
Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2013, Article ID 714525, 10 pages
http://dx.doi.org/10.1155/2013/714525

Research Article
Passivity and Passification for Delay Fuzzy
System Based on Delay Partitioning Approach

Xiangjie Liu,1 Dan Yue,1 and Xiuming Yao2

1 The State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources,
North China Electric Power University, Beijing 102206, China

2Department of Automation, North China Electric Power University, Baoding 071003, China

Correspondence should be addressed to Xiuming Yao; xiumingyao@gmail.com

Received 17 February 2013; Accepted 28 March 2013

Academic Editor: Constantinos Siettos

Copyright © 2013 Xiangjie Liu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A delay partitioning approach is introduced to solve problems of passivity and passification for continuous T-S fuzzy system with
time delay. Our aim is to design a state feedback controller such that the resulting closed system is passive. By constructing a
Lyapunov-Krasovskii functional, delay-dependent passivity/passification performance conditions are formulated in terms of linear
matrix inequalities (LMIs). Finally, numerical examples are used to illustrate the effectiveness of the proposed approaches which
can further reduce conservatism and become more obvious with partitioning getting thinner.

1. Introduction

The passivity concept was introduced by Willems [1] and
developed further by Hill and Moylan [2]. Passivity of non-
linear systems has attracted great interest in the control area
mainly because of the link between stability and passivity.
The passivity theory provides a nice tool for analyzing the
stability of systems and has found applications in diverse
areas such as stability, signal processing, chaos control, and
synchronization.

Since most physical systems in real world are nonlinear,
researchers have been devoting their efforts to the control of
nonlinear systems. Among themethods, the fuzzy control has
been proven to be effective in dealing with the analysis of
nonlinear systems. especially the T-S fuzzy control [3, 4]. It is
denoted by a group of IF-THEN rules that the conventional
linear system theory can be applied to the analysis of the
class of nonlinear systems, and numerous nonlinear analysis
problems have been studied based on this T-S fuzzy model,
such as [5–7] reported the problem of stability analysis,
and [8–10] investigated the 𝐻

∞
control designs. References

[11–13]mentioned the fault detection of theT-S fuzzy systems.
𝐻

∞
model reduction is addressed in [14].The fuzzy controller

was carried out via Parallel DistributedCompensation (PDC)

technique [15]. Based on the PDC technique, the fuzzy
controller can also be designed to guarantee the passivity of
T-S fuzzy systems.

On the other hand, the time delay exists naturally in
various control systems. Time delays often degrade the
system’s performance and even cause instability. Therefore,
time delays have received great attention in recent years
and many researchers have studied various analytical tech-
niques and developed many synthesis methods for time-
delay systems. For instance, model reduction is addressed in
[16] and filtering problems are investigated in [17, 18]. So,
the passivity and passification analysis of nonlinear systems
with time delays is worth to be discussed and researched.
To date, researches have gained many results in passivity
control of T-S fuzzy systems; the passivity of delayed neural
networks is considered in [19], passivity of fuzzy time-delay
systems is investigated in [20] which adopt delay moom’s
inequality, and passive controller design for T-S fuzzy systems
is addressed in [21]. The passivity of uncertain fuzzy systems
is considered in [22]. However, the above methods still have
strong conservation, and it is necessary for us to further study.

In this paper, we adopt a delay partitioning approach to
study the passivity and passification of T-S fuzzy systemswith
time delay. Based on this idea, we can further reduce the
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conservatism, and it becomes even less conservative when
the partitioning goes finer. The results of this paper are given
in terms of LMIs. The rest of the paper is organized as
follows. In Section 2, the problem to be studied is stated and
some preliminaries are presented. Passivity analysis results
are presented in Section 3. Based on the results obtained in
Section 3, we design the controller in Section 4. In Section 5,
numerical examples are given to demonstrate the effective-
ness of the theoretical results. Finally, conclusions are drawn
in Section 6.

Notations. Throughout the paper, 𝐴−1 and 𝐴
𝑇 denote the

inverse and transpose of a square matrix 𝐴. 𝑅
𝑛 denotes

the 𝑛-dimensional Euclidean apace and ‖ ⋅ ‖ refers to the
Euclidean vector norm.The notation𝐴 > 0 is used to define a
symmetric positive definite matrix and sym (𝐴) is defined as
𝐴+𝐴

𝑇. Matrices are assumed to have compatible dimensions.

2. Problem Statement and Preliminaries

Consider the T-S fuzzy system with time delay has the
following form.

Plant Rule 𝑖:
IF 𝑍

1
(𝑡) is𝑀

𝑖1
and . . . and 𝑍

𝑝
(𝑡) is𝑀

𝑖𝑝
THEN

�̇� (𝑡) = 𝐴
𝑖
𝑥 (𝑡) + 𝐴

𝑑𝑖
𝑥 (𝑡 − ℎ) + 𝐵

𝑖
𝑢 (𝑡) + 𝐵

1𝑖
𝜔 (𝑡) ,

𝑦 (𝑡) = 𝐶
𝑖
𝑥 (𝑡) + 𝐶

𝑑𝑖
𝑥 (𝑡 − ℎ) + 𝐷

𝑖
𝜔 (𝑡) ,

𝑥 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ [−ℎ, 0] ,

𝑖 = 1, . . . , 𝑟,

(1)

where 𝑥(𝑡) ∈ 𝑅
𝑛 is the state vector; 𝑢(𝑡) is the control input

vector; ℎ is a time delay; 𝜑(𝑡) is the initial condition.
Controller Rule 𝑖:
IF 𝑧

1
(𝑡) is𝑀

𝑖1
and. . . and 𝑧

𝑝
(𝑡) is𝑀

𝑖𝑝
THEN

𝑢 (𝑡) = 𝐾
𝑖
𝑥 (𝑡) , 𝑖 = 1, . . . , 𝑟, (2)

where 𝑀
𝑖𝑗
is the fuzzy set; 𝑟 is the number of IF-THEN

rules; 𝑧(𝑡) = [𝑧
1
(𝑡), 𝑧

2
(𝑡), . . . , 𝑧

𝑝
(𝑡)] is the premise variables

vector; 𝐾
𝑖
, 𝑖 = 1, . . . , 𝑟 are constant matrices representing

state-feedback control gains. Let 𝜆
𝑖
(𝑡) be the normalized

membership function of the fuzzy set

𝜆
𝑖
(𝑡) =

∏
𝑝

𝑗=1
𝑀

𝑖𝑗
(𝑧

𝑗
(𝑡))

∑
𝑟

𝑖=1
{∏

𝑝

𝑗=1
𝑀

𝑖𝑗
(𝑧

𝑗
(𝑡))}

, (3)

where𝑀
𝑖𝑗
(𝑧

𝑗
(𝑡)) is the grade of membership function of 𝑧

𝑗
(𝑡)

in 𝑀
𝑖𝑗
(𝑡). It is assumed that ∏𝑝

𝑗=1
𝑀

𝑖𝑗
(𝑧

𝑗
(𝑡)) ≥ 0, 𝑖 = 1, . . . , 𝑟,

and ∑
𝑟

𝑖=1
{∏

𝑝

𝑗=1
𝑀

𝑖𝑗
(𝑧

𝑗
(𝑡))} > 0 for all 𝑡. Therefore, 𝜆

𝑖
(𝑡) ≥ 0

and ∑
𝑟

𝑖=1
𝜆
𝑖
(𝑡) = 1 for all 𝑡. By applying (3) into (1), the fuzzy

system can be expressed as

�̇� (𝑡) = 𝐴 (𝑡) 𝑥 (𝑡) + 𝐴
𝑑
(𝑡) 𝑥 (𝑡 − ℎ)

+ 𝐵 (𝑡) 𝑢 (𝑡) + 𝐵
1
(𝑡) 𝜔 (𝑡) ,

𝑦 (𝑡) = 𝐶 (𝑡) 𝑥 (𝑡) + 𝐶
𝑑
(𝑡) 𝑥 (𝑡 − ℎ) + 𝐷 (𝑡) 𝜔 (𝑡)

(4)

with

𝐴 (𝑡) =

𝑟

∑

𝑖=1

𝜆
𝑖
(𝑡) 𝐴

𝑖
, 𝐴

𝑑
(𝑡) =

𝑟

∑

𝑖=1

𝜆
𝑖
(𝑡) 𝐴

𝑑𝑖
,

𝐵 (𝑡) =

𝑟

∑

𝑖=1

𝜆
𝑖
(𝑡) 𝐵

𝑖
, 𝐵

1
(𝑡) =

𝑟

∑

𝑖=1

𝜆
𝑖
(𝑡) 𝐵

1𝑖
,

𝐶 (𝑡) =

𝑟

∑

𝑖=1

𝜆
𝑖
(𝑡) 𝐶

𝑖
, 𝐶

𝑑
(𝑡) =

𝑟

∑

𝑖=1

𝜆
𝑖
(𝑡) 𝐶

𝑑𝑖
,

𝐷 (𝑡) =

𝑟

∑

𝑖=1

𝜆
𝑖
(𝑡) 𝐷

𝑖
.

(5)

By applying (2) into (4), we can get the following closed-loop
system:

�̇� (𝑡) =

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

𝜆
𝑖
(𝑧 (𝑡)) 𝜆

𝑗
(𝑧 (𝑡))

× [(𝐴
𝑖
+ 𝐵

𝑖
𝐾
𝑗
) 𝑥 (𝑡)

+𝐴
𝑑𝑖
𝑥 (𝑡 − ℎ) + 𝐵

1𝑖
𝜔 (𝑡) ] ,

𝑦 (𝑡) =

𝑟

∑

𝑖=1

𝜆
𝑖
(𝑧 (𝑡)) [𝐶

𝑖
𝑥 (𝑡) + 𝐶

𝑑𝑖
𝑥 (𝑡 − ℎ) + 𝐷

𝑖
𝜔 (𝑡)] .

(6)

Before formulating the main problem, we first give the
following definition.

Definition 1 (Li et al. [20]). The fuzzy system (1) is called
passive if there exists a scalar 𝛾 ≥ 0 such that

2∫

𝑇

0

𝜔(𝑠)
𝑇

𝑦 (𝑠) 𝑑𝑠 ≥ −𝛾∫

𝑇

0

𝜔
𝑇

(𝑠) 𝜔 (𝑠) 𝑑𝑠 (7)

for all 𝑇 ≥ 0.

3. Passivity Analysis

The problems to be addressed in this paper can be expressed
as follows.

Problem 1 (passivity analysis). Given the feedback controller
gain matrices 𝐾

𝑖
, 𝑖 = 1, . . . , 𝑟 in (2), determine under what

conditions the closed-loop system (6) is passive for all 𝑇 ≥ 0

in the sense of Definition 1.

Problem 2 (passification). Determine the feedback controller
gain matrices,𝐾

𝑖
, 𝑖 = 1, . . . , 𝑟 in (2), such that the closed-loop

system (6) is passive for all 𝑇 ≥ 0 in the sense of Definition 1.
In this section, we will present a sufficient condition in

terms of LMIs, under which the closed-loop system (6) is
passive.
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Theorem 2. Given matrices 𝐾
𝑖
, an integer𝑚 ≥ 1 and a scalar

ℎ > 0, if there exist symmetric positive definite matrices 𝑃, 𝑄
𝑖
,

𝑍
𝑖
, 𝑅

𝑖
and matrices 𝑆

1𝑖
, 𝑆

2𝑖
and scalar 𝛾 > 0, satisfying

[
[

[

Θ
𝑖𝑖𝑙𝑘

+ 𝜎𝑊
𝑇

𝜎
𝑊

𝜎
𝑆
1𝑖

∗ −
𝑚

ℎ
𝑍
𝑖

]
]

]

< 0, 𝑖, 𝑙, 𝑘 = 1, . . . , 𝑟 (8)

[
[

[

Θ
𝑖𝑗𝑙𝑘

+ 𝜎𝑊
𝑇

𝜎
𝑊

𝜎
𝑆
1𝑖

∗ −
𝑚

ℎ
𝑍
𝑖

]
]

]

+
[
[

[

Θ
𝑗𝑖𝑙𝑘

+ 𝜎𝑊
𝑇

𝜎
𝑊

𝜎
𝑆
1𝑗

∗ −
𝑚

ℎ
𝑍
𝑗

]
]

]

< 0

1 ≤ 𝑟 < 𝑗 ≤ 𝑟, 𝑙, 𝑘 = 1, . . . , 𝑟,

(9)

𝑍
𝑖
< 𝑅

𝑗
, 𝑖, 𝑗 = 1, . . . , 𝑟, (10)

where

Ω
𝑖𝑗𝑙𝑘

= 𝑊𝑝
𝑇

∧

𝑃 𝑊𝑝 +
ℎ

𝑚
𝑊𝑟

𝑇

𝑅
𝑖
𝑊𝑟 + 𝑊𝑞

𝑇

1
𝑄
𝑖
𝑊𝑞

1

− 𝑊𝑞
𝑇

2
𝑄
𝑙
𝑊𝑞

2
+ sym (𝑆

𝑖
𝑊𝑠

𝑗𝑘
) ,

Θ
𝑖𝑗𝑙𝑘

= Ω
𝑖𝑗𝑙𝑘

− (𝑊
1
𝐶
𝑇

𝑗
𝑊

2
+ 𝑊

𝑇

2
𝐶
𝑗
𝑊

𝑇

1

+ 𝑊
𝑇

2
𝐷

𝑇

𝑗
𝑊

2
+ 𝑊

𝑇

2
𝐷

𝑗
𝑊

2

+𝑊
𝑇

2
𝐶
𝑑𝑗
𝑊

3
+ 𝑊

𝑇

3
𝐶
𝑇

𝑑𝑗
𝑊

2
+ 𝛾𝑊

𝑇

2
𝑊

2
) ,

𝑊𝑝 = (

𝐼
𝑛

𝑂
𝑛,𝑚𝑛

𝑂
𝑛,𝑛

𝑂
𝑛,𝑛

𝑂
𝑛,𝑛

𝑂
𝑛,𝑚𝑛

𝐼
𝑛

𝑂
𝑛,𝑛

𝑂
𝑛,𝑛

𝑂
𝑛,𝑚𝑛

𝑂
𝑛,𝑛

𝑂
𝑛.𝑛

) ,

∧

𝑃= (

𝑂
𝑛,𝑛

𝑃 𝑂
𝑛,𝑛

𝑃 𝑂
𝑛,𝑛

𝑂
𝑛,𝑛

𝑂
𝑛,𝑛

𝑂
𝑛,𝑛

𝑂
𝑛,𝑛

) , 𝑊
𝜎
= (𝐼

𝑛
, 𝑂

𝑛,𝑚𝑛+2𝑛
) ,

𝑊𝑟 = (𝑂
𝑛,𝑚𝑛+𝑛

, 𝐼
𝑛
, 𝑂

𝑛,𝑛
) , 𝑊𝑞

1
= (𝐼

𝑚𝑛
, 𝑂

𝑚𝑛,3𝑛
) ,

𝑊𝑞
2
= (𝑂

𝑚𝑛,𝑛
, 𝐼

𝑚𝑛
, 𝑂

𝑚𝑛,2𝑛
) , 𝑆

𝑖
= [𝑆

1𝑖
𝑆
2𝑖
] ,

𝑊
𝑆𝑗𝑘

= [
𝐼
𝑛

−𝐼
𝑛

𝑂
𝑛,𝑚𝑛+𝑛

𝐴
𝑗
+ 𝐵

𝑗
𝐾
𝑘

𝑂
𝑛,𝑚𝑛−𝑛

𝐴
𝑑𝑗

−𝐼
𝑛

𝐵
1𝑗

] ,

𝑊
1
= (

𝐼
𝑛

𝑂
𝑚𝑛+2𝑛,𝑛

) , 𝑊
2
= (𝑂

𝑛,𝑚𝑛+2𝑛
, 𝐼

𝑛
)

𝑊
3
= (𝑂

𝑛,𝑚𝑛
, 𝐼

𝑛
, 𝑂

𝑛,2𝑛
) .

(11)

Then the fuzzy system (1) is passive in the sense of Definition 1
for the time delay 0 ≤ 𝜏 ≤ ℎ.

Proof. Choose a Lyapunov-Krasovskii functional as 𝑉(𝑡) =

𝑉
1
(𝑡) + 𝑉

2
(𝑡) + 𝑉

3
(𝑡) with

𝑉
1
(𝑡) = 𝑥

𝑇

(𝑡) 𝑃𝑥 (𝑡) ,

𝑉
2
(𝑡) = ∫

0

−ℎ/𝑚

∫

𝑡

𝑡+𝛽

�̇�
𝑇

(𝛼) 𝑅 (𝛼) �̇� (𝛼) 𝑑𝛼 𝑑𝛽,

𝑉
3
(𝑡) = ∫

𝑡

𝑡−ℎ/𝑚

𝛾
𝑇

(𝛼)𝑄 (𝛼) 𝛾 (𝛼) 𝑑𝛼,

(12)

where

𝛾 (𝑡) = [𝑥
𝑇

(𝑡) 𝑥
𝑇

(𝑡 −
ℎ

𝑚
) ⋅ ⋅ ⋅ 𝑥

𝑇

(𝑡 −
𝑚 − 1

𝑚
ℎ)]

𝑇

.

(13)

The time-derivative of𝑉(𝑡) along the trajectory of the system
in (6) is given by

�̇�
1
= �̇�

𝑇

(𝑡) 𝑃𝑥 (𝑡) + 𝑥
𝑇

(𝑡) 𝑃�̇� (𝑡) ,

�̇�
2
=

ℎ

𝑚
�̇�
𝑇

(𝑡) 𝑅 (𝑡) �̇� (𝑡) − ∫

𝑡

𝑡−ℎ/𝑚

�̇�
𝑇

(𝛼) 𝑅 (𝛼) �̇� (𝛼) 𝑑𝛼

�̇�
3
= 𝛾

𝑇

(𝑡) 𝑄 (𝑡) 𝛾 (𝑡) − 𝛾
𝑇

(𝑡 −
ℎ

𝑚
)𝑄(𝑡 −

ℎ

𝑚
)𝛾(𝑡 −

ℎ

𝑚
) .

(14)

Define

𝜉 (𝑡) = [𝛾
𝑇

(𝑡) 𝑥
𝑇

(𝑡 − ℎ) �̇�
𝑇

(𝑡) 𝜔
𝑇

(𝑡)]
𝑇

,

𝜔 (𝑡) = [𝜔
1
(𝑡) ⋅ ⋅ ⋅ 𝜔

𝑛
(𝑡)]

𝑇

(15)

and according to theNewton-Leibniz formula and the system
in (6), we have

Π
1
= 2𝜉

𝑇

(𝑡) 𝑆
1
(𝑡)

× [𝑥 (𝑡) − 𝑥(𝑡 −
ℎ

𝑚
) − ∫

𝑡

𝑡−ℎ/𝑚

�̇� (𝛼) 𝑑𝛼] = 0,

Π
2
= 2𝜉

𝑇

(𝑡) 𝑆
2
(𝑡) [ (𝐴 (𝑡) + 𝐵 (𝑡)𝐾 (𝑡)) 𝑥 (𝑡)

+ 𝐴
𝑑
(𝑡) 𝑥 (𝑡 − ℎ)

+𝐵
1
(𝑡) 𝜔 (𝑡) − �̇� (𝑡)] = 0,

Π
3
=

ℎ

𝑚
𝜉
𝑇

(𝑡) 𝑆
1
(𝑡) 𝑍

−1

(𝑡) 𝑆
𝑇

1
(𝑡) 𝜉 (𝑡)

− ∫

𝑡

𝑡−ℎ/𝑚

𝜉
𝑇

(𝑡) 𝑆
1
(𝑡) 𝑍

−1

(𝑡) 𝑆
𝑇

1
(𝑡) 𝜉 (𝑡) 𝑑𝛼 = 0.

(16)
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Therefore
�̇� (𝑡) ≤ �̇�

1
(𝑡) + �̇�

2
(𝑡) + �̇�

3
(𝑡) + Π

1
+ Π

2
+ Π

3

= �̇�
𝑇

(𝑡) 𝑃𝑥 (𝑡) + 𝑥
𝑇

(𝑡) 𝑃�̇� (𝑡) +
ℎ

𝑚
�̇�
𝑇

(𝑡) 𝑅 (𝑡) �̇� (𝑡)

− ∫

𝑡

𝑡−ℎ/𝑚

�̇�
𝑇

(𝛼) 𝑅 (𝛼) �̇� (𝛼) 𝑑𝛼 + 𝛾
𝑇

(𝑡) 𝑄 (𝑡) 𝛾 (𝑡)

− 𝛾
𝑇

(𝑡 −
ℎ

𝑚
)𝑄(𝑡 −

ℎ

𝑚
)𝛾(𝑡 −

ℎ

𝑚
) + 2𝜉

𝑇

(𝑡) 𝑆
1
(𝑡)

× [𝑥 (𝑡) − 𝑥(𝑡 −
ℎ

𝑚
) − ∫

𝑡

𝑡−ℎ/𝑚

�̇� (𝛼) 𝑑𝛼]

+ 2𝜉
𝑇

(𝑡) 𝑆
2
(𝑡)

× [(𝐴 (𝑡) + 𝐵 (𝑡)𝐾 (𝑡)) 𝑥 (𝑡) + 𝐴
𝑑
(𝑡) 𝑥 (𝑡 − ℎ)

+ 𝐵
1
(𝑡) 𝜔 (𝑡) − �̇� (𝑡)]

+
ℎ

𝑚
𝜉
𝑇

(𝑡) 𝑆
1
(𝑡) 𝑍

−1

(𝑡) 𝑆
𝑇

1
(𝑡) 𝜉 (𝑡)

− ∫

𝑡

𝑡−ℎ/𝑚

𝜉
𝑇

(𝑡) 𝑆
1
(𝑡) 𝑍

−1

(𝑡) 𝑆
𝑇

1
(𝑡) 𝜉 (𝑡) 𝑑𝛼

= Λ (𝑡) +
ℎ

𝑚
𝜉
𝑇

(𝑡) 𝑆
1
(𝑡) 𝑍

−1

(𝑡) 𝑆
𝑇

1
(𝑡) 𝜉 (𝑡)

− ∫

𝑡

𝑡−ℎ/𝑚

�̇�
𝑇

(𝛼) 𝑅 (𝛼) �̇� (𝛼) 𝑑𝛼

− 2𝜉
𝑇

(𝑡) 𝑆
1
(𝑡) ∫

𝑡

𝑡−ℎ/𝑚

�̇� (𝛼) 𝑑𝛼

− ∫

𝑡

𝑡−ℎ/𝑚

𝜉
𝑇

(𝑡) 𝑆
1
(𝑡) 𝑍

−1

(𝑡) 𝑆
𝑇

1
(𝑡) 𝜉 (𝑡) 𝑑𝛼.

(17)

If

𝑍 (𝑡) < 𝑅 (𝛼) . (18)

Then

𝑍
−1

(𝑡) > 𝑅
−1

(𝛼) , (19)

− ∫

𝑡

𝑡−ℎ/𝑚

𝜉
𝑇

(𝑡) 𝑆
1
(𝑡) 𝑍

−1

(𝑡) 𝑆
𝑇

1
(𝑡) 𝜉 (𝑡) 𝑑𝛼

< −∫

𝑡

𝑡−ℎ/𝑚

𝜉
𝑇

(𝑡) 𝑆
1
(𝑡) 𝑅

−1

(𝛼) 𝑆
𝑇

1
(𝑡) 𝜉 (𝑡) 𝑑𝛼.

(20)

So, we can obtain

�̇� (𝑡) ≤ Λ (𝑡) +
ℎ

𝑚
𝜉
𝑇

(𝑡) 𝑆
1
(𝑡) 𝑍

−1

(𝑡) 𝑆
𝑇

1
(𝑡) 𝜉 (𝑡)

− ∫

𝑡

𝑡−ℎ/𝑚

(�̇�
𝑇

(𝛼) 𝑅 (𝛼) + 𝜉
𝑇

(𝑡) 𝑆
1
(𝑡)) × 𝑅

−1

(𝛼)

× (𝑅 (𝛼) �̇� (𝛼) + 𝑆
𝑇

1
(𝑡) 𝜉 (𝑡)) 𝑑𝛼,

(21)

where

Λ (𝑡) = �̇�
𝑇

(𝑡) 𝑃𝑥 (𝑡) + 𝑥
𝑇

(𝑡) 𝑃�̇� (𝑡) +
ℎ

𝑚
�̇�
𝑇

(𝑡) 𝑅 (𝑡) �̇� (𝑡)

+ 𝛾
𝑇

(𝑡) 𝑄 (𝑡) 𝛾 (𝑡) − 𝛾
𝑇

(𝑡 −
ℎ

𝑚
)𝑄(𝑡 −

ℎ

𝑚
)

× 𝛾(𝑡 −
ℎ

𝑚
) + 2𝜉

𝑇

(𝑡) 𝑆
1
(𝑡) [𝑥 (𝑡) − 𝑥(𝑡 −

ℎ

𝑚
)]

+ 2𝜉
𝑇

(𝑡) 𝑆
2
(𝑡)

× [ (𝐴 (𝑡) + 𝐵 (𝑡)𝐾 (𝑡)) 𝑥 (𝑡)

+𝐴
𝑑
(𝑡) 𝑥 (𝑡 − ℎ) + 𝐵

1
(𝑡) 𝜔 (𝑡) − �̇� (𝑡) ] .

(22)

Besides

�̇� (𝑡) = (𝑂
𝑛,𝑚𝑛+𝑛

, 𝐼
𝑛
, 𝑂

𝑛,𝑛
) 𝜉 (𝑡) ,

𝑥 (𝑡) = (𝐼
𝑛
, 𝑂

𝑛,𝑚𝑛+2𝑛
) 𝜉 (𝑡) ,

𝛾 (𝑡) = (𝐼
𝑚𝑛

, 𝑂
𝑚𝑛,3𝑛

) 𝜉 (𝑡) ,

𝛾 (𝑡 −
ℎ

𝑚
) = (𝑂

𝑚𝑛,𝑛
, 𝐼

𝑚𝑛
, 𝑂

𝑚𝑛,2𝑛
) 𝜉 (𝑡) .

(23)

Then

Λ (𝑡) = 𝜉
𝑇

(𝑡) Ω (𝑡) 𝜉 (𝑡) ,

Ω (𝑡) = 𝑊
𝑇

𝑝

∧

𝑃 𝑊
𝑝
+

ℎ

𝑚
𝑊

𝑇

𝑟
𝑅 (𝑡)𝑊

𝑟
+ 𝑊

𝑇

𝑞1
𝑄 (𝑡)𝑊

𝑞1

− 𝑊
𝑇

𝑞2
𝑄(𝑡 −

ℎ

𝑚
)𝑊

𝑞2
+ sym (𝑆 (𝑡)𝑊

𝑆
(𝑡)) ,

�̂� = (

𝑂
𝑛,𝑛

𝑃 𝑂
𝑛,𝑛

𝑃 𝑂
𝑛,𝑛

𝑂
𝑛,𝑛

𝑂
𝑛,𝑛

𝑂
𝑛,𝑛

𝑂
𝑛,𝑛

) , 𝑆 (𝑡) = [𝑆
1
(𝑡) 𝑆

2
(𝑡)]

𝑊𝑝 = (

𝐼
𝑛

𝑂
𝑛,𝑚𝑛

𝑂
𝑛,𝑛

𝑂
𝑛,𝑛

𝑂
𝑛,𝑛

𝑂
𝑛,𝑚𝑛

𝐼
𝑛

𝑂
𝑛,𝑛

𝑂
𝑛,𝑛

𝑂
𝑛,𝑚𝑛

𝑂
𝑛,𝑛

𝑂
𝑛.𝑛

) ,

𝑊𝑟 = (𝑂
𝑛,𝑚𝑛+𝑛

, 𝐼
𝑛
, 𝑂

𝑛,𝑛
) , 𝑊𝑞

1
= (𝐼

𝑚𝑛
, 𝑂

𝑚𝑛,3𝑛
) ,

𝑊𝑞
2
= (𝑂

𝑚𝑛,𝑛
, 𝐼

𝑚𝑛
, 𝑂

𝑚𝑛,2𝑛
) ,

𝑊
𝑆
(𝑡)=[

[

𝐼
𝑛

−𝐼
𝑛

𝑂
𝑛,𝑚𝑛+𝑛

𝐴 (𝑡)+ 𝐵 (𝑡)𝐾 (𝑡) 𝑂
𝑛,𝑚𝑛−𝑛

𝐴
𝑑
(𝑡) −𝐼

𝑛
𝐵
1
(𝑡)

]

]

.

(24)
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Besides

2𝜔
𝑇

(𝑡) 𝑦 (𝑡) + 𝛾𝜔
𝑇

(𝑡) 𝜔 (𝑡)

= 𝑥
𝑇

(𝑡) 𝐶
𝑇

𝑖
𝜔 (𝑡) + 𝜔

𝑇

(𝑡) 𝐶
𝑖
𝑥 (𝑡)

+ 𝜔
𝑇

(𝑡) (𝐷
𝑇

𝑖
+ 𝐷

𝑖
) 𝜔 (𝑡) + 𝜔

𝑇

(𝑡) 𝐶
𝑑𝑖
𝑥 (𝑡 − ℎ)

+ 𝑥
𝑇

(𝑡 − ℎ) 𝐶
𝑇

𝑑𝑖
𝜔 (𝑡) + 𝛾𝜔

𝑇

(𝑡) 𝜔 (𝑡)

= 𝜉
𝑇

(𝑡) [𝑊
1
𝐶
𝑇

𝑖
𝑊

2
+ 𝑊

𝑇

2
𝐶
𝑖
𝑊

𝑇

1
+ 𝑊

𝑇

2
(𝐷

𝑇

𝑖
+ 𝐷

𝑖
)𝑊

2

+𝑊
𝑇

2
𝐶
𝑑𝑖
𝑊

3
+ 𝑊

𝑇

3
𝐶
𝑇

𝑑𝑖
𝑊

2
+ 𝛾𝑊

𝑇

2
𝑊

2
] 𝜉 (𝑡) ,

(25)

where

𝑊
1
= (

𝐼
𝑛

𝑂
𝑚𝑛+2𝑛,𝑛

) , 𝑊
2
= (𝑂

𝑛,𝑚𝑛+2𝑛
, 𝐼

𝑛
) ,

𝑊
3
= (𝑂

𝑛,𝑚𝑛
, 𝐼

𝑛
, 𝑂

𝑛,2𝑛
) .

(26)

So, we have

�̇� (𝑡) − 2𝜔
𝑇

(𝑡) 𝑦 (𝑡) − 𝜆𝜔
𝑇

(𝑡) 𝜔 (𝑡)

≤ 𝜉
𝑇

(𝑡) Θ (𝑡) 𝜉 (𝑡) +
ℎ

𝑚
𝜉
𝑇

(𝑡) 𝑆
1
(𝑡) 𝑍

−1

(𝑡) 𝑆
𝑇

1
(𝑡) 𝜉 (𝑡)

− ∫

𝑡

𝑡−ℎ/𝑚

(�̇�
𝑇

(𝛼) 𝑅 (𝛼) + 𝜉
𝑇

(𝑡) 𝑆
1
(𝑡)) × 𝑅

−1

(𝛼)

× (𝑅 (𝛼) �̇� (𝛼) + 𝑆
𝑇

1
(𝑡) 𝜉 (𝑡)) 𝑑𝛼

(27)

with

Θ (𝑡) = Ω (𝑡) − (𝑊
1
𝐶
𝑇

𝑖
𝑊

2
+ 𝑊

𝑇

2
𝐶
𝑖
𝑊

𝑇

1

+ 𝑊
𝑇

2
(𝐷

𝑖
+ 𝐷

𝑇

𝑖
)𝑊

2

+𝑊
𝑇

2
𝐶
𝑑𝑖
𝑊

3
+ 𝑊

𝑇

3
𝐶
𝑇

𝑑𝑖
𝑊

2
+ 𝛾𝑊

𝑇

2
𝑊

2
) .

(28)

If

Θ (𝑡) + 𝜎𝑊
𝑇

𝜎
𝑊

𝜎
+

ℎ

𝑚
𝑆
1
(𝑡) 𝑍

−1

(𝑡) 𝑆
𝑇

1
(𝑡) < 0 (29)

then

Θ (𝑡) +
ℎ

𝑚
𝑆
1
(𝑡) 𝑍

−1

(𝑡) 𝑆
𝑇

1
(𝑡) < −𝜎𝑊

𝑇

𝜎
𝑊

𝜎
,

�̇� (𝑡) − 2𝜔
𝑇

(𝑡) 𝑦 (𝑡) − 𝛾𝜔
𝑇

(𝑡) 𝜔 (𝑡)

< 𝜉
𝑇

(𝑡) Θ (𝑡) 𝜉 (𝑡) +
ℎ

𝑚
𝜉
𝑇

(𝑡) 𝑆
1
(𝑡) 𝑍

−1

(𝑡) 𝑆
𝑇

1
(𝑡) 𝜉 (𝑡)

< −𝜉
𝑇

(𝑡) 𝜎𝑊
𝑇

𝜎
𝑊

𝜎
𝜉 (𝑡) < −𝜎‖𝑥 (𝑡)‖

2

< 0.

(30)

We can obtain

�̇� (𝑡) < 2𝑦
𝑇

(𝑡) 𝜔 (𝑡) + 𝛾𝜔
𝑇

(𝑡) 𝜔 (𝑡) . (31)

It follows by integrating (31) with respect to 𝑡 over the time
period 0 ∼ 𝑇 that (7) holds, and hence the delayed fuzzy
system (1) is passive in the sense of Definition 1. Our next
objective is to convert the inequalities in (18) and (29) to some
finite LMIs, then (29) can be rewritten as

𝜂
𝑖𝑗𝑙𝑘

= 𝜂
𝑖𝑖𝑙𝑘

+ (𝜂
𝑖𝑗𝑙𝑘(𝑖<𝑗)

+ 𝜂
𝑗𝑖𝑙𝑘(𝑖<𝑗)

) < 0,

𝜂
𝑖𝑗𝑙𝑘

=

𝑟

∑

𝑖=1

𝜆
𝑖
(𝜃 (𝑡))

𝑟

∑

𝑗=1

𝜆
𝑗
(𝜃 (𝑡))

×

𝑟

∑

𝑙=1

𝜆
𝑙
(𝜃(𝑡 −

ℎ

𝑚
))

𝑟

∑

𝑘=1

𝜆
𝑘
(𝜃 (𝑡))

× [Ω
𝑖𝑗𝑙𝑘

− (𝑊
1
𝐶
𝑇

𝑗
𝑊

2
+ 𝑊

𝑇

2
𝐶
𝑗
𝑊

𝑇

1

+ 𝑊
𝑇

2
(𝐷

𝑗
+ 𝐷

𝑇

𝑗
)𝑊

2

+𝑊
𝑇

2
𝐶
𝑑𝑗
𝑊

3
+ 𝑊

𝑇

3
𝐶
𝑇

𝑑𝑗
𝑊

2
+ 𝛾𝑊

𝑇

2
𝑊

2
)

+ 𝜎𝑊
𝑇

𝜎
𝑊

𝜎

+
ℎ

𝑚
𝑆
1𝑖
𝑍
𝑖

−1

𝑆
𝑇

1𝑖
] .

(32)

Equation (18) can be rewritten as

𝑍
𝑖
< 𝑅

𝑗
. (33)

From the Schur complement, we can get the inequalities (8),
(9), and (10), and the proof is completed.

4. Controller Design

In this section, fuzzy state feedback controllers will be
designed based on the result developed in the previous
section.

Theorem 3. Given an integer 𝑚 > 1 and scalars ℎ > 0, 𝜏
1
,

𝜏
2
, . . . , 𝜏

(𝑚+3)
, there exists a fuzzy state feedback controller such

that the closed-loop system (4) is passive if there exist symmetric
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positive definite matrices 𝑃, 𝑄
𝑖
, 𝑍

𝑖
, 𝑅

𝑖
, and matrices𝑋, 𝑆

1𝑖
,𝑀

𝑖

and scalars 𝛾 > 0, 𝜎 > 0, satisfying

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝜑
𝑖𝑖𝑙

𝑆
1𝑖

𝑊
𝑇

𝜎
𝑋

𝑇

𝑊
𝑇

2
𝑋

𝑇

𝑊
𝑇

2
𝑋

𝑇

∗ −
𝑚

ℎ
𝑍
𝑖

0 0 0

∗ ∗ −𝜎
−1

𝐼
𝑛

0 0

∗ ∗ ∗ 𝐷
−𝑇

𝑖
+ 𝐷

−1

𝑖
0

∗ ∗ ∗ ∗ 𝛾
−1

𝐼
𝑛

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0

𝑖, 𝑙 = 1, . . . , 𝑟,

(34)

[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝜙
𝑖𝑗𝑙

𝑆
1𝑖

𝑊
𝑇

𝜎
𝑋

𝑇

𝑊
𝑇

2
𝑋

𝑇

𝑊
𝑇

2
𝑋

𝑇

∗ −
𝑚

ℎ
𝑍
𝑖

0 0 0

∗ ∗ −𝜎
−1

𝐼
𝑛

0 0

∗ ∗ ∗ 𝐷
−𝑇

𝑖
+ 𝐷

−1

𝑖
0

∗ ∗ ∗ ∗ 𝛾
−1

𝐼
𝑛

]
]
]
]
]
]
]
]
]
]
]
]
]

]

+

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝜙
𝑗𝑖𝑙

𝑆
1𝑗

𝑊
𝑇

𝜎
𝑋

𝑇

𝑊
𝑇

2
𝑋

𝑇

𝑊
𝑇

2
𝑋

𝑇

∗ −
𝑚

ℎ
𝑍
𝑗

0 0 0

∗ ∗ −𝜎
−1

𝐼
𝑛

0 0

∗ ∗ ∗ 𝐷
−𝑇

𝑗
+ 𝐷

−1

𝑗
0

∗ ∗ ∗ ∗ 𝛾
−1

𝐼
𝑛

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0

1 ≤ 𝑖 < 𝑗 ≤ 𝑟, 𝑙 = 1, . . . , 𝑟,

(35)

𝑍
𝑖
< 𝑅

𝑗
, 𝑖, 𝑗 = 1, . . . , 𝑟, (36)

where

𝜑
𝑖𝑗𝑙

= 𝑊
𝑇

𝑝

∧

𝑃 𝑊
𝑝
+

ℎ

𝑚
𝑊

𝑇

𝑟
𝑅
𝑖
𝑊

𝑟
+ 𝑊

𝑇

𝑞1
𝑄
𝑖
𝑊

𝑞1
− 𝑊

𝑇

𝑞2
𝑄
𝑙
𝑊

𝑞2

+ sym (𝑉
𝑖
𝑊

𝑆𝑖𝑗
− 𝑊

1
𝑋

𝑇

𝐶
𝑇

𝑖
𝑊

2
− 𝑊

𝑇

2
𝐶
𝑑𝑖
𝑋𝑊

3
) ,

�̂� = (

𝑂
𝑛,𝑛

𝑃 𝑂
𝑛,𝑛

𝑃 𝑂
𝑛,𝑛

𝑂
𝑛,𝑛

𝑂
𝑛,𝑛

𝑂
𝑛,𝑛

𝑂
𝑛,𝑛

) , 𝑉
𝑖
= [𝑆

1𝑖
𝑈] ,

𝑈 = [𝜏
1
𝐼
𝑛

𝜏
2
𝐼
𝑛

⋅ ⋅ ⋅ 𝜏
(𝑚+3)

𝐼
𝑛
]
𝑇

,

𝑊
𝑆𝑖𝑗

= [
𝐼
𝑛

− 𝐼
𝑛

𝑂
𝑛,𝑚𝑛+𝑛

𝐴
𝑖
𝑋 + 𝐵

𝑖
𝑀

𝑗
𝑂
𝑛,𝑚𝑛−𝑛

𝐴
𝑑𝑖
𝑋 − 𝑋 𝐵

1𝑖

] .

(37)

If the above conditions are feasible, the gains of the controller
are given by

𝐾
𝑖
= 𝑀

𝑖
𝑋

−1

, 𝑖 = 1, . . . , 𝑟. (38)

Proof. Assume that𝑋 is invertible, define 𝑆 = 𝑋
−𝑇, and

𝐺1 = diag {𝑆, . . . , 𝑆, 𝐼
𝑛
, 𝑆, 𝑆, 𝑆, 𝑆} ∈ 𝑅

(𝑚𝑛+7𝑛)×(𝑚𝑛+7𝑛)

,

𝐺2 = diag {𝑆, . . . , 𝑆, 𝐼
𝑛
} ∈ 𝑅

(𝑚𝑛+3𝑛)×(𝑚𝑛+3𝑛)

,

𝐺3 = diag {𝑆, . . . , 𝑆} ∈ 𝑅
𝑚𝑛×𝑚𝑛

.

(39)

Premultiplying and postmultiplying (34) with 𝐺
1
and 𝐺

𝑇

1
,

then we obtain

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Δ 𝐺
2
𝑆
1𝑖
𝑆
𝑇

𝐺
2
𝑊

𝑇

𝜎
𝑋
𝑇

𝑆
𝑇

𝐺
2
𝑊

𝑇

2
𝑋
𝑇

𝑆
𝑇

𝐺
2
𝑊

𝑇

2
𝑋
𝑇

𝑆
𝑇

∗ −

𝑚

ℎ

𝑆𝑍
𝑖
𝑆
𝑇

0 0 0

∗ ∗ −𝜎
−1

𝑆𝑆
𝑇

0 0

∗ ∗ ∗ 𝑆 (𝐷
−𝑇

𝑖
+ 𝐷

−1

𝑖
) 𝑆

𝑇

0

∗ ∗ ∗ ∗ 𝛾
−1

𝑆𝑆
𝑇

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0,

(40)

where

Δ = 𝐺
2
𝜙
𝑖𝑖𝑙
𝐺
𝑇

2
,

𝐺
2
𝜙
𝑖𝑖𝑙
𝐺
𝑇

2
= 𝑊

𝑇

𝑝

[

[

𝑂
𝑛,𝑛

𝑆𝑃𝑆
𝑇

𝑂
𝑛,𝑛

𝑆𝑃𝑆
𝑇

𝑂
𝑛,𝑛

𝑂
𝑛,𝑛

𝑂
𝑛,𝑛

𝑂
𝑛,𝑛

𝑂
𝑛,𝑛

]

]

𝑊
𝑝

+
ℎ

𝑚
𝑊

𝑇

𝑟
𝑆𝑅

𝑖
𝑆
𝑇

𝑊
𝑟

+ 𝑊
𝑇

𝑞1
𝐺
3
𝑄
𝑖
𝐺
𝑇

3
𝑊

𝑞1
− 𝑊

𝑇

𝑞2
𝐺
3
𝑄
𝑙
𝐺
𝑇

3
𝑊

𝑞2

+ sym (𝐺
2
𝑉
𝑖
𝑊

𝑆𝑖𝑖
𝐺
𝑇

2
) − 𝑊

1
𝐶
𝑇

𝑖
𝑊

2

− 𝑊
𝑇

2
𝐶
𝑖
𝑊

𝑇

1
− 𝑊

𝑇

3
𝐶
𝑇

𝑑𝑖
𝑊

2
− 𝑊

𝑇

2
𝐶
𝑑𝑖
𝑊

3
,

𝐺
2
𝑊

𝑇

𝜎
𝑋

𝑇

𝑆
𝑇

= 𝑊
𝑇

𝜎
𝑆
𝑇

, 𝐺
2
𝑊

𝑇

2
𝑋

𝑇

𝑆
𝑇

= 𝑊
𝑇

2
𝑆
𝑇

.

(41)

We defining

𝑃 = 𝑆𝑃𝑆
𝑇

, 𝑅
𝑖
= 𝑆𝑅

𝑖
𝑆
𝑇

, 𝑄
𝑖
= 𝐺

3
𝑄
𝑖
𝐺
𝑇

3
,

𝑆
1𝑖
= 𝐺

2
𝑆
1𝑖
𝑆
𝑇

, 𝑍
𝑖
= 𝑆𝑍

𝑖
𝑆
𝑇

,

𝑆
2𝑖
= [𝜏

1
𝑆
𝑇

𝜏
2
𝑆
𝑇

⋅ ⋅ ⋅ 𝜏
(𝑚+2)

𝑆
𝑇

𝜏
(𝑚+3)

𝐼
𝑛
]
𝑇

.

(42)
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Then

𝐺
2
𝑉
𝑖
𝑊

𝑆𝑖𝑖
𝐺
𝑇

2

= 𝐺
2
𝑆
1𝑖
[𝐼

𝑛
− 𝐼

𝑛
𝑂
𝑛,𝑚𝑛+𝑛

] 𝐺
𝑇

2

+ 𝐺
2
𝑈 [𝐴

𝑖
𝑋 + 𝐵

𝑖
𝑀

𝑖
𝑂
𝑛,𝑚𝑛−𝑛

𝐴
𝑑𝑖
𝑋 − 𝑋 𝐵

1𝑖
] 𝐺

𝑇

2

= 𝐺
2
𝑆
1𝑖
𝑆
𝑇

[𝐼
𝑛

− 𝐼
𝑛

𝑂
𝑛,𝑚𝑛+𝑛

]

+ 𝑆
2𝑖
[𝐴

𝑖
+ 𝐵

𝑖
𝐾
𝑘

𝑂
𝑛,𝑚𝑛−𝑛

𝐴
𝑑𝑖

− 𝐼
𝑛

𝐵
1𝑖
]

= [𝑆
1𝑖

𝑆
2𝑖
] [

𝐼
𝑛

− 𝐼
𝑛

𝑂
𝑛,𝑚𝑛+𝑛

𝐴
𝑖
+ 𝐵

𝑖
𝐾
𝑘

𝑂
𝑛,𝑚𝑛−𝑛

𝐴
𝑑𝑖

− 𝐼
𝑛

𝐵
1𝑖

]

(43)

then

𝐺
2
𝜑
𝑖𝑖𝑙
𝐺
𝑇

2
= 𝑊

𝑇

𝑝

[

[

𝑂
𝑛,𝑛

𝑃 𝑂
𝑛,𝑛

𝑃 𝑂
𝑛,𝑛

𝑂
𝑛,𝑛

𝑂
𝑛,𝑛

𝑂
𝑛,𝑛

𝑂
𝑛,𝑛

]

]

𝑊
𝑝
+

ℎ

𝑚
𝑊

𝑇

𝑟
𝑅
𝑖
𝑊

𝑟

+ 𝑊
𝑇

𝑞1
𝑄
𝑖
𝑊

𝑞1
− 𝑊

𝑇

𝑞2
𝑄
𝑙
𝑊

𝑞2
+ sym (𝐺

2
𝑉
𝑖
𝑊

𝑆𝑖𝑖
𝐺
𝑇

2
)

− 𝑊
1
𝐶
𝑇

𝑖
𝑊

2
− 𝑊

𝑇

2
𝐶
𝑖
𝑊

𝑇

1

− 𝑊
𝑇

3
𝐶
𝑇

𝑑𝑖
𝑊

2
− 𝑊

𝑇

2
𝐶
𝑑𝑖
𝑊

3
.

(44)

Thus, by the Schur complement, we can obtain (40) is
equivalent to (8). Pre- and postmultiplying (35) with 𝐺

1
and

𝐺
𝑇

1
, we obtain (9), pre- and postmultiplying (36) with 𝑆 and

𝑆
𝑇, we obtain (10). The proof is completed.

5. Numerical Example

Without delay and uncertainty, Example 1 designs different
passive controllers by applying the theorem of our paper and
the literature [22], respectively.We can compare the region of
feasible solution.

Example 1. Consider a fuzzy system of the following form.
Plant Rules:
Rule 1: IF 𝑥

1
(𝑡) is𝑀

1
, THEN

�̇� (𝑡) = 𝐴
1
𝑥 (𝑡) + 𝐵

1
𝑢 (𝑡) + 𝐵

11
𝜔 (𝑡) ,

𝑦 (𝑡) = 𝐶
1
𝑥 (𝑡) + 𝐷

1
𝜔 (𝑡) .

(45)

Rule 2: IF 𝑥
1
(𝑡) is𝑀

2
, THEN

�̇� (𝑡) = 𝐴
2
𝑥 (𝑡) + 𝐵

2
𝑢 (𝑡) + 𝐵

12
𝜔 (𝑡) ,

𝑦 (𝑡) = 𝐶
2
𝑥 (𝑡) + 𝐷

2
𝜔 (𝑡)

(46)

−2 −1 0 1 2 3
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8.5
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Figure 1: The feasible region based onTheorem 2.

−2 −1 0 1 2 3

10

9.5

9

8.5
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Figure 2: The feasible region based on [22].

with

𝐴
1
= [

[

𝑎 −0.02 1

1 0 5

1 2 3

]

]

, 𝐴
2
= [

[

−0.225 −0.02 0

1 0 3

1 1 1

]

]

,

𝐵
1
= [

[

1

0

𝑏

]

]

, 𝐵
2
= [

[

1

0

2

]

]

, 𝐵
11

= [

[

1 0 0

1 2 0

0 1 0

]

]

,

𝐵
12

= [

[

1 0 0

1 2 3

0 1 2

]

]

, 𝐶
1
= 𝐶

2
= [

[

2.5 0 0

0 2.5 0

1 2 1

]

]

,

𝐷
1
= 𝐷

2
= [

[

2 0 0

0 2 0

1 1 1

]

]

, 𝑎 ∈ [−2, 3] , 𝑏 ∈ [6, 10] .

(47)

We can obtain Figure 1 by applying our method and obtain
Figure 2 by applying method in [22]. Symbol “∗” shows that
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feasible solution exists at that point; symbol “o” shows that
feasible solution does not exist at that point.

It is obvious that Theorem 3 can relax the conditions in
[22], and our method futher reduced the conservatism.

Example 2 (Li et al. [20]). Consider a delayed fuzzy system of
the following form.

Plant Rules:
Rule 1: IF 𝑥

1
(𝑡) is𝑀

1
, THEN

�̇� (𝑡) = 𝐴
1
𝑥 (𝑡) + 𝐴

𝑑1
𝑥 (𝑡 − ℎ) + 𝐵

1
𝑢 (𝑡) + 𝐵

11
𝜔 (𝑡) ,

𝑦 (𝑡) = 𝐶
1
𝑥 (𝑡) + 𝐶

𝑑1
𝑥 (𝑡 − ℎ) + 𝐷

1
𝜔 (𝑡) .

(48)

Rule 2: IF 𝑥
1
(𝑡) is𝑀

2
, THEN

�̇� (𝑡) = 𝐴
2
𝑥 (𝑡) + 𝐴

𝑑2
𝑥 (𝑡 − ℎ) + 𝐵

2
𝑢 (𝑡) + 𝐵

12
𝜔 (𝑡) ,

𝑦 (𝑡) = 𝐶
2
𝑥 (𝑡) + 𝐶

𝑑2
𝑥 (𝑡 − ℎ) + 𝐷

2
𝜔 (𝑡)

(49)

with

𝐴
1
= [

−1 0.2

0 −0.1
] , 𝐴

2
= [

−1 0

0.1 −0.5
] ,

𝐴
𝑑1

= [
0.1 0.6

0.2 −0.1
] , 𝐴

𝑑2
= [

−0.2 0.1

0.1 −0.2
] ,

𝐵
1
= [

0.2

−0.5
] , 𝐵

2
= [

0.3

0.3
] , 𝐵

11
= [

1 0

0.2 0
] ,

𝐵
12

= [
−0.2 0

0 0
] , 𝐶

1
= [

1 0.2

0 0
] ,

𝐶
2
= [

0.1 1

0 0
] , 𝐶

𝑑1
= [

−0.1 0.2

0 0
] ,

𝐶
𝑑2

= [
0.1 −0.1

0 0
] , 𝐷

1
= [

0.5 0

0 0
] ,

𝐷
2
= [

0.1 0

0 0
]

(50)

we let ℎ = 7.5, 𝑚 = 2, 𝜏
1
= 10, 𝜏

2
= 0, 𝜏

3
= 5, 𝜏

4
= 10, 𝜏

5
= 10

and we can obtain

𝑃 = [
29.0804 1.8737

1.8737 3.7272
] , 𝑋 = [

1.8020 0.0328

0.1385 0.4057
] ,

𝛾 = 237.5809.

(51)

By using the delay-dependent criterionTheorem 3 of [20], we
can obtain 𝛾 = 604.9523 when 𝜏 = 7.5. And applying our
result, 𝛾 = 237.5809 is obtained. We can see that our results
is not conservative since 𝛾 is much smaller than the result of
[20].

Example 3. Consider a delayed fuzzy system of the following
form.

Plant Rules:
Rule 1: IF 𝑥

2
(𝑡) is𝑀

1
, THEN

�̇� (𝑡) = 𝐴
1
𝑥 (𝑡) + 𝐴

𝑑1
𝑥 (𝑡 − ℎ) + 𝐵

1
𝑢 (𝑡) + 𝐵

11
𝜔 (𝑡) ,

𝑦 (𝑡) = 𝐶
1
𝑥 (𝑡) + 𝐷

1
𝜔 (𝑡) .

(52)

Table 1: Allowable maximum time delay ℎ.

Methods The upper bound of ℎ
[21] 1.5
Theorem 3,𝑚 = 1 2
Theorem 3,𝑚 = 4 3.16
Theorem 3,𝑚 = 5 8.8

Rule 2: IF 𝑥
2
(𝑡) is𝑀

2
, THEN

�̇� (𝑡) = 𝐴
2
𝑥 (𝑡) + 𝐴

𝑑2
𝑥 (𝑡 − ℎ) + 𝐵

2
𝑢 (𝑡) + 𝐵

12
𝜔 (𝑡) ,

𝑦 (𝑡) = 𝐶
2
𝑥 (𝑡) + 𝐷

2
𝜔 (𝑡)

(53)

with

𝐴
1
= [

−0.1125 −0.02

1 0
] , 𝐴

2
= [

−0.1125 −1.527

1 0
] ,

𝐴
𝑑1

= [
−0.0125 −0.005

0 0
] , 𝐴

𝑑2
= [

−0.0125 −0.23

0 0
] ,

𝐵
1
= 𝐵

2
= [

1

1
] , 𝐵

11
= 𝐵

12
= 𝐼

2
,

𝐶
1
= 𝐶

2
= 𝐷

1
= 𝐷

2
= 𝐼

2
.

(54)

The membership function is

𝑀
11

(𝑥
2
(𝑡)) = 1 −

𝑥
2

2
(𝑡)

2.25
, 𝑀

21
(𝑥

2
(𝑡)) =

𝑥
2

2
(𝑡)

2.25
. (55)

The initial state is

𝑥 (0) = [−1 − 1.2]
𝑇

, 𝜔 (𝑡) = [
sin (3𝑡)

exp (𝑡)

cos (3𝑡)
exp (𝑡)

]

𝑇

.

(56)

First, we should find the allowable maximum time delay
ℎ which let the fuzzy system passive. Table 1 shows the
maximum time delay obtained by [21] and our method.

It clearly shows that the method in our paper can get
larger upper bound than before. It also shows that conser-
vatism is further reduced when𝑚 increases.

Then we let ℎ = 1.5,𝑚 = 4, and we can obtain

𝑃 = [
9.4980 9.1547

9.1547 8.8849
] , 𝑋 = [

0.6351 0.4997

0.5807 0.4826
] . (57)

The fuzzy controller gains by our method are given by

𝐾1 = [150.7358 − 218.3595] ,

𝐾2 = [150.9502 − 219.0519] .

(58)

Figure 3 shows the state response 𝑥
1
(𝑡) of the closed-loop

system with the controller gains in (58), and Figure 4 shows
the state response 𝑥

2
(𝑡) of the closed-loop system.
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Figure 3: State response ×1 of the system.
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Figure 4: State response ×2 of the system.

6. Conclusion

This paper has adopted the delay partitioning approach to
analyse the passivity and passification of delay fuzzy system
based on T-S model. The theorems given in this paper are all
in terms of LMIs. Examples have illustrated the effectiveness
of our results. The method in our paper has further reduced
the conservatism and the effect has beenmore apparent when
𝑚 increases. In addition, the results obtained in this paper
also can be extended to the fuzzy system with time-varying
delay and uncertainties.
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