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An effective branch andbound algorithm is proposed for globally solvingminimax linear fractional programming problem (MLFP).
In this algorithm, the lower bounds are computed during the branch and bound search by solving a sequence of linear relaxation
programming problems (LRP) of the problem (MLFP), which can be derived by using a new linear relaxation bounding technique,
and which can be effectively solved by the simplex method. The proposed branch and bound algorithm is convergent to the global
optimal solution of the problem (MLFP) through the successive refinement of the feasible region and solutions of a series of the
LRP. Numerical results for several test problems are reported to show the feasibility and effectiveness of the proposed algorithm.

1. Introduction

Minimax linear fractional programming problem (MLFP)
has become a subject of wide interest for practitioners and
scientists [1–3], which has broad applications in various
disciplines, for examples, system engineering [3], electronic
science [4], and management science [5], and whose mathe-
matical modeling can be formulated as follows:

(MLFP) : min
𝑥

max {Ψ
1
(𝑥) , Ψ

2
(𝑥) , . . . , Ψ

𝑝
(𝑥)}

s.t. 𝑥 ∈ 𝐷 = {𝑥 ∈ 𝑅
𝑛

| 𝐴𝑥 ≤ 𝑏, 𝑥 ≥ 0} ,

(1)

where

Ψ
𝑗
(𝑥) =

∑
𝑛

𝑖=1
𝑐
𝑗𝑖
𝑥
𝑖
+ 𝑑
𝑗

∑
𝑛

𝑖=1
𝑒
𝑗𝑖
𝑥
𝑖
+ 𝑓
𝑗

, 𝑗 = 1, 2, . . . , 𝑝, (2)

∑
𝑛

𝑖=1
𝑐
𝑗𝑖
𝑥
𝑖
+ 𝑑
𝑗
and∑

𝑛

𝑖=1
𝑒
𝑗𝑖
𝑥
𝑖
+ 𝑓
𝑗
are all affine functions such

that ∑𝑛
𝑖=1

𝑐
𝑗𝑖
𝑥
𝑖
+ 𝑑
𝑗
> 0 and ∑

𝑛

𝑖=1
𝑒
𝑗𝑖
𝑥
𝑖
+ 𝑓
𝑗
> 0, 𝐴 ∈ 𝑅𝑚×𝑛,

𝑏 ∈ 𝑅𝑚, and𝐷 is a nonempty compact set.
The minimax linear fractional programming problems

(MLFP) pose significant theoretical and computational chal-
lenges. This is mainly because the problems (MLFP) possess

multiple local optima that are not globally optimal.Therefore,
it is necessary to put forward an effective global optimization
algorithm for solving theminimax linear fractional program-
ming problem (MLFP). During the past years, some algo-
rithms have been proposed for solving the minimax linear
fractional programming problem (MLFP), for instance, dual
methods [2, 6, 7], parametric programming methods [8, 9],
interior-point algorithms [10, 11], monotonic optimization
approach [12], exact method [13], approximation algorithm
[14], cutting plane algorithm [15], method of centers [16],
inexact proximal point method [17], interval-type algorithm
[18], and so on. Recently, based on the linear relaxation and
branch and bound scheme, a solution algorithm has been
developed for solving globally the minimax linear fractional
programming problem (MLFP) [19]. Up to now, although
there has been significant progress in the development of
algorithms for solving the minimax linear fractional pro-
gramming, to our knowledge, less work has been still done for
globally solving the minimax linear fractional programming
problem (MLFP).

The purpose of this paper is to present a new global
optimization algorithm for solving the minimax linear frac-
tional programming problem (MLFP), and the goals of this
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research are threefold. First, we present a transformation of
the problem; thus, the original problem (MLFP) is refor-
mulated as an equivalent problem (EP). Second, in order
to design an effective branch and bound algorithm for the
equivalent problem (EP), a new linear relaxation bounding
technique is presented, and, by utilizing this technique,
the nonconvex programming problem (EP) is reduced to a
sequence of linear relaxation programming problems, which
can provide reliable lower bounds for the optimal value of the
problem (EP) and are embedded into the branch and bound
framework. The main computational operation in the algo-
rithm only involves solving a sequence of linear relaxation
programming subproblems that do not grow in size from
iteration to iteration. Third, compare our algorithm (using
new linear relaxation bounding technique) with the known
algorithms (recent literatures) with respect to robustness
(finding the optimum) and efficiencies (number of function
evaluations), and the numerical experimental results show
that the proposed algorithm is robust and effective.

This paper is organized as follows.The next section firstly
converts the problem (MLFP) into an equivalent problem
(EP); a new linear relaxation bound method is presented,
and then the linear relaxation programming of the problem
(EP) is established. Section 3 a branch and bound algorithm
is proposed for globally solving the problem (MLFP), and the
convergence property of the algorithm is given. In Section 4,
we report the numerical results for solving some examples
with the proposed algorithm. Finally, a few concluding
remarks are given in Section 5.

2. Linear Relaxation Programming

In order to globally solve the problem (MLFP), we first
compute the initial lower bound 𝑥

𝑖
= min

𝑥∈𝐷
𝑥
𝑖
and upper

bound 𝑥
𝑖

= max
𝑥∈𝐷

𝑥
𝑖
of each variable 𝑥

𝑖
and denote the

initial rectangle by

𝑋
0

= {𝑥 | 𝑥
𝑖
≤ 𝑥
𝑖
≤ 𝑥
𝑖
, 𝑖 = 1, . . . , 𝑛} . (3)

Next, we can convert the problem (MLFP) into the
following equivalent problem (EP), which has the same global
optimal solution and optimal value as the problem (MLFP):

(EP) : min
𝑥,𝑡

𝑡

s.t. Ψ
𝑗
(𝑥) − 𝑡 ≤ 0, 𝑗 = 1, . . . , 𝑝,

𝐴𝑥 ≤ 𝑏, 𝑥 ≥ 0,

𝑥 ∈ 𝑋
0

.

(4)

In the following, we only consider solving the equivalent
problem (EP); the important step in the construction of a
solution procedure for globally solving the problem (EP)
is the establishment of a linear relaxation programming
for computing the lower bounds of the optimal value for
this problem. Here, we only need to construct linear lower

bounding function of Ψ
𝑗
(𝑥) in constraint function. For each

𝑗 ∈ {1, . . . , 𝑝}, we can let

ℎ
𝑗
(𝑥) = ln(

𝑛

∑
𝑖=1

𝑐
𝑗𝑖
𝑥
𝑖
+ 𝑑
𝑗
) ,

𝑔
𝑗
(𝑥) = ln(

𝑛

∑
𝑖=1

𝑒
𝑗𝑖
𝑥
𝑖
+ 𝑓
𝑗
) ,

Ψ
𝑗
(𝑥) = exp [ℎ

𝑗
(𝑥) − 𝑔

𝑗
(𝑥)] .

(5)

The detailed new linear relaxation bounding technique
can be given as follows.

First, we consider the function ℎ
𝑗
(𝑥) (𝑗 = 1, . . . , 𝑝). For

convenience in expression, for ∀𝑥 ∈ 𝑋𝑘 = [𝑥𝑘, 𝑥
𝑘

] ⊆ 𝑋0,
some notations are introduced as follows:

𝑋
𝑗
=

𝑛

∑
𝑖=1

𝑐
𝑗𝑖
𝑥
𝑖
+ 𝑑
𝑗
,

𝑋
𝑗
=

𝑛

∑
𝑖=1

min {𝑐
𝑗𝑖
𝑥
𝑘

𝑖
, 𝑐
𝑗𝑖
𝑥
𝑘

𝑖
} + 𝑑
𝑗
,

𝑋
𝑗
=

𝑛

∑
𝑖=1

max {𝑐
𝑗𝑖
𝑥
𝑘

𝑖
, 𝑐
𝑗𝑖
𝑥
𝑘

𝑖
} + 𝑑
𝑗
,

𝐾
𝑗
=
ln𝑋
𝑗
− ln𝑋

𝑗

𝑋
𝑗
− 𝑋
𝑗

,

ℎ
𝑙

𝑗
(𝑥) = ln (𝑋

𝑗
) + 𝐾
𝑗
(

𝑛

∑
𝑖=1

𝑐
𝑗𝑖
𝑥
𝑖
+ 𝑑
𝑗
− 𝑋
𝑗
) .

(6)

Obviously, by the characteristic of the concave function, we
have

ℎ
𝑙

𝑗
(𝑥) ≤ ℎ

𝑗
(𝑥) . (7)

Second, we consider the concave function 𝑔
𝑗
(𝑥) =

ln(∑𝑛
𝑖=1

𝑒
𝑗𝑖
𝑥
𝑖
+ 𝑓
𝑗
) (𝑗 = 1, . . . , 𝑝) about the whole variable

(∑
𝑛

𝑖=1
𝑒
𝑗𝑖
𝑥
𝑖
+ 𝑓
𝑗
); by the property of the concave function, we

have

𝑔
𝑗
(𝑥) ≤ 𝑔

𝑗
(𝑥mid) + ∇𝑔

𝑗
(𝑥mid)

𝑇

(𝑥 − 𝑥mid) = 𝑔
𝑢

𝑗
(𝑥) , (8)

where

𝑥mid =
1

2
(𝑥
𝑘

+ 𝑥
𝑘

) ,

∇𝑔
𝑗
(𝑥) =

[
[
[
[
[
[

[

𝑒
𝑗1

∑
𝑛

𝑖=1
𝑒
𝑗𝑖
𝑥
𝑖
+ 𝑓
𝑗

...
𝑒
𝑗𝑝

∑
𝑛

𝑖=1
𝑒
𝑗𝑖
𝑥
𝑖
+ 𝑓
𝑗

]
]
]
]
]
]

]

.

(9)

From (7) and (8), for all 𝑥 ∈ 𝑋𝑘, we have

ℎ
𝑗
(𝑥) − 𝑔

𝑗
(𝑥) ≥ ℎ

𝑙

𝑗
(𝑥) − 𝑔

𝑢

𝑗
(𝑥) . (10)
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Let

𝐻
𝑗
(𝑥) = ℎ

𝑙

𝑗
(𝑥) − 𝑔

𝑢

𝑗
(𝑥) , 𝐺

𝑗
(𝑥) = exp (𝐻

𝑗
(𝑥)) . (11)

By (5), (10), and (11), we have

𝐺
𝑗
(𝑥) = exp (𝐻

𝑗
(𝑥)) = exp (ℎ

𝑙

𝑗
(𝑥) − 𝑔

𝑢

𝑗
(𝑥))

≤ exp (ℎ
𝑗
(𝑥) − 𝑔

𝑗
(𝑥)) = Ψ

𝑗
(𝑥) .

(12)

Third, we consider the function 𝐺
𝑗
(𝑥) (𝑗 = 1, . . . , 𝑝). By

the property of the convex function, we have

𝐺
𝑗
(𝑥) ≥ 𝐺

𝑗
(𝑥mid) + ∇𝐺

𝑗
(𝑥mid)

𝑇

(𝑥 − 𝑥mid) , (13)

where

∇𝐺
𝑗
(𝑥mid) = (𝐾

𝑗

[
[

[

𝑐
𝑗1

...
𝑐
𝑗𝑛

]
]

]

− ∇𝑔
𝑗
(𝑥mid)) exp (𝐻

𝑗
(𝑥mid)) .

(14)

Let

𝐺
𝑙

𝑗
(𝑥) = 𝐺

𝑗
(𝑥mid) + ∇𝐺

𝑗
(𝑥mid)

𝑇

(𝑥 − 𝑥mid) , (15)

and, by (12) and (13), we have

𝐺
𝑙

𝑗
(𝑥) ≤ 𝐺

𝑗
(𝑥) ≤ Ψ

𝑗
(𝑥) . (16)

Therefore, we can follow the linear lower bounding function
𝐺𝑙
𝑗
(𝑥) of Ψ

𝑗
(𝑥) for each 𝑗 ∈ {1, . . . , 𝑝}, which underestimates

the function Ψ
𝑗
(𝑥) as follows:

𝐺
𝑙

𝑗
(𝑥) = 𝐺

𝑗
(𝑥mid) + ∇𝐺

𝑗
(𝑥mid)

𝑇

(𝑥 − 𝑥mid) . (17)

According to the above discussion, for ∀𝑋𝑘 ⊆ 𝑋0, we
can construct the linear relaxation programming (LRP) of the
problem (EP) in𝑋𝑘 as follows:

(LRP) : min 𝑡

s.t. 𝐺
𝑙

𝑗
(𝑥) − 𝑡 ≤ 0, 𝑗 = 1, . . . , 𝑝,

𝐴𝑥 ≤ 𝑏,

𝑥 ∈ 𝑋
𝑘

.

(18)

Based on the above construction method of the linear
relaxation programming problem, for ∀𝑋

𝑘 ⊆ 𝑋0, LRP(𝑋𝑘)
provides a valid lower bound for the optimal value of EP(𝑋𝑘).

The following theorem will ensure that each 𝐺𝑙
𝑗
(𝑥) will

approximate the corresponding function Ψ
𝑗
(𝑥) as ‖𝑥

𝑘

−

𝑥𝑘‖ → 0; that is, the optimal solution of the LRP(𝑋𝑘) will
approximate the optimal solution of EP(𝑋𝑘).

Theorem 1. For ∀𝑥 ∈ 𝑋𝑘 = [𝑥𝑘, 𝑥
𝑘

] ⊆ 𝑋0, for each 𝑗 =

1, . . . , 𝑝, and then the error Θ
𝑗

= Ψ
𝑗
(𝑥) − 𝐺𝑙

𝑗
(𝑥) → 0 as

‖𝑥
𝑘

− 𝑥𝑘‖ → 0.

Proof. Let

Θ
𝑗
= [Ψ
𝑗
(𝑥) − 𝐺

𝑗
(𝑥)] + [𝐺

𝑗
(𝑥) − 𝐺

𝑙

𝑗
(𝑥)] = Θ

𝑗1
+ Θ
𝑗2
,

(19)

and then it is obvious that Θ
𝑗1

≥ 0 and Θ
𝑗2

≥ 0.
First, we consider the difference Θ

𝑗1
. Let

Ψ̂
𝑗
(𝑥) = ln (ℎ

𝑗
(𝑥)) − ln (𝑔

𝑗
(𝑥))

= ln(

𝑛

∑
𝑖=1

𝑐
𝑗𝑖
𝑥
𝑖
+ 𝑑
𝑗
) − ln(

𝑛

∑
𝑖=1

𝑒
𝑗𝑖
𝑥
𝑖
+ 𝑓
𝑗
) ,

(20)

and it follows that

󵄨󵄨󵄨󵄨󵄨
Θ
𝑗1

󵄨󵄨󵄨󵄨󵄨
=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

exp(ln(

𝑛

∑
𝑖=1

𝑐
𝑗𝑖
𝑥
𝑖
+ 𝑑
𝑗
) − ln(

𝑛

∑
𝑖=1

𝑒
𝑗𝑖
𝑥
𝑖
+ 𝑓
𝑗
))

− exp (𝐻
𝑗
(𝑥))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨
exp (Ψ̂

𝑗
(𝑥)) − exp (𝐻

𝑗
(𝑥))

󵄨󵄨󵄨󵄨󵄨

≤
󵄩󵄩󵄩󵄩󵄩
Ψ̂
𝑗
(𝑥) − 𝐻

𝑗
(𝑥)

󵄩󵄩󵄩󵄩󵄩
sup

𝜎𝑗∈𝐿(Ψ̂𝑗(𝑥),𝐻𝑗(𝑥))

exp (𝜎
𝑗
) ,

(21)

where

𝐿 (Ψ̂
𝑗
(𝑥) ,𝐻

𝑗
(𝑥)) = 𝛼Ψ̂

𝑗
(𝑥) + (1 − 𝛼)𝐻

𝑗
(𝑥) ,

for ∀𝛼 ∈ [0, 1] .

(22)

Let

Θ
𝑗1.1

= ln(

𝑛

∑
𝑖=1

𝑐
𝑗𝑖
𝑥
𝑖
+ 𝑑
𝑗
)

− [ln (𝑋
𝑗
) + 𝐾
𝑗
(

𝑛

∑
𝑖=1

𝑐
𝑗𝑖
𝑥
𝑖
+ 𝑑
𝑗
− 𝑋
𝑗
)] ,

Θ
𝑗1.2

= 𝑔
𝑗
(𝑥mid) + ∇𝑔

𝑗
(𝑥mid)

𝑇

(𝑥 − 𝑥mid) − 𝑔
𝑗
(𝑥) ,

(23)

We have

Ψ̂
𝑗
(𝑥) − 𝐻

𝑗
(𝑥)

= {ln(

𝑛

∑
𝑖=1

𝑐
𝑗𝑖
𝑥
𝑖
+ 𝑑
𝑗
) − ln(

𝑛

∑
𝑖=1

𝑒
𝑗𝑖
𝑥
𝑖
+ 𝑓
𝑗
)}

− {ln (𝑋
𝑗
) + 𝐾
𝑗
(

𝑛

∑
𝑖=1

𝑐
𝑗𝑖
𝑥
𝑖
+ 𝑑
𝑗
− 𝑋
𝑗
)

−𝑔
𝑗
(𝑥mid) − ∇𝑔

𝑗
(𝑥mid)

𝑇

(𝑥 − 𝑥mid) }

= Θ
𝑗1.1

+ Θ
𝑗1.2

.

(24)
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Since Θ
𝑗1.1

is a concave function about (∑𝑛
𝑖=1

𝑐
𝑗𝑖
𝑥
𝑖
+ 𝑑
𝑗
), we

can know that Θ
𝑗1.1

can attain the maximum Θmax
𝑗1.1

at the
point ∑𝑛

𝑖=1
𝑐
𝑗𝑖
𝑥
𝑖
+ 𝑑
𝑗
= 1/𝐾

𝑗
. Let 𝑢

𝑗
= 𝑋
𝑗
/𝑋
𝑗
. Then, through

computing, we derive

Θ
max
𝑗1.1

=
ln 𝑢
𝑗

𝑢
𝑗
− 1

− 1 − ln
ln 𝑢
𝑗

𝑢
𝑗
− 1

. (25)

Since 𝑢
𝑗

→ 1 as ‖𝑥
𝑘

− 𝑥𝑘‖ → 0, we have Θmax
𝑗1.1

→ 0 as
‖𝑥
𝑘

− 𝑥𝑘‖ → 0.
One has

Θ
𝑗1.2

= 𝑔
𝑗
(𝑥mid) + ∇𝑔

𝑗
(𝑥mid)

𝑇

(𝑥 − 𝑥mid) − 𝑔
𝑗
(𝑥)

= ∇𝑔
𝑗
(𝑥mid)

𝑇

(𝑥 − 𝑥mid) − ∇𝑔
𝑗
(𝜂)
𝑇

(𝑥 − 𝑥mid)

≤
󵄩󵄩󵄩󵄩󵄩
∇
2

𝑔
𝑗
(𝜌)

󵄩󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝜂 − 𝑥mid

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑥 − 𝑥mid

󵄩󵄩󵄩󵄩 ,

(26)

where 𝜂 and 𝜌 are constant vectors, which satisfy

𝑔
𝑗
(𝑥) − 𝑔

𝑗
(𝑥mid) = ∇𝑔

𝑗
(𝜂)
𝑇

(𝑥 − 𝑥mid) ,

∇𝑔
𝑗
(𝑥mid) − ∇𝑔

𝑗
(𝜂) = ∇

2

𝑔
𝑗
(𝜌) (𝜂 − 𝑥mid) .

(27)

Since ∇2𝑔
𝑗
(𝑥) is continuous, and 𝑋 is a compact set, there

exists some𝑀 > 0 such that
󵄩󵄩󵄩󵄩󵄩
∇
2

𝑔
𝑗
(𝑥)

󵄩󵄩󵄩󵄩󵄩
≤ 𝑀. (28)

By (26), we have

Θ
𝑗1.2

≤ 𝑀
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘

− 𝑥
𝑘
󵄩󵄩󵄩󵄩󵄩

2

, (29)

Furthermore, we have Θ
𝑗1.2

→ 0 as ‖ 𝑥
𝑘

− 𝑥𝑘 ‖→ 0.
Therefore, we have

Ψ̂
𝑗
(𝑥) − 𝐻

𝑗
(𝑥) = Θ

𝑗1.1
+ Θ
𝑗1.2

󳨀→ 0 as 󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘

− 𝑥
𝑘
󵄩󵄩󵄩󵄩󵄩
󳨀→ 0.

(30)

Since exp(𝜎
𝑗
) is a continuous and bounded function

about 𝑥, there exists some 𝑀 > 0 such that | exp(𝜎
𝑗
)| ≤ 𝑀.

Therefore, by (30), we have

Θ
𝑗1

≤ 𝑀
󵄨󵄨󵄨󵄨󵄨
Ψ̂
𝑗
(𝑥) − 𝐻

𝑗
(𝑥)

󵄨󵄨󵄨󵄨󵄨
󳨀→ 0 as 󵄩󵄩󵄩󵄩󵄩

𝑥
𝑘

− 𝑥
𝑘
󵄩󵄩󵄩󵄩󵄩
󳨀→ 0.

(31)

Second, we consider the difference Θ
𝑗2
, and it follows that

Θ
𝑗2

= 𝐺
𝑗
(𝑥) − 𝐺

𝑙

𝑗
(𝑥)

= 𝐺
𝑗
(𝑥) − [𝐺

𝑗
(𝑥mid) + ∇𝐺

𝑗
(𝑥mid)

𝑇

(𝑥 − 𝑥mid)]

= ∇𝐺
𝑗
(𝛾)
𝑇

(𝑥 − 𝑥mid) − ∇𝐺
𝑗
(𝑥mid)

𝑇

(𝑥 − 𝑥mid)

≤
󵄩󵄩󵄩󵄩󵄩
∇
2

𝐺
𝑗
(𝛽)

󵄩󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝛾 − 𝑥mid

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑥 − 𝑥mid

󵄩󵄩󵄩󵄩 ,

(32)

where 𝛾 and 𝛽 are constant vectors, which satisfy

𝐺
𝑗
(𝑥) − 𝐺

𝑗
(𝑥mid) = ∇𝐺

𝑗
(𝛾)
𝑇

(𝑥 − 𝑥mid) ,

∇𝐺
𝑗
(𝛾) − ∇𝐺

𝑗
(𝑥mid) = ∇

2

𝐺
𝑗
(𝛽) (𝛾 − 𝑥mid) .

(33)

Since ∇2𝐺
𝑗
(𝑥) is a continuous function, and 𝑋 is a compact

set, there exists some 𝑀̂ > 0 such that

󵄩󵄩󵄩󵄩󵄩
∇
2

𝐺
𝑗
(𝑥)

󵄩󵄩󵄩󵄩󵄩
≤ 𝑀̂. (34)

By (32), we have

Θ
𝑗2

≤ 𝑀̂
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘

− 𝑥
𝑘
󵄩󵄩󵄩󵄩󵄩

2

. (35)

Furthermore, we have

Θ
𝑗2

󳨀→ 0 as 󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘

− 𝑥
𝑘
󵄩󵄩󵄩󵄩󵄩
󳨀→ 0. (36)

By (19), (31), and (36), we can derive that

Θ
𝑗
= [Ψ
𝑗
(𝑥) − 𝐺

𝑗
(𝑥)] + [𝐺

𝑗
(𝑥) − 𝐺

𝑙

𝑗
(𝑥)]

= Θ
𝑗1

+ Θ
𝑗2

󳨀→ 0 as 󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘

− 𝑥
𝑘
󵄩󵄩󵄩󵄩󵄩
󳨀→ 0.

(37)

By the above discussion, it is obvious that the conclusion is
followed.

3. Algorithm and Its Convergence

In this section, based on the former linear relaxationmethod,
we will present a branch and bound algorithm for globally
solving problem (EP). There are three fundamental opera-
tions in the proposed algorithm: a branching operation, an
updating upper bounds operation, and an updating lower
bounds operation.

The first fundamental operation iteratively subdivides the
investigated rectangle 𝑋 into two subrectangles. During the
process of iteration of the algorithm, the branching operation
produces amore refined partition that cannot yet be excluded
from further consideration in finding the global optimum
for the problem (EP). In this paper, we choose a simple
and standard branching rule. This branching rule is enough
to ensure the convergence of the algorithm since it drives
the intervals shrinking to a singleton for all variables along
any infinite branch of the branch and bound tree. Consider
any node subproblem identified by the hyperrectangle 𝑋 =

[𝑥, 𝑥] ⊆ 𝑋0. This branching rule is as follows.

(a) Let 𝑞 = arg max{𝑥
𝑖
− 𝑥
𝑖
: 𝑖 = 1, . . . , 𝑛}.
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(b) Let

𝑋
1

= {𝑥 ∈ 𝑅
𝑛

| 𝑥
𝑖
≤ 𝑥
𝑖
≤ 𝑥
𝑖
,

𝑖 ̸= 𝑞, 𝑥
𝑞
≤ 𝑥
𝑞
≤

𝑥
𝑞
+ 𝑥
𝑞

2
} ,

𝑋
2

= {𝑥 ∈ 𝑅
𝑛

| 𝑥
𝑖
≤ 𝑥
𝑖
≤ 𝑥
𝑖
, 𝑖 ̸= 𝑞,

𝑥
𝑞
+ 𝑥
𝑞

2
≤ 𝑥
𝑞
≤ 𝑥
𝑞
} .

(38)

By this branching rule, the rectangle𝑋 is subdivided into two
subrectangles𝑋1 and𝑋2.

The second fundamental operation is to update the lower
bounds of the optimal value of the problem (EP). This main
computation needs to solve a sequence of linear relaxation
programming problems, which can be easily solved by using
the simplex method.

The third fundamental operation is to update the upper
bounds of the optimal value of the problem (EP). The upper
bounds can be updated by computing the objective function
values of the original problem (MLFP) and the equivalent
problem (EP) which corresponds to optimal solution of each
linear relaxation programming problem, respectively.

The set 𝐹 in the algorithm is the set of fathomed
subrectangles 𝑋 of 𝑋

0. Let LB(𝑋𝑘) refer to the optimal
objective function value of the problem (LRP) on the sub-
hyper-rectangles 𝑋𝑘 and 𝑥𝑘 = 𝑥(𝑋𝑘) refer to an element
of corresponding argmin. The basic steps of the proposed
algorithm are summarized as follows.

Algorithm Statement. Consider the following

Step 0. Choose 𝜖 ≥ 0. Let 𝑋
0 = {𝑥 | 𝑥

𝑖
≤ 𝑥
𝑖
≤ 𝑥
𝑖
, 𝑖 =

1, . . . , 𝑛}, 𝑈𝐵
0

= +∞. Find an optimal solution (𝑥0, 𝑡0) and
the optimal value 𝜐(𝑋0) of the LRP(𝑋0). Set

LB
0
:= LB (𝑋

0

) = 𝜐 (𝑋
0

) , (𝑥
𝑐

, 𝑡
𝑐

) = (𝑥
0

, 𝑡
0

) . (39)

For the given feasible tolerance 𝜖
1
, if (𝑥𝑐, 𝑡𝑐) is feasible to the

problem EP(𝑋0), update 𝑈𝐵
0
= 𝑡𝑐, if necessary. Set

𝑈𝐵
0
= min {𝑈𝐵

0
,max {Ψ

1
(𝑥
𝑐

) , Ψ
2
(𝑥
𝑐

) , . . . , Ψ
𝑝
(𝑥
𝑐

)}} .

(40)

If𝑈𝐵
0
−LB
0
≤ 𝜖, stop; 𝑥𝑐 is a global 𝜖-optimal solution for the

problem (MLFP). Otherwise, let the set of active node Ω
0
=

𝑋0 and 𝐹 := 0, 𝑘 = 1, and go to Step 𝑘.

Step 𝑘. 𝑘 ≥ 1.

Step 𝑘1. Set

𝑈𝐵
𝑘
= 𝑈𝐵
𝑘−1

. (41)

Subdivide 𝑋
𝑘−1 into two 𝑛-dimensional rectangles 𝑋𝑘,1, 𝑋𝑘,2

via the rectangular bisection process. Denote the set of new
partitioned rectangles by𝑋

𝑘. Set 𝐹 = 𝐹 ∪ 𝑋𝑘−1.

Step 𝑘2. For each 𝑗 = 1, 2, compute 𝜐(𝑋𝑘,𝑗), and if 𝜐(𝑋𝑘,𝑗) ̸= +

∞, find an optimal solution (𝑥𝑘,𝑗, 𝑡𝑘,𝑗) for the problem EQ(𝑋)
with𝑋 = 𝑋𝑘,𝑗. For each 𝑗 = 1, 2, set

LB (𝑋
𝑘,𝑗

) = 𝜐 (𝑋
𝑘,𝑗

) . (42)

Set 𝑠 = 0.

Step 𝑘3. Set 𝑠 = 𝑠 + 1. If 𝑠 > 2, go to Step 𝑘7. Otherwise,
continue.

Step 𝑘4. If LB(𝑋𝑘,𝑠) ≥ 𝑈𝐵
𝑘
, set 𝐹 = 𝐹 ∪ 𝑋𝑘,𝑠 and go to Step

𝑘6. Otherwise, continue.

Step 𝑘5. For the given feasible tolerance 𝜖
1
, if (𝑥𝑘,𝑠, 𝑡𝑘,𝑠) is

feasible to the EP(𝑋0), update 𝑈𝐵
𝑘
= 𝑡𝑘,𝑠, if necessary. Let

𝑈𝐵
𝑘
= min {𝑈𝐵

𝑘
,max {Ψ

1
(𝑥𝑘,𝑠) , Ψ

2
(𝑥𝑘,𝑠) , . . . , Ψ

𝑝
(𝑥𝑘,𝑠)}} .

(43)

If

𝑈𝐵
𝑘
< max {Ψ

1
(𝑥
𝑘,𝑠

) , Ψ
2
(𝑥
𝑘,𝑠

) , . . . , Ψ
𝑝
(𝑥
𝑘,𝑠

)} , (44)

go to Step 𝑘6. If

𝑈𝐵
𝑘
= max {Ψ

1
(𝑥
𝑘,𝑠

) , Ψ
2
(𝑥
𝑘,𝑠

) , . . . , Ψ
𝑝
(𝑥
𝑘,𝑠

)} , (45)

set

𝑥
𝑐

= 𝑥
𝑘,𝑠

,

𝐹 = 𝐹 ∪ {𝑋 ∈ Ω
𝑘−1

| LB (𝑋) ≥ 𝑈𝐵
𝑘
} ,

(46)

and continue.

Step 𝑘6. Go to Step 𝑘3.

Step 𝑘7. Set

Ω
𝑘
= {𝑋 | 𝑋 ∈ (Ω

𝑘−1
∪ {𝑋
𝑘,1

, 𝑋
𝑘,2

}) , 𝑋 ∉ 𝐹} . (47)

Step 𝑘8. Set LB
𝑘

= min{LB(𝑋) | 𝑋 ∈ Ω
𝑘
}, and let 𝑋𝑘 ∈

Ω
𝑘
satisfying LB

𝑘
= LB(𝑋𝑘). If 𝑈𝐵

𝑘
− LB
𝑘

≤ 𝜖, stop; 𝑥𝑐
is a global 𝜖-optimal solution for the problem (MLFP), and
V = max{Ψ

1
(𝑥𝑐), Ψ

2
(𝑥𝑐), . . . , Ψ

𝑝
(𝑥𝑐)} is global optimal value

for the problem EP(𝑋0). Otherwise, set 𝑘 = 𝑘 + 1 and go to
Step 𝑘.

The convergence properties of the proposed algorithmare
given as follows.

Theorem 2. If the proposed algorithm terminates in finite
steps, then a global optimal solution of the problem (MLFP) is
obtained when the algorithm is terminated.
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Table 1: Computational results for test Examples 1–4.

Example References Optimal solution Iter 𝐿max Time (s)

Example 1
ours (1.015569395, 0.591850539, 1.401565828) 1 2 0.00332836
[12] (1.015695, 0.590494, 1.403675) 1 — 0.06
[19] (1.015678086, 0.590676676, 1.403391837) 6 5 0.01533491

Example 2
ours (1.5, 1.5) 3 2 0.0025344

[12] (1.5, 1.5) 1 — 0.00

[19] (1.5, 1.5) 6 7 0.00579627

Example 3 ours (1.016666667, 0.55, 1.45) 5 2 0.0110939

[19] (1.016666667, 0.55, 1.45) 8 8 0.02143792

Example 4 ours (1.008333333, 0.5, 1.45) 3 2 0.00856142
[19] (1.008333333, 0.5, 1.45) 7 8 0.02374296

Proof. Assume that the algorithm is terminated finitely at
𝑥𝑘. Obviously, LB

𝑘
= 𝑈𝐵

𝑘
when it is terminated at the 𝑘

𝑡ℎ

iteration; therefore, 𝑥𝑘 is a global optimal solution of the
problem (MLFP).

Theorem 3. If the algorithm generates an infinite sequence
{𝑥𝑘}, then every accumulation point 𝑥∗ of this sequence is a
global optimal solution of the problem (MLFP).

Proof. Let 𝑥∗ be an accumulation point of the sequence
{𝑥𝑘}, and let {𝑥𝑘𝑞} be a subsequence {𝑥𝑘𝑞} of the sequence
{𝑥
𝑘

} which is convergent to 𝑥
∗. Obviously, in the proposed

algorithm, the lower bound sequence {LB
𝑘
} is monotonic

increasing and the upper bound sequence {𝑈𝐵
𝑘
} ismonotonic

decreasing, so that {LB
𝑘
} and {𝑈𝐵

𝑘
} are convergent and

lim
𝑘→∞

𝑈𝐵
𝑘
= lim
𝑞→∞

𝑈𝐵
𝑘𝑞

= lim
𝑞→∞

max {Ψ
1
(𝑥
𝑘𝑞) , Ψ

2
(𝑥
𝑘𝑞) , . . . , Ψ

𝑝
(𝑥
𝑘𝑞)}

= max {Ψ
1
(𝑥
∗

) , Ψ
2
(𝑥
∗

) , . . . , Ψ
𝑝
(𝑥
∗

)} .

(48)

Without loss of generality, we assume that 𝑥𝑘𝑞 is the
solution of the problem (LRP) on𝑋𝑘𝑞 which satisfies𝑋𝑘𝑞+1 ⊆
𝑋𝑘𝑞 , 𝑞 = 1, 2, . . .. Because the proposed rectangle partition is
exhaustive; that is, lim

𝑞→∞
𝑋𝑘𝑞 = 𝑥∗, and, from Theorem 1,

we have
0 ≤ 𝑈𝐵

𝑘𝑞
− 𝐿𝐵
𝑘𝑞

≤ max {
󵄨󵄨󵄨󵄨󵄨
Ψ
1
(𝑥
𝑘𝑞) − 𝐺

𝑙

1
(𝑥
𝑘𝑞)

󵄨󵄨󵄨󵄨󵄨
,

. . . ,
󵄨󵄨󵄨󵄨󵄨
Ψ
𝑝
(𝑥
𝑘𝑞) − 𝐺

𝑙

𝑝
(𝑥
𝑘𝑞)

󵄨󵄨󵄨󵄨󵄨
} 󳨀→ 0 as 𝑞 󳨀→ ∞.

(49)
Thus,

lim
𝑞→∞

(𝑈𝐵
𝑘𝑞

− LB
𝑘𝑞
) = 0. (50)

Hence,

lim
𝑘→∞

LB
𝑘
= lim
𝑞→∞

(𝑈𝐵
𝑘𝑞

− (𝑈𝐵
𝑘𝑞

− LB
𝑘𝑞
)) = lim
𝑞→∞

𝑈𝐵
𝑘𝑞

= max {Ψ
1
(𝑥
∗

) , Ψ
2
(𝑥
∗

) , . . . , Ψ
𝑝
(𝑥
∗

)} .

(51)

Therefore, 𝑥∗ is a global optimal solution of the problem
(MLFP).

4. Numerical Experiments

To verify the performance of our algorithm, several test
examples in recent literatures are implemented on on a
Intel(R) Core(TM)2 Duo CPU (1.58GHZ) microcompute;
the algorithm program is coded in C++, and each linear
relaxation programming problem is solved by using simplex
method, and the convergence tolerance is set to 𝜖 = 5 × 10

−8

in our experiment. For the test problems, numerical results
are illustrated in Table 1. For Examples 1–5, feasible errors 𝜖

1

are set by 0.005, 0.005, 0, 0.005, and 0.001, respectively.
In Tables 1 and 2, the notations have been used for

column headers: Iter: number of algorithm iteration; 𝐿max:
the maximal number of algorithm active nodes necessary;
time: execution time of algorithm in seconds.

In Table 1, optimal value is denoted by objective function
value of the optimal solution in computational procedure of
[19] and this paper, respectively.

Example 1 (see [12, 19]). Consider

min max {
3𝑥
1
+ 𝑥
2
− 2𝑥
3
+ 0.8

2𝑥
1
− 𝑥
2
+ 𝑥
3

,
4𝑥
1
− 2𝑥
2
+ 𝑥
3

7𝑥
1
+ 3𝑥
2
− 𝑥
3

}

s.t. 𝑥
1
+ 𝑥
2
− 𝑥
3
≤ 1,

− 𝑥
1
+ 𝑥
2
− 𝑥
3
≤ −1,

12𝑥
1
+ 5𝑥
2
+ 12𝑥

3
≤ 34.8,

12𝑥
1
+ 12𝑥

2
+ 7𝑥
3
≤ 29.1,

− 6𝑥
1
+ 𝑥
2
+ 𝑥
3
≤ −4.1,

1.0 ≤ 𝑥
1
≤ 1.1,

0.55 ≤ 𝑥
2
≤ 0.65,

1.35 ≤ 𝑥
3
≤ 1.45.

(52)
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Table 2: Numerical results for Example 5.

Example 5 Our algorithm Algorithm of [19]
(𝑝,𝑀,𝑁) Iter 𝐿max Time (s) Iter 𝐿max Time (s)
(3, 4, 5) 59 16 0.18905 90 88 0.308533

(5, 5, 5) 173 40 0.560235 440 438 2.070590

(5, 5, 6) 211 46 0.996647 328 314 1.954055

(6, 6, 5) 88 18 0.382545 348 348 2.012132

(7, 5, 6) 88 16 0.545829 174 159 1.315186

(30, 6, 6) 74 13 2.21828 151 148 6.439019

(50, 6, 6) 29 2 2.08805 95 81 9.848997

(10, 7, 6) 454 131 3.79913 685 659 7.590868

(7, 7, 7) 154 30 1.30391 242 235 2.713118

(7, 7, 8) 733 175 7.4577 8913 8901 157.815951

(20, 9, 8) 55 6 1.65562 125 123 4.672965

(9, 7, 10) 2243 570 42.8553 3581 3400 79.042373

(10, 10, 10) 258 20 5.69239 450 200 11.414042

Example 2 (see [12, 19]). Consider

max min {
37𝑥
1
+ 73𝑥

2
+ 13

13𝑥
1
+ 13𝑥

2
+ 13

,
63𝑥
1
− 18𝑥

2
+ 39

13𝑥
1
+ 26𝑥

2
+ 13

}

s.t. 5𝑥
1
− 3𝑥
2
= 3,

0 ≤ 𝑥
1
≤ 3.

(53)

This example is originally presented in Phuong and Tuy
[12], which has the same global optimal solution as the
following problem 2

󸀠󸀠:

min max {
13𝑥
1
+ 13𝑥

2
+ 13

37𝑥
1
+ 73𝑥

2
+ 13

,
13𝑥
1
+ 26𝑥

2
+ 13

63𝑥
1
− 18𝑥

2
+ 39

}

s.t. 5𝑥
1
− 3𝑥
2
= 3,

0 ≤ 𝑥
1
≤ 3.

(54)

Therefore, we can use the proposed algorithm to globally
solve Example 2 by solving the problem 2󸀠󸀠.

Example 3 (see [19]). Consider

min max {
2𝑥
1
+ 2𝑥
2
− 𝑥
3
+ 0.9

𝑥
1
− 𝑥
2
+ 𝑥
3

,
3𝑥
1
− 𝑥
2
+ 𝑥
3

8𝑥
1
+ 4𝑥
2
− 𝑥
3

}

s.t. 𝑥
1
+ 𝑥
2
− 𝑥
3
≤ 1,

− 𝑥
1
+ 𝑥
2
− 𝑥
3
≤ −1,

12𝑥
1
+ 5𝑥
2
+ 12𝑥

3
≤ 34.8,

12𝑥
1
+ 12𝑥

2
+ 7𝑥
3
≤ 29.1,

− 6𝑥
1
+ 𝑥
2
+ 𝑥
3
≤ −4.1,

1.0 ≤ 𝑥
1
≤ 1.2,

0.55 ≤ 𝑥
2
≤ 0.65,

1.35 ≤ 𝑥
3
≤ 1.45.

(55)

Example 4 (see [19]). Consider

min max {
3𝑥
1
+ 𝑥
2
− 2𝑥
3
+ 0.8

2𝑥
1
− 𝑥
2
+ 𝑥
3

,
4𝑥
1
− 2𝑥
2
+ 𝑥
3

7𝑥
1
+ 3𝑥
2
− 𝑥
3

,

3𝑥
1
+ 2𝑥
2
− 𝑥
3
+ 1.9

𝑥
1
− 𝑥
2
+ 𝑥
3

,
4𝑥
1
− 𝑥
2
+ 𝑥
3

8𝑥
1
+ 4𝑥
2
− 𝑥
3

}

s.t. 𝑥
1
+ 𝑥
2
− 𝑥
3
≤ 1,

− 𝑥
1
+ 𝑥
2
− 𝑥
3
≤ −1,

12𝑥
1
+ 5𝑥
2
+ 12𝑥

3
≤ 34.8,

12𝑥
1
+ 12𝑥

2
+ 7𝑥
3
≤ 29.1,

− 6𝑥
1
+ 𝑥
2
+ 𝑥
3
≤ −4.1,

1.0 ≤ 𝑥
1
≤ 1.2,

0.55 ≤ 𝑥
2
≤ 0.65,

1.35 ≤ 𝑥
3
≤ 1.45.

(56)

Example 5. Consider

min max {
∑
𝑛

𝑖=1
𝑐
1𝑖
𝑥
𝑖
+ 𝑑
1

∑
𝑛

𝑖=1
𝑒
1𝑖
𝑥
𝑖
+ 𝑓
1

,
∑
𝑛

𝑖=1
𝑐
2𝑖
𝑥
𝑖
+ 𝑑
2

∑
𝑛

𝑖=1
𝑒
2𝑖
𝑥
𝑖
+ 𝑓
2

,

. . . ,
∑
𝑛

𝑖=1
𝑐
𝑝𝑖
𝑥
𝑖
+ 𝑑
𝑝

∑
𝑛

𝑖=1
𝑒
𝑝𝑖
𝑥
𝑖
+ 𝑓
𝑝

}

s.t. 𝐴𝑥 ≤ 𝑏,

0 ≤ 𝑥
𝑖
≤ 3, 𝑖 = 1, . . . , 𝑛,

(57)

where 𝐴 is an 𝑚 × 𝑛 matrix, 𝑏 is an 𝑚 dimension vector, all
elements of 𝑐

𝑗𝑖
, 𝑒
𝑗𝑖
, 𝑗 = 1, . . . , 𝑝, 𝑖 = 1, . . . , 𝑛, are randomly

generated between 0 and 1; all elements of 𝑑
𝑗
, 𝑓
𝑗
, 𝑗 = 1, . . . , 𝑝

are randomly generated between 0 and 𝑝; all elements of 𝐴
are randomly generated between 0 and 1; all elements of 𝑏 are
randomly generated between 0 and 16.
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In Table 2, the notations have been also used for column
headers: 𝑝: the number of linear fractional functions in
the objective function; 𝑚: represents the number of rows
for 𝐴; 𝑛: stands for the dimension of considered problem.
From the experimental results in Table 2, it is seen that our
algorithm can effectively solve the minimax linear fractional
programming problem (MLFP) with large scale number of
fractional functions.

5. Concluding Remarks

In this paper, an effective branch and bound algorithm is
proposed for globally solving the minimax linear fractional
programming problem (MLFP). In this algorithm, the lower
bound is computed during the branch and bound search by
solving linear relaxation programming (LRP) of the problem
(MLFP), which can be derived by using the new linear
relaxation bounding technique and can be effectively solved
by using the simplex method or interior point algorithm.The
proposed algorithm is convergent to the global minimum of
the problem (MLFP) through the successive refinement of the
feasible region and solutions of a series of the LRP. Numerical
results for several test problems have been reported to show
the feasibility and effectiveness of the proposed algorithm.
It is hoped that the ideas and methods used to construct
the algorithm will offer useful tools for solving the minimax
linear fractional programming problem.
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