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In an aquatic environment, a mathematical model consisting of nutrient, phytoplankton, and zooplankton has been considered,
where excretion of zooplankton is considered as one of the sources of nutrient. We investigate the effect of the input rate of the
limiting nutrient from outside on controlling algal bloom. First, we consider input limiting nutrient continuously, obtain the
system has two boundary equilibria, and analyze the existence of the positive equilibrium by means of stability analysis, we get
conditions for the stability of the equilibria. Then, we consider input limiting nutrient impulsively. We get the exact expression of
the boundary periodic solution and obtain the condition for the stability of the periodic boundary solution. We also consider the
effect of temperature on the system and give a model of Taihu Lake as an example. Finally, we give numerical simulation of our
results and explain the effect of input limiting nutrient on controlling bloom of the lake system.

1. Introduction

In recent years, many mathematical models of ecosystems
have been proposed and used for understanding complex
aspects ofmarine ecosystems, especially eutrophication prob-
lem. Eutrophication is a serious “disease” of lakes around
the world. It has badly damaged lake ecosystem health and
has resulted in an imbalance between biological components,
decreasing of biodiversity, and resilience. The adverse effects
on human health, commercial fisheries, tourism, and envi-
ronment are well established. A very important step towards
protection and restoration of a lake is to limit, divert, or treat
excessive nutrient, organic, and silt loads [1].

Many models including nutrient concentration has been
studied by [2–6]. Hallam [7] studied stability and persis-
tence properties of a family of nutrient-controlled plankton
models and obtained necessary and sufficient conditions
for persistence. Gard [8] studied a nutrient-phytoplankton-
zooplankton (NPZ) model with generalized functional
response and obtained sharper criteria for persistence. A
phytoplankton-zooplankton model was studied by Steffen
et al. [9]; local and global behavior of the model were
obtained. Busenberg et al. [10] demonstrated coexistence of

plankton population in an orbitally stable oscillatory mode
for a nutrient-plankton model.

In this paper, we consider the model consisting of three
ordinary differential equations for three dynamical variables,
that is, the densities of limiting nutrient (N), phytoplankton
(P), and zooplankton (Z). A NPZ model has been studied
by [11, 12, 12–18] that modified the model of [11, 19] and
investigated zooplankton mortality and dynamical behavior
of themodel. A top predator invasion into theNPZmodelwas
studied by [15], the paper considered possible consequences
of biological invasion in an epipelagic ecosystem. References
[16, 18] used a general function to describe the nutrient uptake
rates of phytoplankton and zooplankton and herbivore graz-
ing.

The model that we examined is based on NPZ model
of [12–18]. The model differs from [12, 15] as a closed
system is replaced by an open system; that is, we con-
sider external inflow nutrient except for internal factors. In
[16], nutrients absorbed by phytoplankton and zooplankton
have been completely digested and absorbed and conversed
phytoplankton growth; zooplankton-nutrient conversion and
phytoplankton-nutrient conversion are total conversion. In
[16, 18], the excretion of phytoplankton and zooplankton
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is nutrient. In fact, zooplankton-nutrient conversion and
phytoplankton-nutrient conversion are part conversion, and
part of phytoplankton and zooplankton excretion is nutrient.
So, we consider modified phytoplankton nutrient conversion
and zooplankton excretion.

Water bloom takes place frequently in China, such as
Taihu Lake, Chaohu Lake, and Dianchi Lake. The main
reason for this phenomenon is that many kinds of pollutant
have been discharged into lakes, therefore, it is very important
to investigate nutrition input from outside. In the following,
we take Taihu Lake as an example to explain the main reason
of eutrophication.

Through investigating the input and output balance rela-
tionship of a lake nitrogen (N), phosphorus (P) and chemical
oxygen demand (COD), we show that sediment is the main
source of nutrient salt. This result provide information for
studying lake eutrophication. Table 1 is statistical data of
discharge amount for Taihu area in 2004 [20, page 25], where
𝑋, 𝑌, and 𝐻

1
are industry pollution discharge, 𝐻

2
is life

pollution discharge, 𝐻
3
is agricultural pollution discharge,

𝐻
4
is water and soil drained away, 𝐻

5
is poultry cultivation

pollution, 𝐻
6
is aquatic cultivation pollution, 𝐻

7
is lake

tourism pollution,𝐻
8
is rain dropping,𝐻

9
is dust falling, and

𝐻
10
is ships pollution.
FromTable 1, we can know that themain pollution source

of Taihu Lake is the pollution from life and agriculture
and poultry cultivation, so we can control water bloom
by control these pollution inputs. So, in this paper, we
consider the effect of nutrient coming from outside on the
dynamics of the model and want to control bloom mainly by
controlling the amount of outside nutrient. First, we consider
input limiting nutrient continuously. Then we consider input
limiting nutrient impulsively. System with impulsive effects
describing evolution processes is characterized by the fact
that at certain moments of time they abruptly experience
a change of state. Processes of such character are studied
in almost every domain of applied sciences. Theories of
impulsive differential equations are found in the books [23,
24]. In recent years, their applications can be found in many
domains of applied sciences [21, 22, 25–27].

The paper is arranged like this. In Section 2, we give
a continuous input nutrient model, obtain the boundary
equilibrium of the model, and analyze its stability; we also
investigate the existence of the positive equilibrium and
discuss its stability. In Section 3, pulse input nutrient is
considered, nutrient flow into the lake every 𝜏 period. We
obtain the exact boundary periodic solution of the impulsive
input nutrient system. Using Floquet theory for the impulsive
differential equation and small-amplitude perturbation skills
and techniques of comparison, we prove that the boundary
periodic solution is locally asymptotically stable if ((𝑘

1
+ (𝜆 −

𝑘
1
) exp(−𝑑𝜏))/(𝑘

1
+ (𝜆 − 𝑘

1
) exp(−𝑑𝜏))) > exp(−𝑑𝜏(𝑚

1
+

𝑑
1
)/𝑤𝑟). But, in fact, the growth rate of algal is affected by

temperature, so we consider the effect of temperature on
the system in Section 4 and give an example of Taihu Lake.
Finally, we give a brief discussion of our results and further
numerical simulation; we also explain the effect of input
limiting nutrient on controlling bloom of the lake system.

2. Continuous Input Nutrient

In a real open marine ecosystem, we consider the following
continuous NPZ model:

�̇� (𝑡) = 𝜆 − 𝑑𝑁 (𝑡) −
𝑟𝑁 (𝑡) 𝑃 (𝑡)

𝑘
1
+ 𝑁 (𝑡)

+ 𝛼𝑚
1
𝑃 (𝑡)

+ 𝛽𝑚
2
𝑍 (𝑡) +

𝛾𝜇𝑃 (𝑡) 𝑍 (𝑡)

𝑘
2
+ 𝑃 (𝑡)

,

�̇� (𝑡) =
𝑤𝑟𝑁 (𝑡) 𝑃 (𝑡)

𝑘
1
+ 𝑁 (𝑡)

− 𝑚
1
𝑃 (𝑡) − 𝑑

1
𝑃 (𝑡) −

𝜇𝑃 (𝑡) 𝑍 (𝑡)

𝑘
2
+ 𝑃 (𝑡)

,

�̇� (𝑡) =
𝜂𝜇𝑃 (𝑡) 𝑍 (𝑡)

𝑘
2
+ 𝑃 (𝑡)

− 𝑚
2
𝑍 (𝑡) − 𝑑

2
𝑍 (𝑡) ,

(1)

where 𝑁(𝑡) is the amount of limiting nutrient at time 𝑡,
𝑃(𝑡) is the biomass of phytoplankton at time 𝑡, and 𝑍(𝑡) is
the biomass of phytoplankton at time 𝑡. The parameter 𝜆
represents the input rate of the limiting nutrient from the
environment, 𝑑 is loss rate of the nutrient, 𝑟(𝜇) is maximum
phytoplankton (zooplankton) growth rate, 𝑚

1
(𝑚
2
) is phy-

toplankton (zooplankton) natural mortality and respiration
rate, 𝑑

1
(𝑑
2
) is removal rate of phytoplankton (zooplankton),

𝑘
1
is half saturation constant for nutrient uptake, 𝑘

2
is half

saturation constant for zooplankton grazing, 𝑤(𝜂) is phyto-
plankton (zooplankton) efficiency coefficient, 𝛾 is zooplank-
ton excretion coefficient, and 𝛼(𝛽) is regeneration of nutrient
from decomposition of phytoplankton (zooplankton).

Here the uptake kinetics of the nutrient and consump-
tion of phytoplankton by zooplankton are described by a
Michaelis-Menten-Monod function which is nonnegative,
increasing, and equal to zero in the absence of nutrient
(phytoplankton); see [13]. Obviously, we have 𝑤 ≤ 1, 𝛼 ≤ 1,
𝛽 ≤ 1, and 𝜂+𝛾 ≤ 1. Natural mortality and respiration rate of
the plankton are assumed by other authors to be linear losses.

First, we show that solutions of system (1) always exist for
all 𝑡 > 0. Since �̇�|

𝑃=0
= 0, �̇�|

𝑍=0
= 0, and �̇�|

𝑁=0
≥ 𝜆 > 0, we

have𝑁(𝑡) ≥ 0, 𝑃(𝑡) ≥ 0, and 𝑍(𝑡) ≥ 0 for all 𝑡 > 0. Then the
solutions of system (1) are nonnegative for 𝑡 > 0.

We use realistic values of model parameters obtained
from different sources and summarized in Table 2. In the fol-
lowing, we investigate the existence and stability of equilibria
of the system (1).

2.1. Existence of Equilibria of the System (1). It is easy to
calculate the system (1) that always has a boundary equilib-
rium denoted by 𝐸

0
= (𝑁
0
, 0, 0) = (𝜆/𝑑, 0, 0). It also has a

boundary equilibrium 𝐸 = (�̂�, �̂�, 0) if 𝑤𝑟 − 𝑚
1
− 𝑑
1
> 0 and

𝜆 > ((𝑑𝑘
1
(𝑚
1
+ 𝑑
1
))/(𝑤𝑟 − 𝑚

1
− 𝑑
1
))
Δ

= 𝜆
0 hold, where

�̂� =
𝑘
1
(𝑚
1
+ 𝑑
1
)

𝑤𝑟 − 𝑚
1
− 𝑑
1

,

�̂� =
𝜆 − 𝑑�̂�

𝑑
1

=
𝑤 (𝜆𝑤𝑟 − (𝜆 + 𝑑𝑘

1
) (𝑚
1
+ 𝑑
1
))

(𝑤𝑟 − 𝑚
1
− 𝑑
1
) (𝑚
1
(1 − 𝑤𝛼) + 𝑑

1
)
.

(2)
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Table 1: System parameters and ranges of their values used in the model.

Parameters Units Meaning of the parameters Literature values
𝜆 mgL−1 day−1 Input rate of limiting nutrient 0–1.5 [21]
𝑑 day−1 Loss rate of limiting nutrient 0.1 [22]
𝑟 day−1 Maximum growth rate of phytoplankton 0.3 [21]
𝜇 day−1 Maximum growth rate of zooplankton 0.6–1.4 [12]
𝑘
1

mgL−1 Half saturation constant for nutrient uptake 0.02–0.15 [12, 19]
𝑘
2

mgL−1 Half saturation constant for zooplankton grazing 0.02–0.1 [12, 19]
𝑚
1

day−1 Death rate of phytoplankton 0.15 [22]
𝑚
2

day−1 Death rate of zooplankton 0.1 [22]
𝑑
1

day−1 Removal rate of phytoplankton from the system 0.1 [22]
𝑑
2

day−1 Removal rate of zooplankton from the system 0.1 [22]
𝑤 — Phytoplankton efficiency coefficient 1 [12]
𝜂 — Zooplankton efficiency coefficient 0.2–0.5 [12]
𝛼 — Regeneration of nutrient from decomposition of phytoplankton 1 [12]
𝛽 — Regeneration of nutrient from decomposition of zooplankton 0.5–0.9 [12, 19]
𝛾 — Zooplankton excretion coefficient 0.5–0.9 [12]

In the following, we consider the positive equilibrium
denoted by 𝐸∗ = (𝑁

∗
, 𝑃
∗
, 𝑍
∗
); then𝑁∗, 𝑃∗, 𝑍∗ must satisfy

𝜆 − 𝑑𝑁 −
𝑟𝑁𝑃

𝑘
1
+ 𝑁

+ 𝛼𝑚
1
𝑃 + 𝛽𝑚

2
𝑍 +

𝛾𝜇𝑃𝑍

𝑘
2
+ 𝑃

= 0, (3)

𝑤𝑟𝑁

𝑘
1
+ 𝑁

− 𝑚
1
− 𝑑
1
−

𝜇𝑍

𝑘
2
+ 𝑃

= 0, (4)

𝜂𝜇𝑃

𝑘
2
+ 𝑃

− 𝑚
2
− 𝑑
2
= 0. (5)

From (5) we have 𝑃∗ = 𝑘
2
(𝑚
2
+ 𝑑
2
)/(𝜂𝜇 − 𝑚

2
− 𝑑
2
), so 𝑃∗ is

positive if 𝜂𝜇−𝑚
2
−𝑑
2
> 0. In the following, we consider the

existence of𝑁∗ and𝑍∗ under the condition 𝜂𝜇−𝑚
2
−𝑑
2
> 0.

Substituting 𝑃∗ into (3) and (5), we get

𝜆 − 𝑑𝑁 −
𝑟𝑘
2
(𝑚
2
+ 𝑑
2
)𝑁

(𝜂𝜇 − 𝑚
2
− 𝑑
2
) (𝑘
1
+ 𝑁)

+
𝛼𝑚
1
𝑘
2
(𝑚
2
+ 𝑑
2
)

𝜂𝜇 − 𝑚
2
− 𝑑
2

+ 𝛽𝑚
2
𝑍 +

𝛾 (𝑚
2
+ 𝑑
2
) 𝑍

𝜂
= 0,

𝑤𝑟𝑁

𝑘
1
+ 𝑁

− 𝑚
1
− 𝑑
1
−
(𝜂𝜇 − 𝑚

2
− 𝑑
2
) 𝑍

𝑘
2
𝜂

= 0.

(6)

That is,

−𝑑𝑁
2
+ 𝑎
1
𝑁 + 𝑘

1
𝑎
2
𝑍 + 𝑎
2
𝑁𝑍 + 𝑎

3
= 0, (7)

𝑍 = 𝑐
1
−

𝑐
2

𝑘
1
+ 𝑁

, (8)

where 𝑎
1
= 𝜆 − 𝑑𝑘

1
+ (𝑘
2
(𝑚
2
+ 𝑑
2
)(𝛼𝑚
1
− 𝑟)/(𝜂𝜇 −𝑚

2
− 𝑑
2
)),

𝑎
2
= (𝛽𝑚

2
+ (𝛾(𝑚

2
+𝑑
2
)/𝜂)) > 0, 𝑎

3
= (𝜆𝑘

1
+ (𝛼𝑚

1
𝑘
1
𝑘
2
(𝑚
2
+

𝑑
2
)/(𝜂𝜇−𝑚

2
−𝑑
2
))) > 0, 𝑐

1
= 𝑘
2
𝜂(𝑤𝑟−𝑚

1
−𝑑
1
)/(𝜂𝜇−𝑚

2
−𝑑
2
),

and 𝑐
2
= 𝑤𝑟𝑘

1
𝑘
2
𝜂/(𝜂𝜇 − 𝑚

2
− 𝑑
2
) > 0. Equation (7) can also

be rewritten as

𝑍 = 𝑏
1
(𝑘
1
+ 𝑁) −

𝑏
2

𝑘
1
+ 𝑁

− 𝑔, (9)

with

𝑏
1
=
𝑑

𝑎
2

=
𝑑

𝛽𝑚
2
+ (𝛾 (𝑚

2
+ 𝑑
2
) /𝜂)

> 0,

𝑏
2
=
𝑎
3
− 𝑘
1
(𝑑𝑘
1
+ 𝑎
1
)

𝑎
2

= 𝑘
1
𝑘
2
(𝑚
2
+ 𝑑
2
) 𝑟

× ((𝜂𝜇 − 𝑚
2
− 𝑑
2
) (𝛽𝑚

2
+
𝛾 (𝑚
2
+ 𝑑
2
)

𝜂
))

−1

> 0,

𝑔 =
2𝑑𝑘
1
+ 𝑎
1

𝑎
2

= ((𝜆 + 𝑑𝑘
1
) (𝜂𝜇 − 𝑚

2
− 𝑑
2
)

+𝑘
2
(𝑚
2
+ 𝑑
2
) (𝛼𝑚

1
− 𝑟))

× ((𝜂𝜇 − 𝑚
2
− 𝑑
2
) (𝛽𝑚

2
+
𝛾 (𝑚
2
+ 𝑑
2
)

𝜂
))

−1

.

(10)

From (8), we have 𝑍

|
𝑁

= 𝑐
2
/(𝑘
1
+ 𝑁)
2

> 0, so,
𝑍 is a monotonous increasing function about 𝑁, and the
asymptotes are 𝑁 = −𝑘

1
and 𝑍 = 𝑐

1
. In the same way, for

(9), 𝑍|
𝑁

= 𝑏
1
+ (𝑏
2
/(𝑘
1
+ 𝑁)
2
) > 0, 𝑍 is a monotonous

increasing function about𝑁, and the asymptotes are𝑁 = −𝑘
1

and 𝑍 = 𝑏
1
(𝑘
1
+ 𝑁) − 𝑔. Neglecting the left branches of
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Table 2: Pollutant discharge amount of Taihu Lake area in 1998.

Source of pollution CODcr TN TP
𝑋/(𝑡/𝑎) 𝑌/% 𝑋/(𝑡/𝑎) 𝑌/% 𝑋/(𝑡/𝑎) 𝑌/%

𝐻
1

160 478.2 21.51 4041.8 3.71 264.74 1.70
𝐻
2

197 470.2 26.47 32 911.7 30.22 7477.10 47.89
𝐻
3

272 805.7 36.59 53 970.0 49.54 3990.41 25.56
𝐻
4

8585.0 1.15 800.0 0.73 192.00 1.22
𝐻
5

37 850.0 5.08 6710.0 6.16 2820.00 18.06
𝐻
6

40 791.9 5.47 5703.9 5.24 634.92 4.07
𝐻
7

150.2 0.02 81.1 0.07 5.60 0.04
𝐻
8

23 595.0 3.16 2759.5 2.53 60.10 0.39
𝐻
9

— — 420.9 0.39 33.00 0.21
𝐻
10

3883.7 0.05 1538.2 1.41 132.02 0.86
Total 745 609.9 100.0 108 937.1 100.0 15 609.89 100.0

figures of (8) and (9), the Figures of (8) and (9) are shown
in Figures 1(a) and 1(b). If we want the curve of (8) and the
curve of (9) to intersect in the first quadrant, we must have
𝑐
1
> 0; that is, 𝑤𝑟 − 𝑚

1
− 𝑑
1
> 0. If 𝑍 = 0 in (8) and

(9), we can calculate 𝐴 Δ= (𝑁
1
, 0) = ((𝑐

2
/𝑐
1
) − 𝑘
1
, 0) and

𝐶
Δ

= (𝑁
2
, 0) = ((1/2𝑏

1
)(𝑔 − 2𝑏

1
𝑘
1
+ √𝑔2 + 4𝑏

1
𝑏
2
), 0). While

𝑁
1
= (𝑐
2
/𝑐
1
) − 𝑘
1
= (𝑚

1
+ 𝑑
1
)𝑘
1
/(𝑤𝑟 − 𝑚

1
− 𝑑
1
) > 0 if

𝑤𝑟 − 𝑚
1
− 𝑑
1
> 0; that is,𝑁

1
= �̂�.

If 𝑁
1
< 𝑁
2
, then the figures of (8) and (9) only have a

positive intersection point; that is,

𝑘
2
(𝑚
2
+ 𝑑
2
) (𝑤𝑟 − 𝑚

1
− 𝑑
1
) (𝑚
1
(1 − 𝑤𝛼) + 𝑑

1
)

+ 𝑤 (𝑚
2
+ 𝑑
2
− 𝜂𝜇) (𝑤𝑟𝜆 − (𝜆 + 𝑑𝑘

1
) (𝑚
1
+ 𝑑
1
))

< 0.

(11)

That is, 𝜆 > (𝑘
2
(𝑚
2
+ 𝑑
2
)(𝑤𝑟 − 𝑚

1
− 𝑑
1
)(𝑚
1
(1 − 𝑤𝛼) + 𝑑

1
) +

𝑤(𝜂𝜇 − 𝑚
2
− 𝑑
2
)𝑑𝑘
1
(𝑚
1
+ 𝑑
1
)) / 𝑤(𝜂𝜇 − 𝑚

2
− 𝑑
2
)(𝑤𝑟 − 𝑚

1
−

𝑑
1
)
Δ

= 𝜆
∗. Obviously, 𝜆∗ > 𝜆

0. If 𝑁
1
= 𝑁
2
, then (8) and

(9) only intersect on the positive 𝑁 axis; that is, 𝑍 = 0 and
𝜆 = 𝜆

∗; then 𝑃∗ = �̂�. In this condition, the equilibrium only
has 𝐸 = (�̂�, �̂�, 0).

According to the above statement, we know that the
system (1) only has a positive equilibrium if 𝜂𝜇−𝑚

2
−𝑑
2
> 0,

𝑤𝑟 − 𝑚
1
− 𝑑
1
> 0, and 𝜆 > 𝜆

∗.
The existence of equilibria is summarized as follows:

(i) 𝐸
0
= (𝑁
0
, 0, 0) always exists;

(ii) 𝐸 = (�̂�, �̂�, 0) exists if 𝑤𝑟 − 𝑚
1
− 𝑑
1
> 0 and 𝜆 > 𝜆

0

hold;
(iii) 𝐸∗ = (𝑁

∗
, 𝑃
∗
, 𝑍
∗
) exists if 𝑤𝑟 − 𝑚

1
− 𝑑
1
> 0, 𝜂𝜇 −

𝑚
2
− 𝑑
2
> 0, and 𝜆 > 𝜆

∗.

2.2. Stability of Equilibria of the System (1). First, we know
that all solutions of (1) are uniformly ultimately bounded, that
is,

Theorem 1. For each positive solution 𝑥(𝑡) = (𝑁(𝑡), 𝑃(𝑡),

𝑍(𝑡)) of system (1) there exists a constant 𝑀 > 0, such that
𝑁(𝑡) ≤ 𝑀, 𝑃(𝑡) ≤ 𝑀, and 𝑍(𝑡) ≤ 𝑀 with 𝑡 large enough.
Proof. Define a function 𝐿(𝑡, 𝑥) such that 𝐿(𝑡, 𝑥) = 𝑁(𝑡) +

𝑃(𝑡) + 𝑍(𝑡). Then 𝐿(𝑡, 𝑥) ∈ 𝑉
0
and the upper right derivative

of 𝐿(𝑡, 𝑥) along a solution of system (1) is described as

𝐷
+
𝐿 (𝑡, 𝑥) |

(1)
= 𝜆 − 𝑑𝑁 + (𝛼 − 1)𝑚

1
𝑃

+ (𝛽 − 1)𝑚
2
𝑍 − 𝑑

1
𝑃 − 𝑑
2
𝑍

+ (𝑤 − 1)
𝑟𝑁𝑃

𝑘
1
+ 𝑁

+ (𝛾 + 𝜂 − 1)
𝜇𝑃𝑍

𝑘
2
+ 𝑃

≤ 𝜆 − 𝑑𝑁 − (𝑑
1
+ (1 − 𝛼)𝑚

1
) 𝑃

− (𝑑
2
+ (1 − 𝛽)𝑚

2
) 𝑍

≤ 𝜆 − 𝑑𝐿 (𝑡, 𝑥) ,

(12)

where 𝑑 = min{𝑑, 𝑑
1
+ (1 − 𝛼)𝑚

1
, 𝑑
2
+ (1 − 𝛽)𝑚

2
}. Hence

𝐷
+
𝐿(𝑡, 𝑥)|

(1)
≤ −𝑑𝐿(𝑡, 𝑥) + 𝜆. So, we have

𝐿 (𝑡, 𝑥) ≤
𝜆

𝑑

+ (𝐿 (0) −
𝜆

𝑑

) 𝑒
−𝑑𝑡

→
𝜆

𝑑

, 𝑡 → ∞. (13)

Therefore, 𝐿(𝑡, 𝑥) is ultimately bounded by a constant and
there exists a constant𝑀 > 0, such that𝑁(𝑡) ≤ 𝑀, 𝑃(𝑡) ≤ 𝑀,
and 𝑍(𝑡) ≤ 𝑀, for each solution 𝑥(𝑡) = (𝑁(𝑡), 𝑃(𝑡), 𝑍(𝑡)) of
system (1) with 𝑡 large enough. The proof is complete.

In the following, we let 𝐸
0

= (𝑁
0
, 𝑃
0
, 𝑍
0
) be any

equilibrium of system (1); then the Jacobian matrix about 𝐸
0

is given by



Journal of Applied Mathematics 5

Z
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Figure 1: Figures of (8) and (9), where (a) is the figure of (9) and (b) is the figure of (8).

𝐽|𝐸0
=
(
(

(

−𝑑 −
𝑟𝑘
1
𝑃
0

(𝑘
1
+ 𝑁
0
)
2

−
𝑟𝑁
0

𝑘
1
+ 𝑁
0

+ 𝛼𝑚
1
+

𝛾𝜇𝑘
2
𝑍
0

(𝑘
2
+ 𝑃
0
)
2

𝛽𝑚
2
+

𝛾𝜇𝑃
0

𝑘
2
+ 𝑃
0

𝑤𝑟𝑘
1
𝑃
0

(𝑘
1
+ 𝑁
0
)
2

𝑤𝑟𝑁
0

𝑘
1
+ 𝑁
0

− 𝑚
1
− 𝑑
1
−

𝜇𝑘
2
𝑍
0

(𝑘
2
+ 𝑃
0
)
2

−
𝜇𝑃
0

𝑘
2
+ 𝑃
0

0
𝜂𝜇𝑘
2
𝑍
0

(𝑘
2
+ 𝑃
0
)
2

𝜂𝜇𝑃
0

𝑘
2
+ 𝑃
0

− 𝑚
2
− 𝑑
2

)
)

)

, (∗)

denoted by

𝐽|𝐸0
= (

𝑎
11

𝑎
12

𝑎
13

𝑎
21

𝑎
22

𝑎
23

0 𝑎
32

𝑎
33

) ; (14)

then the characteristic equation about 𝐸
0
is: 𝜆3+𝑝

1
𝜆
2
+𝑝
2
𝜆+

𝑝
3
= 0, where

𝑝
1
= − (𝑎

11
+ 𝑎
22
+ 𝑎
33
) ,

𝑝
2
= 𝑎
11
𝑎
22
+ 𝑎
11
𝑎
33
+ 𝑎
22
𝑎
33
− 𝑎
21
𝑎
12
− 𝑎
23
𝑎
32
,

𝑝
3
= 𝑎
12
𝑎
21
𝑎
33
− 𝑎
11
𝑎
22
𝑎
33
− 𝑎
21
𝑎
32
𝑎
13
+ 𝑎
11
𝑎
23
𝑎
32
.

(15)

About the stability of the equilibrium 𝐸
0, 𝐸, and 𝐸∗, we

have the following results.

Theorem 2. The steady state 𝐸
0 of system (1) is locally

asymptotically stable if 𝑚
1
+ 𝑑
1
> (𝑤𝑟𝑁

0
/(𝑘
1
+ 𝑁
0
)); that

is, 𝑤𝑟 − 𝑚
1
− 𝑑
1
> 0 and 𝜆 < 𝜆

0.

Proof. For equilibrium 𝐸
0
= (𝑁

0
, 0, 0) = (𝜆/𝑑, 0, 0), the

Jacobian matrix evaluated at 𝐸0 is

𝐽|𝐸0 =
(

(

−𝑑 −
𝑟𝑁
0

𝑘
1
+ 𝑁0

+ 𝛼𝑚
1

𝛽𝑚
2

0
𝑤𝑟𝑁
0

𝑘
1
+ 𝑁0

− 𝑚
1
− 𝑑
1

0

0 0 − (𝑚
2
+ 𝑑
2
)

)

)

; (16)

obviously, two of eigenvalues are 𝜆
1
= −𝑑 < 0 and 𝜆

2
=

−(𝑚
2
+ 𝑑
2
) < 0; the other eigenvalue is 𝜆

3
= (𝑤𝑟𝑁

0
/(𝑘
1
+

𝑁
0
)) − 𝑚

1
− 𝑑
1
. The steady state 𝐸0 is asymptotically stable if

and only if the eigenvalues of the Jacobian matrix at 𝐸0 have
negative real parts; the proof is complete.

Theorem 2 implies that if the nutrient-phytoplankton
conversion rate is less than phytoplankton loss rate, then both
phytoplankton and zooplankton population will become
extinct.

Theorem 3. The steady state 𝐸 of system (1) is locally asymp-
totically stable if𝑚

2
+ 𝑑
2
− 𝜂𝐴
2
> 0; that is, 𝑤𝑟 −𝑚

1
− 𝑑
1
> 0,

𝜂𝜇 − 𝑚
2
− 𝑑
2
> 0, and 𝜆 < 𝜆

∗.

Proof. For equilibrium 𝐸 = (�̂�, �̂�, 0), from the second
equation of the system (1), we have (𝑤𝑟�̂�/(𝑘

1
+�̂�))−𝑚

1
−𝑑
1
=
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0; that is, (𝑟�̂�/(𝑘
1
+ �̂�)) = ((𝑚

1
+ 𝑑
1
)/𝑤), so −(𝑟�̂�/(𝑘

1
+

�̂�)) + 𝛼𝑚
1
+ (𝛾𝜇𝑘

2
𝑍/(𝑘
2
+ �̂�)
2

) = −((𝑚
1
+ 𝑑
1
)/𝑤) + 𝛼𝑚

1
+

(𝛾𝜇𝑘
2
𝑍/(𝑘
2
+ �̂�)
2

) = −((1 − 𝑤𝛼)𝑚
1
+ 𝑑
1
)/𝑤 < 0. Hence (∗)

reduces to

𝐽|
𝐸
=

(
(
(
(

(

−𝑑 −
𝑟𝑘
1
�̂�

(𝑘
1
+ �̂�)
2
−
(1 − 𝑤𝛼)𝑚

1
+ 𝑑
1

𝑤
𝛽𝑚
2
+

𝛾𝜇�̂�

𝑘
2
+ �̂�

𝑤𝑟𝑘
1
�̂�

(𝑘
1
+ �̂�)
2

0 −
𝜇�̂�

𝑘
2
+ �̂�

0 0
𝜂𝜇�̂�

𝑘
2
+ �̂�

− 𝑚
2
− 𝑑
2

)
)
)
)

)

≜ (

−𝑑 − 𝐴
1
−𝑑 𝛽𝑚

2
+ 𝛾𝐴
2

𝑤𝐴
1

0 −𝐴
2

0 0 𝜂𝐴
2
− 𝑚
2
− 𝑑
2

) ,

(17)

with 𝐴
1
= 𝑟𝑘
1
�̂�/(𝑘
1
+ �̂�)
2

> 0, 𝐴
2
= 𝜇�̂�/(𝑘

2
+ �̂�) > 0, and

𝑑 = ((1 −𝑤𝛼)𝑚
1
+𝑑
1
)/𝑤 > 0. Then 𝜆3 +𝑝

1
𝜆
2
+𝑝
2
𝜆+𝑝
3
= 0,

where

𝑝
1
= (𝑑 + 𝐴

1
) + (𝑚

2
+ 𝑑
2
− 𝜂𝐴
2
) ,

𝑝
2
= (𝑑 + 𝐴

1
) (𝑚
2
+ 𝑑
2
− 𝜂𝐴
2
) + 𝑑𝑤𝐴

1
,

𝑝
3
= 𝑑𝑤𝐴

1
(𝑚
2
+ 𝑑
2
− 𝜂𝐴
2
) ;

(18)

then 𝑝
1
𝑝
2
−𝑝
3
= (𝑑 + 𝐴

1
)
2
(𝑚
2
+𝑑
2
−𝜂𝐴
2
)+𝑑
1
𝑤𝐴
1
(𝑑+𝐴

1
)+

(𝑑 + 𝐴
1
)(𝑚
2
+ 𝑑
2
− 𝜂𝐴
2
)
2. Obviously, 𝑝

𝑖
> 0 ( 𝑖 = 1, 2, 3) and

𝑝
1
𝑝
2
− 𝑝
3
> 0 if 𝑚

2
+ 𝑑
2
− 𝜂𝐴
2
> 0. According to Routh-

Hurwitz criteria, 𝐸 is locally stable if𝑚
2
+ 𝑑
2
− 𝜂𝐴
2
> 0. The

proof is complete.

Theorem 3 implies that if the growth rate of zooplankton
is less than its loss rate, then the zooplankton population will
die out and the phytoplankton population will survive on the
nutrient.

Theorem 4. The steady state 𝐸
∗ of system (1) is locally

asymptotically stable if ℎ
1
> 0 and ℎ

1
ℎ
2
− ℎ
3
> 0.

Proof. For equilibrium 𝐸
∗
= (𝑁
∗
, 𝑃
∗
, 𝑍
∗
), (∗) reduces to

𝐽|𝐸∗ =

(
(
(

(

−𝑑 −
𝑟𝑘
1
𝑃
∗

(𝑘
1
+ 𝑁∗)

2
−

𝑟𝑁
∗

𝑘
1
+ 𝑁∗

+ 𝛼𝑚
1
+

𝛾𝜇𝑘
2
𝑍
∗

(𝑘
2
+ 𝑃∗)

2
𝛽𝑚
2
+

𝛾𝜇𝑃
∗

𝑘
2
+ 𝑃∗

𝑤𝑟𝑘
1
𝑃
∗

(𝑘
1
+ 𝑁∗)

2

𝑤𝑟𝑁
∗

𝑘
1
+ 𝑁∗

− 𝑚
1
− 𝑑
1
−

𝜇𝑘
2
𝑍
∗

(𝑘
2
+ 𝑃∗)

2
−

𝜇𝑃
∗

𝑘
2
+ 𝑃∗

0
𝜂𝜇𝑘
2
𝑍
∗

(𝑘
2
+ 𝑃∗)

2
0

)
)
)

)

≜ (

−𝑑 − 𝐵
1

−𝐵
2
+ 𝛼𝑚
1
+ 𝛾𝐵
3

𝛽𝑚
2
+ 𝛾𝐵
4

𝑤𝐵
1

𝑤𝐵
2
− 𝑚
1
− 𝑑
1
− 𝐵
3

−𝐵
4

0 𝜂𝐵
3

0

) ,

(19)

with 𝐵
1
= 𝑟𝑘
1
𝑃
∗
/(𝑘
1
+ 𝑁
∗
)
2, 𝐵
2
= 𝑟𝑁

∗
/(𝑘
1
+ 𝑁
∗
), 𝐵
3
=

𝜇𝑘
2
𝑍
∗
/(𝑘
2
+ 𝑃
∗
)
2, and 𝐵

4
= 𝜇𝑃
∗
/(𝑘
2
+𝑃
∗
). Then 𝜆3 +ℎ

1
𝜆
2
+

ℎ
2
𝜆 + ℎ
3
= 0, where

ℎ
1
= (𝑑 + 𝐵

1
) + (𝑚

1
+ 𝑑
1
+ 𝐵
3
− 𝑤𝐵
2
) ,

ℎ
2
= (𝑑 + 𝐵

1
) (𝑚
1
+ 𝑑
1
+ 𝐵
3
− 𝑤𝐵
2
)

+ 𝑤𝐵
1
(𝐵
2
− 𝛼𝑚
1
− 𝛾𝐵
3
) + 𝐵
4
𝜂𝐵
3
,

ℎ
3
= −𝑤𝐵

1
𝜂𝐵
3
(𝛽𝑚
2
+ 𝛾𝐵
4
) + 𝐵
4
(𝑑 + 𝐵

1
) 𝜂𝐵
3
;

(20)

then

ℎ
1
ℎ
2
− ℎ
3
= (𝑑 + 𝐵

1
)
2

(𝑚
1
+ 𝑑
1
+ 𝐵
3
− 𝑤𝐵
2
)

+ (𝑑 + 𝐵
1
) 𝑤𝐵
1
(𝐵
2
− 𝛼𝑚
1
− 𝛾𝐵
3
)

+ (𝑑 + 𝐵
1
) (𝑚
1
+ 𝑑
1
+ 𝐵
3
− 𝑤𝐵
2
)
2

+ 𝑤𝐵
1
(𝐵
2
− 𝛼𝑚
1
− 𝛾𝐵
3
)

⋅ (𝑚
1
+ 𝑑
1
+ 𝐵
3
− 𝑤𝐵
2
)

+ 𝐵
4
𝜂𝐵
3
(𝑚
1
+ 𝑑
1
+ 𝐵
3
− 𝑤𝐵
2
)

+ 𝑤𝐵
1
𝜂𝐵
3
(𝛽𝑚
2
+ 𝛾𝐵
4
) .

(21)
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From (5), we have 𝑤𝐵
2
− 𝑚
1
− 𝑑
1
− (𝜇𝑍

∗
/(𝑘
2
+ 𝑃
∗
)) = 0, so

𝑤𝐵
2
−𝑚
1
−𝑑
1
−𝐵
3
= (𝜇𝑍

∗
/(𝑘
2
+𝑃
∗
))−𝐵
3
= (𝜇𝑍

∗
/(𝑘
2
+𝑃
∗
))−

(𝜇𝑘
2
𝑍
∗
/(𝑘
2
+ 𝑃
∗
)
2
) = 𝜇𝑃

∗
𝑍
∗
/(𝑘
2
+ 𝑃
∗
)
2
> 0. According to

Routh-Hurwitz criteria, we haveTheorem 4.
The existence and local stability of equilibria are summa-

rized as follows:
(i) 𝐸
0
= (𝑁
0
, 0, 0) always exists; 𝐸

0
is local stable if 𝑤𝑟 −

𝑚
1
−𝑑
1
> 0 and 𝜆 < 𝜆

0;𝐸
0
is unstable if𝑤𝑟−𝑚

1
−𝑑
1
>

0 and 𝜆 > 𝜆
0;

(ii) 𝐸 = (�̂�, �̂�, 0) exists if𝑤𝑟−𝑚
1
−𝑑
1
> 0 and𝜆 > 𝜆

0 hold;
𝐸 is local stable if𝑤𝑟−𝑚

1
−𝑑
1
> 0, 𝜂𝜇 −𝑚

2
−𝑑
2
> 0,

and 𝜆
0
< 𝜆 < 𝜆

∗; 𝐸 is unstable if 𝑤𝑟 − 𝑚
1
− 𝑑
1
>

0, 𝜂𝜇 − 𝑚
2
− 𝑑
2
> 0 and 𝜆 > 𝜆

∗;
(iii) 𝐸∗ = (𝑁

∗
, 𝑃
∗
, 𝑍
∗
) exists if 𝑤𝑟 − 𝑚

1
− 𝑑
1
> 0, 𝜂𝜇 −

𝑚
2
− 𝑑
2
> 0, and 𝜆 > 𝜆

∗; 𝐸∗ is local stable if ℎ
1
> 0

and ℎ
1
ℎ
2
− ℎ
3
> 0.

From analysis, we know that the number of equilibrium
increaseswith the increase of𝜆: fromone equilibrium to three
equilibria. The stability of equilibria changes with changing
𝜆; when equilibrium 𝐸

∗ becomes unstable, algal bloom will
break out. So, controlling the amount of input nutrient is very
important in controlling water bloom; for more detail we can
see the Discussion section.

3. Impulsive Input Nutrient

Pulse input nutrient can be defined as the repeated appli-
cation of input nutrient. Some factory discharge pollution
periodicity, and rains are also seasonally. So in this section,
we assume that the pulse scheme proposes to input nutrient
𝜆 in a single pulse, applied every 𝜏 period (𝜏 > 0). So the
expression 𝜆 in system (1) is presented in pulses; we have the
following impulsive differential equations:

�̇� = −𝑑𝑁 −
𝑟𝑁𝑃

𝑘
1
+ 𝑁

+ 𝛼𝑚
1
𝑃 + 𝛽𝑚

2
𝑍 +

𝛾𝜇𝑃𝑍

𝑘
2
+ 𝑃

,

�̇� =
𝑤𝑟𝑁𝑃

𝑘
1
+ 𝑁

− 𝑚
1
𝑃 − 𝑑
1
𝑃 −

𝜇𝑃𝑍

𝑘
2
+ 𝑃

,

�̇� =
𝜂𝜇𝑃𝑍

𝑘
2
+ 𝑃

− 𝑚
2
𝑍 − 𝑑

2
𝑍,

𝑡 ̸= 𝑛𝜏,

𝑁 (𝑡
+
) = 𝑁 (𝑡

−
) + 𝜆,

𝑃 (𝑡
+
) = 𝑃 (𝑡

−
) ,

𝑍 (𝑡
+
) = 𝑍 (𝑡

−
) ,

𝑡 = 𝑛𝜏,

(22)

where 𝑛 = 0, 1, 2, . . . , 𝜏 is the period of input nutrient, 𝑛𝜏+ is
the time at which we apply the 𝑛th pulse, and 𝑛𝜏− is the time
just before applying the 𝑛th pulse. Other denotations are the
same as system (1).

Before we consider the stability of the boundary periodic
solution, we need the following lemmas.

Lemma 5. Suppose 𝑥(𝑡) = (𝑁(𝑡), 𝑃(𝑡), 𝑍(𝑡)) is a solution of
system (22)with initial values 𝑥(0+) ≥ 0; then 𝑥(𝑡) ≥ 0; that is,
𝑁(𝑡) ≥ 0, 𝑃(𝑡) ≥ 0 and 𝑍(𝑡) ≥ 0; further 𝑥(𝑡) > 0 for all 𝑡 ≥ 0

if 𝑥(0+) > 0.

The result can be easily obtained from system (22), so we
omit it.

Theorem 6. For each positive solution 𝑥(𝑡) =

(𝑁(𝑡), 𝑃(𝑡), 𝑍(𝑡)) of system (22) there exists a constant
𝑀 > 0, such that𝑁(𝑡) ≤ 𝑀, 𝑃(𝑡) ≤ 𝑀, and 𝑍(𝑡) ≤ 𝑀 with 𝑡
large enough.

Proof. Define a function 𝐿(𝑡, 𝑥) such that 𝐿(𝑡, 𝑥) = 𝑁(𝑡) +

𝑃(𝑡) + 𝑍(𝑡). Then 𝐿(𝑡, 𝑥) ∈ 𝑉
0
and the upper right derivative

of 𝐿(𝑡, 𝑥) along a solution of (22) is described as

𝐷
+
𝐿 (𝑡, 𝑥) |

(22)
= − 𝑑𝑁 + (𝛼 − 1)𝑚

1
𝑃 + (𝛽 − 1)𝑚

2
𝑍

− 𝑑
1
𝑃 − 𝑑
2
𝑍 + (𝑤 − 1)

𝑟𝑁𝑃

𝑘
1
+ 𝑁

+ (𝛾 + 𝜂 − 1)
𝜇𝑃𝑍

𝑘
2
+ 𝑃

≤ − 𝑑𝑁 − 𝑑
1
𝑃 − 𝑑
2
𝑍

≤ − 𝑑𝐿 (𝑡, 𝑥) ,

(23)

where 𝑑 = min{𝑑, 𝑑
1
, 𝑑
2
}. Hence 𝐷+𝐿(𝑡, 𝑥)|

(22)
≤ −𝑑𝐿(𝑡, 𝑥).

When 𝑡 = 𝑛𝑇, we obtain 𝐿(𝑛𝜏+) ≤ 𝐿(𝑛𝜏) + 𝜆. So, we have

𝐿 (𝑡) = 𝐿 (0
+
) 𝑒
−𝑑𝑡

+
𝜆𝑒
𝑑𝜏

𝑒𝑑𝜏 − 1

(𝑒
−𝑑(𝑡−𝑛𝜏)

− 𝑒
−𝑑𝑡
)

→
𝜆𝑒
𝑑𝜏

𝑒𝑑𝜏 − 1

, 𝑡 → ∞.

(24)

Therefore 𝐿(𝑡, 𝑥) is ultimately bounded by a constant and
there exists a constant𝑀 > 0, such that𝑁(𝑡) ≤ 𝑀, 𝑃(𝑡) ≤ 𝑀,
and 𝑍(𝑡) ≤ 𝑀, for each solution 𝑥(𝑡) = (𝑁(𝑡), 𝑃(𝑡), 𝑍(𝑡)) of
system (22) with 𝑡 large enough. The proof is complete.

For convenience, we give some basic properties of the
following system:

�̇� (𝑡) = −𝑑𝑁 (𝑡) , 𝑡 ̸= 𝑛𝜏,

Δ𝑁 (𝑡) = 𝜆, 𝑡 = 𝑛𝜏,

𝑁 (0
+
) = 𝑁

0
≥ 0.

(25)

Like [27], we have the following Lemma.

Lemma 7. System (25) has a positive periodic solution �̃�(𝑡)

and, for every solution 𝑁(𝑡) of system (25) with initial value
𝑁(0
+
) = 𝑁

0
≥ 0, we have 𝑁(𝑡) → �̃�(𝑡) as 𝑡 → ∞;

moreover, 𝑁(𝑡) ≥ �̃�(𝑡) if 𝑁
0

≥ 𝜆/(1 − exp(−𝑑𝜏)) and
𝑁(𝑡) < �̃�(𝑡) if 𝑁

0
< 𝜆/(1 − exp(−𝑑𝜏)), where �̃�(𝑡) =

𝜆 exp(−𝑑(𝑡 − 𝑛𝜏))/(1 − exp(−𝑑𝜏)), 𝑡 ∈ (𝑛𝜏, (𝑛 + 1)𝜏], and
𝑛 ∈ 𝑍

+
, �̃�(0+) = 𝜆/(1 − exp(−𝑑𝜏)).
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Therefore, the system (22) has a boundary eradication
periodic solution

(�̃� (𝑡) , 0, 0) = (
𝜆 exp (−𝑑 (𝑡 − 𝑛𝜏))
1 − exp (−𝑑𝜏)

, 0, 0) ,

for 𝑡 ∈ (𝑛𝜏, (𝑛 + 1) 𝜏] .
(26)

About the stability of the boundary periodic solution of the
system (22), we can use the similarmethod of [27] and get the
following theorem.

Theorem 8. If ((𝑘
1
+ (𝜆 − 𝑘

1
) exp(−𝑑𝜏))/(𝑘

1
+ 𝜆 −

𝑘
1
exp(−𝑑𝜏))) > exp(−(𝑑𝜏(𝑚

1
+ 𝑑
1
))/𝑤𝑟), then the periodic

boundary solution (�̃�(𝑡), 0, 0) of system (22) is locally asymp-
totically stable.

We denote �̂� = (𝑘
1
(1 − exp(−𝑑𝜏))(−1 + exp(−(𝑚

1
+

𝑑
1
)𝑑𝜏/𝑤𝑟)))/(exp(−𝑑𝜏) − exp(−(𝑚

1
+ 𝑑
1
)𝑑𝜏/𝑤𝑟)), 𝜏 =

2𝑟𝑤𝜆(𝑤𝑟−𝑚
1
−𝑑
1
)/𝑑(𝜆𝑤

2
𝑟
2
−𝜆(𝑚

1
+ 𝑑
1
)
2
+2𝑤𝑟𝑘

1
(𝑚
1
+𝑑
1
)).

According to Theorem 8 we can easily obtain the following
results.

Corollary 9. (i) If𝑤𝑟−𝑚
1
−𝑑
1
> 0, then (�̃�(𝑡), 0, 0) is locally

asymptotically stable provided that 𝜏 > 𝜏. (ii) If𝑤𝑟−𝑚
1
−𝑑
1
>

0, then (�̃�(𝑡), 0, 0) is locally asymptotically stable provided that
𝜆 < �̂�.

Corollary 9 implies that the phytoplankton and zoo-
plankton will disappear if the length of impulsive period is
large enough or the impulsive input rate of the nutrient is
small enough.

4. The Effect of Temperature on a Lake Model

Temperature is an important factor in the growth of algae.
So, in order to accurately describe the growth of algae, the
effect of temperature on the algal growth was considered in
[20, 28–30]. In [28], 𝑓(𝑇) = 𝑒

−(2.3/15)|𝑇−𝑇opt| was considered as
the coefficient of temperature, where 𝑇opt is the optimal tem-
perature for phytoplankton growth;𝑓(𝑇) = (𝑇/𝑇opt)𝑒

1−(𝑇/𝑇opt)

and 𝑓(𝑇) = 𝑒
−2.3|(𝑇−𝑇opt)/(𝑇opt−𝑇min)| were considered in [29,

30], respectively, where 𝑇min is minimum temperature for
phytoplankton growth. In fact, 𝑓(𝑇) = 𝑒

−(2.3/15)|𝑇−𝑇opt| and
𝑓(𝑇) = 𝑒

−2.3|(𝑇−𝑇opt)/(𝑇opt−𝑇min)| are the same form and the latter
is more generality, so, we only need to compare 𝑓(𝑇) =

𝑒
−2.3|(𝑇−𝑇opt)/(𝑇opt−𝑇min)| with 𝑓(𝑇) = (𝑇/𝑇opt)𝑒

1−(𝑇/𝑇opt). If we
let 𝑇opt = 28, 𝑇min = 5, we can get Figure 2. From this
figure, we can know that 𝑓(𝑇) = 𝑒

−(2.3/23)|𝑇−28| changes
more rapidly than 𝑓(𝑇) = (𝑇/28)𝑒

1−(𝑇/28). According to
interrelated literature, we take the growth of the algae as
𝑓(𝑇) = 𝑒

−2.3|(𝑇−𝑇opt)/(𝑇opt−𝑇min)|.
In fact, the effect of temperature on the algal growth can

be described as follows: algae can not grow if the temperature
is too low; the metabolism rate will become large if the
temperature is too high; organic matter of photosynthesis
synthesis is decomposed by metabolism rapidly, so it also
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Figure 2: 𝑓
1
(𝑇) = (𝑇/28)𝑒

1−(𝑇/28), 𝑓
2
(𝑇) = 𝑒

−(2.3/23)|𝑇−28|.

limits the increasing of algae biomass. So, the effect of temper-
ature on the growth of algae in general can be expressed as the
following form: 𝑓(𝑇) = 𝑒

−𝐾𝑇|𝑇−𝑇opt| [20, page 349], where 𝐾
𝑇

is the temperature impact coe±cient of the growth of algae.
Taking into account that Microcystis aeruginosa population
is the dominant algae species in Taihu Lake, generally the
optimal temperature for Microcystis aeruginosa growth is
thought of as 28∘C [20, page 213], so we take 𝑇opt = 28

∘C.
The effect of temperature on the growth of zooplankton

is similar to the effect of temperature on the growth of
phytoplankton [30].

Taking into account the effect of temperature on the
growth of plankton and incorporating the paper of Taihu
Lake [20], we consider the following model of Taihu Lake:

�̇� (𝑡) = 𝜆 − 𝑑𝑁 (𝑡) − 𝑢 (𝑡) 𝑃 (𝑡) + 𝛼𝑚
1
𝑃 (𝑡)

+ 𝛽𝑚
2
𝑍 (𝑡) + 𝛾V (𝑡) 𝑍 (𝑡) ,

�̇� (𝑡) = 𝑤𝑢 (𝑡) 𝑃 (𝑡) − 𝑚
1
𝑃 (𝑡) − 𝑑

1
𝑃 (𝑡) − V (𝑡) 𝑍 (𝑡) ,

�̇� (𝑡) = 𝜂V (𝑡) 𝑍 (𝑡) − 𝑚
2
𝑍 (𝑡) − 𝑑

2
𝑍 (𝑡) ,

(27)

where 𝑢(𝑡) = 𝑢max𝑓1(𝑇)𝑓2(𝑁), V(𝑡) = Vmax𝑓3(𝑇)𝑓4(𝑃),
𝑚
1

= 𝑚
1max𝑓1(𝑇), 𝑚

2
= 𝑚

2max𝑓3(𝑇), 𝑓
1
(𝑇) =

𝑒
−2.3|(𝑇−𝑇1opt)/(𝑇1opt−𝑇1min)|, 𝑓

2
(𝑁) = 𝑁/(𝑘

1
+ 𝑁), 𝑓

3
(𝑇) =

𝑒
−2.3|(𝑇−𝑇2opt)/(𝑇2opt−𝑇2min)|, and 𝑓

4
(𝑃) = 𝑃/(𝑘

2
+ 𝑃). The

meaning of parameters is as follows: 𝑢max(Vmax) is the
maximum growth rate of phytoplankton (zooplankton), 𝑇
is temperature, 𝑚

1max(𝑚2max) is the maximum death and
respiration rate of phytoplankton (zooplankton), 𝑇

1opt(𝑇2opt)
is the optimal temperature of phytoplankton (zooplankton)
growth, and 𝑇

1min(𝑇2min) is the minimum temperature of
phytoplankton (zooplankton) growth. From [27, 28, 31, 32],
we have 𝑇

1opt = 28
∘C, 𝑇
2opt = 28

∘C, 𝑇
1min = 5

∘C, 𝑇
2min =

5
∘C, 𝑢max = 1.27 d−1, Vmax = 0.35 d−1, 𝑚

1max = 1.02 d−1,
and 𝑚

2max = 0.145 d−1. We take 𝑑 = 𝑑
1
= 𝑑
2
, where

𝑑 = 𝑄/𝑉, 𝑄 is the outflow of the lake, 𝑉 is the volume of the
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Figure 3: (a), (b), and (c) are time series of nutrient, phytoplankton, and zooplankton for 𝑇 = 10, 18, 27, respectively, where the thick line is
the phytoplankton curve, the middle line is the nutrient curve, and the thin line is zooplankton curve.

lake. For Taihu Lake [27], 𝑘
1
= 0.35mgL−1, 𝑘

2
= 0.5mgL−1,

𝑄 = 1.56 × 10
7m3d−1, and𝑉 = 4.43 × 10

9m3, so we have 𝑑 =
0.323 d−1. If we let𝑤 = 1, 𝛼 = 1, 𝛽 = 0.5, 𝜂 = 0.8, 𝛾 = 0.1, and
𝜆 = 0.08, then the positive equilibrium is unstable andwe can
get Figures 3(a), 3(b), and 3(c) for𝑇 = 10, 18, 27, respectively.
From comparing these figures, it consumes different lengths
of time for the amount of algae to get the maximum. The
time at which algae get the peak is the shortest for 𝑇 =

27, so comparatively suitable temperature is easier to break
out water bloom. This agrees with the reality and provides a
theoretical basis for understanding water bloom.

Water bloom often breaks out in Taihu Lake in recent
years. Last year, water bloombroke out in Taihu Lake onMay;
it caused Wuxi citizen drinking water crisis and brought to
the lives of people a lot of inconvenience. In order to control
(or reduce) water bloom of Taihu Lake immediately, one of
measures which the government took is to make Yangtze
River water flow into Taihu Lake. This measure reflected in

model (27) is that parameter 𝑑 is changing, that is, increasing
coefficient 𝑑.

If we increase the parameter 𝑑 and let 𝑑 = 0.01,
𝑇 = 18, then we can know that the positive equilibrium is
unstable for 𝑑 = 0.0035 (Figure 4(a)) and stable for 𝑑 =

0.01 (Figure 4(b)). Again, water bloom corresponding to the
unstable positive equilibrium, normal state corresponding to
the stable equilibrium, we know that water bloom disappears
if we increase 𝑑 from 0.0035 to 0.01.

And the maximum biomass of algae is about 8.5 for 𝑑 =

0.0035 and is about 3.3 for 𝑑 = 0.01 nearby 𝑡 = 400;
we also see that the biomass of algae is decreasing also. If
we increase 𝑑 to 0.014 again (Figure 4(c)), then the positive
equilibrium disappears and the boundary equilibrium 𝐸 is
stable. The biomass of algae gets the maximum value 1.824
and gets stable finally. We can see that the biomass of algae is
decreasing with the increase of parameter 𝑑. So, from above
analysis, we give theoretical explanation for the government
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Figure 4: (a), (b), and (c) are time series of nutrient, phytoplankton, and zooplankton for 𝑑 = 0.0035, 0.01, 0.014, respectively, where the
thick line is the phytoplankton curve, the middle line is the nutrient curve, and the thin line is zooplankton curve.

measure to Taihu Lake, and this indicates that our model is
reasonable for Taihu Lake at the same time.

Controlling eutrophication of Taihu Lake fundamentally
is a long term project. In the long term, we need to control the
nutrient from outside and make a series of strict standards of
discharging sewage step by step, that is, decreasing parameter
𝜆; thiswill take long time to realize it. In order to controlwater
bloom in a short term, reduce the negative impact on people’s
lives immediately; we can increase the flow of the water, that
is increasing parameter 𝑑; this agrees with the government
measure.

5. Discussion

In the present research, the phenomenon of phytoplankton
bloom has received much attention among experimental
ecologists and mathematical ecologists. There are many
papers where phytoplankton blooms have been modelled
through different aspects [2–8]. In this paper, we study the

bloom phenomenon by controlling outside input nutrient
in an aquatic environment. Motivated by [12, 13], we have
also incorporated the phenomena of nutrient recycling which
have established importance in the context of a real open
marine ecosystem; that is, we consider decomposition of
phytoplankton, decomposition of zooplankton, and excretion
of zooplankton in the nutrient equation. The difference
between [13] and this paper is that [13] only had numerical
results and this paper gives not only theoretical analysis but
also numerical simulations. Different recycling effects make
the situation more complicated than a simple food chain
system, considering the amount of input nutrient to be a
control parameter which is seldom.

First, we consider a continuous input nutrient model,
we obtain that the system has two boundary equilibria,
and we analyze their stability. If the nutrient-phytoplankton
conversion rate is less than phytoplankton loss rate, that
is, the amount of input nutrient is less than some critical
value, then both phytoplankton and zooplankton population
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Figure 5: Existence of the periodic boundary solution (𝑁(𝑡), 𝑃(𝑡), 0) of system (22). (a), (b), and (c) are time series of nutrient, phytoplankton,
and zooplankton, respectively, where 𝜆 = 1.5.

will become extinct; see Theorem 2. If the growth rate of
zooplankton is less than its loss rate, that is, the amount of
input nutrient is less than some critical value and larger than
another critical value, then the zooplankton population will
die out and the phytoplankton population will survive on the
nutrient; see Theorem 3. We also investigate the existence of
the positive equilibrium and discuss the stability of positive
equilibrium; see Theorem 4.

According to Table 1, if we let 𝑑 = 0.1, 𝑑
1

= 0.1,
𝑑
2
= 0.1, 𝑟 = 0.3, 𝑘

1
= 0.1, 𝑘

2
= 0.05, 𝑚

1
= 0.15,

𝑚
2
= 0.1, 𝛽 = 0.5, 𝛾 = 0.5, 𝜇 = 0.8, 𝜂 = 0.3, 𝑤 = 1,

and 𝛼 = 1, then we can calculate 𝜆0 = 0.05, 𝜆∗ = 0.075.
If we let 𝜆 = 0.01, then the condition of Theorem 2 is
satisfied (0.01 < 0.05), and then both phytoplankton and
zooplankton population will become extinct; that is, 𝐸

0
=

(𝑁
0
, 0, 0) = (0.1, 0, 0) is locally asymptotically stable. If

we increase 𝜆 to 0.06, then the condition of Theorem 3 is
satisfied (0.06 < 0.075), and then the zooplankton population
will die out and the phytoplankton population will survive

on the nutrient; that is, 𝐸 = (�̂�, �̂�, 0) = (0.5, 0.1, 0) is
locally asymptotically stable. If we continue increasing 𝜆 to
0.08, then the condition of Theorem 4 is satisfied (ℎ

1
=

0.11498 > 0, ℎ
1
ℎ
2
− ℎ
3
= 0.00017 > 0), and the positive

equilibrium 𝐸
∗

= (𝑁
∗
, 𝑃
∗
, 𝑍
∗
) = (0.5462, 0.25, 0.00134)

is local asymptotically stability. Once again, if we continue
increasing 𝜆 to 0.2, then the condition of Theorem 4 is not
satisfied (ℎ

1
= 0.07438 > 0, ℎ

1
ℎ
2
− ℎ
3
= −0.00022 < 0),

and then the positive equilibrium 𝐸
∗

= (𝑁
∗
, 𝑃
∗
, 𝑍
∗
) =

(1.7144, 0.25, 0.01255)will becomeunstable, species densities
will oscillate vast scale, and then algae bloom will break out;
this corresponds to eutrophic. So, one way controlling algae
bloom is to control the amount of the limiting nutrient input
from the environment, that is, parameter 𝜆.

Then, we consider the model of pulse input nutrient,
that is, nutrient flow into the lake every 𝜏 period. We obtain
the exact boundary periodic solution of the impulsive input
nutrient system.Using Floquet theory for the impulsive equa-
tion, small-amplitude perturbation skills, and techniques of
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Figure 6: Another phenomenon of system (22). (a), (b), and (c) are time series of nutrient, phytoplankton, and zooplankton, respectively,
where 𝜆 = 1.7.

comparison, we prove that the boundary periodic solution is
locally asymptotically stable if some conditions are satisfied,
that is, Theorem 8. If we let 𝜆 = 0.1, 𝜏 = 10, other
parameters are the same as above; then �̂� = 0.5316 (0.1 <

0.5316); that is, Corollary 9 (ii) is satisfied. From numerical
simulation, with the increase of 𝜆, we guess there is nutrient-
phytoplankton coexistence and zooplankton extinct periodic
solution denoted by (𝑁(𝑡), 𝑃(𝑡), 0) (see Figure 5). And the
behavior of the system changes with the increase of 𝜆 again
(see Figure 6). We leave these for future study.

Finally, the effect of temperature on the algal growth was
considered; it is more accurate to describe the growth of
algae with consideration of temperature. From the example
of Taihu Lake, we analyze the effect of temperature on the
system and give some numerical simulation. We also give
theoretical analysis of measures which the government took
during water bloom of Taihu Lake. Our results suggest that
our lake model is correct and controlling the amount of input
rate is an important measure in controlling water bloom.
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