 16.36 7.81 7.55 17.78 12997.12 9374.28 22371.40
competition 13.83 12.32 13.37 14.36 12754.40 9259.83 22014.23

90% cooperation 15.79 7.03 6.81 17.20 12965.86 9416.70 22382.56
competition 13.40 12.13 13.19 13.99 12708.41 9268.52 21976.93

Region A makes the toll scheme in the first instance. At first
competition round, tolls in Region B are zero.

In this example, we illustrate the iterative competition
process under the scenario that the confidence level of the
travel time reliability is set as 90%. The competition reaches
an equilibrium state after seven iterations. The reaction
process and the optimal solution of the Nash game are given
in Table 4. At equilibrium, social welfares for Region A and
B are 12708.41 and 9268.52, respectively, and the total social
welfare for the whole network is 21976.93.

As shown in Table 3, the pricing results in terms of
optimal solution and social welfares are different between
cooperative and competitive schemes since different objec-
tives are considered in the two pricing optimizations. When
the confidence level is fixed at 50%, under cooperation, the
social welfare for Region A is 12997.12, the social welfare for
Region B is 9374.28, and the total social welfare is 22371.40.
However, under competition, the social welfare for Region A
is 12754.40, the social welfare for Region B is 9259.83, and the
total social welfare is 22014.23. Compared with cooperation,
the competition makes Region, A and B suffer benefit losses
about 242.7 and 114.5, respectively, and leads a degradation
of the network system performance and so do the pricing
results of the risk-aversion case with high travelers’ travel
time reliability (𝜌 = 90%). Therefore, it clearly reveals that
the pricing effect in terms of system performance of the
cooperative scheme is better than that of competitive scheme.
Moreover, by comparing the results between two scenarios
represented different travel time reliabilities, it can be seen
that the pricing outcomes are different since the stochastic
patterns depend on the travel time reliability. In the next
subsection, wewill discuss the impact of travel time reliability
on the pricing effects of two pricing schemes.

4.3. Effects on Travelers’ Reliability-Based Path Choice Behav-
iors. The proposed model was carried out under different
values of 𝜌 that represent different risk-taking path choice
behaviors. In this impact analysis, the travel time reliability
increases from 10% to 90% that each step is 10%. Three
travelers’ risk-taking behaviors are considered, namely risk-
prone behavior (𝜌 < 50%), risk-neutral behavior (𝜌 = 50%),

and risk-averse behavior (𝜌 > 50%). A higher confidence
level for travel time reliability means travelers will pay more
attention to guaranteeing the on-time arrival by setting larger
safety margins. For the case of 𝜌 = 50%, the proposed pricing
model can be regarded to be carried out under conventional
path choice behavior assumptions; that is, travelers take the
mean path travel time as the path choice criteria. Figure 3
depicts the variation of the social welfare for each region
with different travel time reliability. The variation of whole
network performance with travel time reliability is shown
in Figure 4. Benefit gain/loss of the cooperative scheme
changing with travel time reliability is given in Figure 5.

From Figure 3, it can be found that the social welfare of
Region B increases gradually with the travel time reliability
no matter what the pricing scheme is the Meanwhile, the
increase of social welfare in the cooperative scheme is
more apparent and dramatical than that in the competitive
scheme.The contrast, the social welfare of RegionAdecreases
monotonically as the increase of the travel time reliability
under both pricing schemes. Moreover, the reduction of
social welfare under competition is more quick and obvious
than that under cooperation. To evaluate the impact of travel
time reliability on the network performance properly, we
can pay attention to Figure 4, namely the variation of total
welfare. For cooperation, the total social welfare increases
from 22352.15 to 22382.56 as the travelers put more emphasis
on the travel time reliability. However, for competition, the
total social welfare decreases from 22039.82 to 21976.91 as
the increase of the travel time reliability. On the whole,
the total social welfare under the cooperative scheme is
more than that of the competitive scheme no matter what
travelers’ risk-taking behavior is. Although these impact
analysis tests are network-specific, they cannot deny the fact
that cooperation is more beneficial to improving the network
system performance for all users.

The difference of social welfare between two pricing
schemes is plotted in Figure 5 to illustrate the impact of travel
time reliability. The difference of the social welfare is defined
as the value of social welfare in cooperation minus social
welfare in competition. A positive value means a benefit gain
in cooperation, and vice visa. As shown in Figure 5, both
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Table 4: The process of the competitive congestion pricing (𝜌 = 90%).

Iteration Reactor Optimal solutions Social welfare of
region A

Social welfare of
region A

Total Social
welfare

𝑢
1

𝑢
2

𝑢
8

𝑢
10 (SWA) (SWB) (SWT)

1 A 13.31 12.17 0.00 0.00 13900.31 6912.76 20813.06
2 B 13.31 12.17 13.19 13.98 12707.82 9265.94 21973.76
3 A 13.41 12.12 13.19 13.98 12708.11 9269.08 21977.19
4 B 13.41 12.12 13.18 13.97 12708.50 9269.28 21977.78
5 A 13.40 12.13 13.18 13.98 12708.80 9268.41 21977.21
6 B 13.40 12.13 13.19 13.99 12708.41 9268.52 21976.93
7 A 13.40 12.13 13.19 13.99 12708.41 9268.52 21976.93
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Figure 3: Social welfare for each region with different travel time
reliability.

regions and the whole network benefit from the cooperative
manner under all different travel time reliability scenarios.
Obviously, the higher travel time reliability, the higher benefit
gain. In this regard, both regions would prefer a cooperative
manner so as to obtain more benefit for themselves. Here, it
should be pointed out that the result in this example does not
mean that the regionswill always benefit from the cooperative
schemes, which have been demonstrated by the analyses in
Zhang et al. [9]. From the above discussion, it is clear that
the resultant competitive and cooperative pricing schemes
are different for different risk-taking path choice behaviors.
This finding indicates that different risk-taking path choice
behaviors lead to different optimal toll levels and clearly
proves that the reliability-based path choice behaviors should
be considered in congestion pricing problems, particular for
transportation network with demand uncertainty.
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Figure 4: Total social welfare with different travel time reliability.

5. Conclusions and Further Studies

This paper proposed two new optimization models for
congestion pricing problem on stochastic transportation
networkswith demand uncertainty.We analyze the stochastic
road pricing schemes on a network with multiple regions.
In practice, there may be several independent regions in a
transportation network; regional authorities either prefer to
maximize the system performance for the whole network or
to maximize their own benefits separately. The cooperative
and competitive behaviors among multiple regional deci-
sion makers have been investigated. Two pricing strategies,
cooperation and competition, can be formulated as bi-level
programs, in which stochastic flow equilibrium is considered.
Different from most conventional modelling approaches of
congestion pricing, the traffic demand of the study period
was assumed to fluctuate from day to day. As a result, the
travel time also varies accordingly. Under such circumstance,
the conventional second-best congestion pricing model was
extended to capture the effects of uncertainty for both
the decision makers and the travelers. On one hand, the
authorities aim tomaximize the social welfare through setting
the toll charges on the candidate links. The social welfare
here is comprised of the total user benefit and the mean total
travel time cost, which are dependent on the stochastic flow
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Figure 5: Benefit losses/gains in cooperation with different travel
time reliability.

pattern. On the other hand, the travelers were assumed to
minimize their effective travel time for path choices, which
explicitly accounts for the risk-taking path choice behaviors
under uncertainty condition. Such path choice behavior
is formulated as an equality constraint for the congestion
pricing optimization problem by a fixed point formulation.

A heuristic solution algorithm is proposed in this
paper. The proposed algorithm employs the penalty function
method for constrained optimization problem, namely equi-
librium flow constraint. Numerical examples demonstrated
that, on stochastic network, the cooperative pricing scheme is
more beneficial to improve the system performance than the
competitive scheme. Meanwhile, both two pricing schemes
were quite sensitive to the travelers’ risk-taking path choice
behaviors; that is, the travel time reliability plays an important
role in determining the pricing effects.

Further studies could be carried out to extend the pro-
posed model in the following aspects. First, the proposed
model is formulated under demand uncertainty. How to
simultaneously consider demand and supply uncertainties in
the congestion pricing problem reveals important investiga-
tions. Furthermore, in the proposed model, the toll charges
schemes are determined on the fixed locations of links. How
to optimize toll charge locations as well as toll levels could
be an interesting extension. Finally, the proposed solution
algorithm is heuristic by nature. It is necessary to propose a
more efficient solution algorithm in further investigations.
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