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The vast majority of the research efforts in project risk management tend to assess cost risk and schedule risk independently.
However, project cost and time are related in reality and the relationship between them should be analyzed directly. We propose
an integrated cost and schedule risk assessment model for complex product systems R&D projects. Graphical evaluation review
technique (GERT), Monte Carlo simulation, and probability distribution theory are utilized to establish the model. In addition,
statistical analysis and regression analysis techniques are employed to analyze simulation outputs. Finally, a complex product
systems R&D project as an example is modeled by the proposed approach and the simulation outputs are analyzed to illustrate
the effectiveness of the risk assessment model. It seems that integrating cost and schedule risk assessment can provide more reliable
risk estimation results.

1. Introduction

Complex product systems can be defined as high cost,
engineering-intensive products, systems, networks, and con-
structs [1]. Over the past two decades, the importance of com-
plex product systems has been recognized and investigated by
researchers (e.g., [2, 3]). Risk assessment of cost and schedule,
which plays an important role in complex product systems
R&D project management, is concerned and studied closely
[4].

The traditional approach to estimating risk of cost and
schedule has been to estimate them independently (e.g.,
[5, 6]). However, a number of limitations of independent
estimation are pointed out by researchers. For example,
Xu et al. [7] set up the estimationmodels of cost risk, schedule
risk, and integrated risk, which show that the integrated
risk probability estimation is different from independent
estimaation. Additionally, Isidore and Back [8] verified that
choosing a schedule value having a high confidence level does
not guarantee that the associated cost estimate, correspond-
ing to the selected schedule value, will also have a comparably
high level of confidence, and vice versa. Hence, it is valuable
to study the integrated risk.

In recent years, many approaches have been proposed
to carry out relative research into integrated analysis prob-
lems of stochastic cost and schedule. Carr [9] presented
equations which described parallel hierarchical cost and
schedule control systems that calculate cost, schedule, and
time variances at different levels of detail. Lee and Yi
[10] utilized matrix analysis method which integrated the
data of cost and duration in the form of matrix to study
project integrated plan. Sen et al. [11] proposed an integrated
probabilistic risk analysis for systems with multiple state
variables. Robert and Randal [12] discussed a technique
for integrating the uncertainties associated with cost and
schedule when using the Monte Carlo simulation tool. A
method to study integrated optimization plan of cost and
schedule with a higher confidence level by using activity
based costing simulation and multiple-simulation analysis
technique was presented by Isidore and Back [13, 14]. Xu et al.
[15] proposed an integrated confidence regression model of
cost and schedule with Monte Carlo multiple simulation
and regression analysis method. Poh and Tah [16] modeled
risk impacts with integrated cost and schedule influence
network for the construction project. Seyedhoseini et al. [17]
introduced an integrated methodology with regard to time,
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quality, and cost which performed the project risk analysis
in an effective manner. Furthermore, many other researchers
discussed the techniques for analysis of risk to schedule and
cost (e.g., [18–21]).

Xu et al. [7] first introduced the concept of integrated
cost and schedule risk as the risk of failing to achieve the
projects under a certain cost objective (𝐶∗) and schedule plan
(𝑇∗). More exactly, it is expressed as an integrated bivariate
probability distribution function of cost and schedule:

𝑅 (𝐶
∗

, 𝑇
∗

) = 𝑃 (𝐶 > 𝐶
∗

, 𝑇 > 𝑇
∗

) . (1)

They also take advantage of frequency statistical analysis
method to model integrated risk probability estimation with
Monte Carlo simulation.

In complex product systems R&D project, rework of an
activity is common, which is usually caused by probabilistic
failure to meet the planned design objective. GERT con-
sidered such failure probability of activities and could be
used to model and analyze the process of complex product
systems with Monte Carlo simulation [22, 23]. Taylor and
Moore [24] studied R&D project planning with Q-GERT
network modeling and simulation. In their research, a failure
probability is given to each activity, and this activity can be
fed back to its previous stage to be reworked.

In the paper, motivated by the successful use of the GERT,
we employ this technique with multifeedback branches to
describe the process of complex systems R&D project. On
the basis of the theory of probability and the relationship
of marginal probability distribution function, conditional
probability distribution function, and integrated probability
distribution function, we construct an integrated cost and
schedule risk estimation model. Finally, an example of a real-
life project is analyzed with the integrated risk estimation
model in detail. Compared with the prediction estimation
using approximate curve surface, our method can estimate
risk probability more rapidly and accurately by processing
Monte Carlo simulation results.

The remainder of this paper is organized as follows.
Section 2 describes the independent cost and schedule risk
estimation model. Section 3 presents the integrated cost and
schedule risk estimation model. An application of the model
to a real-life project example is given in Section 4. Finally,
Section 5 concludes the paper.

2. Independent Cost and Schedule
Risk Estimation

Suppose that the simulation runs 𝑘 times, 𝑘 = 1, . . . , 𝑁,
and the simulation output results for total cost 𝐶 and total
duration 𝑇 are 𝐶(1), 𝐶(2), . . . , 𝐶(𝑁) and 𝑇(1), 𝑇(2), . . . , 𝑇(𝑁),
respectively. Utilizing frequency statistical analysis
method, the output results are divided into the following
intervals as [𝐶
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Figure 1: The integrated cost and schedule frequency statistics.

the marginal probability density functions of cost and sched-
ule are defined as
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As a result, the marginal cumulative probability distribution
functions are

𝐹 (𝐶
𝑖
) = 𝑃 (𝐶 ≤ 𝐶

𝑖
) =

𝑖−1

∑

𝑔=1

𝑓 (𝐶
𝑔
) =

𝑖−1

∑

𝑔=1

𝑎
𝑔⋅

𝑛
;

𝐹 (𝑇
𝑗
) = 𝑃 (𝑇 ≤ 𝑇

𝑗
) =

𝑗−1

∑

ℎ=1

𝑓 (𝑇
ℎ
) =

𝑗−1

∑

ℎ=1

𝑎
⋅ℎ

𝑛
.

(3)

Accordingly, the independent risk probability distribution
functions are

𝑅 (𝐶
𝑖
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𝑖
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(4)

3. Integrated Cost and Schedule
Risk Estimation

3.1. Integrated Risk Probability Estimation. The integrated
cost and schedule risk is defined as the probability of failing
to complete the project under a specified objective with
respect to cost and schedule.The integrated cost and schedule
frequency statistics is shown in Figure 1.

Let 𝑎
𝑖𝑗
be the frequency of the shadow region [𝐶𝑖 𝐶𝑖+1
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Figure 1. Then the integrated cost and schedule probability
density function is
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Figure 2: Stochastic multifeedback GERT model of the OCAV R&D project.
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is the cumulative frequency of simula-
tion outputs which fall on the shadow region [𝐶1 𝐶𝑖

𝑇1 𝑇𝑗
).

Accordingly, the integrated cost and schedule risk proba-
bility distribution function is
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3.2. Conditional Risk Probability Estimation. 𝐶 and 𝑇 are
components of two-dimensional random vector of cost and
schedule, and on the condition that one (𝐶 or 𝑇) is assigned
to a certain value, the probability density function of the
other (𝑇 or 𝐶) is defined as conditional probability density
function.

The conditional probability density functions of cost and
schedule are
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The conditional probability distribution functions of cost and
schedule are
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4. Application Research

4.1. GERT-Based Model. Our integrated cost and schedule
risk estimation model is demonstrated with example data
from an obstacle clearance armored vehicle (OCAV) R&D
project. We utilize GERT to model the OCAV R&D process,
which is usually divided into five phases: project feasibility
study, project evaluation, subsystems development, system
assembly, and integrated testing. The OCAV is composed of
six subsystems. To focus on the simulation-based method
presented in this paper, we name the six subsystems as
subsystems 1 to 6 instead of their actual names.

Figure 2 shows a stochastic multifeedback GERT model
of the OCAV R&D project. In this model, we assume that
the parameters of duration and cost are random variables and
both of them follow the triangular distribution: TRIA(𝑎,𝑚, 𝑏)
(as shown in Table 1), where 𝑎 is the best-case estimate, 𝑚 is
the most likely estimate, and 𝑏 is the worst-case estimate.The
parameters are estimated by project managers in a subjective
manner or assessed through historical data.

4.2. Statistical Analysis of Simulation Output. Simulation
runs 𝑛 = 1000 times. From the simulation output, we can
get 1000 pairs of data of total cost and duration (𝐶

𝑘
, 𝑇
𝑘
),

𝑘 = 1, 2, . . . , 1000. Using frequency statistical method, the
simulation outputs are grouped as [0, 5300), [5300, 5600),
. . . , [10700, 11000] and [0, 53), [53, 56), . . . , [107, 110], re-
spectively. According to statistics, we obtain the marginal
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Table 1: Distribution of time and cost for the activities.

Activities Number Time (month) Cost (million)
a m b a m b

Project feasibility studies 0 → 1 6 9 12 0.50 1.00 1.50
Program demonstration 1 → 2 3 6 9 6.00 6.50 7.00

Subsystem 1 development
2 → 3 2 3 4 0.20 0.30 0.40
3 → 9 12 14 16 9.00 11.00 13.00
9 → 15 10 12 12 1.80 2.00 2.20

Subsystem 2 development
2 → 4 1 2 3 0.05 0.10 0.15
4 → 10 10 12 14 6.00 8.00 10.00
10 → 15 10 12 12 2.00 3.00 4.00

Subsystem 3 development
2 → 5 2 3 4 0.15 0.20 0.25
5 → 11 10 12 14 5.00 7.00 9.00
11 → 15 10 12 12 2.00 3.00 4.00

Subsystem 4 development
2 → 6 1 2 3 0.05 0.10 0.15
6 → 12 8 10 12 1.30 1.50 1.70
12 → 15 6 10 12 0.20 0.30 0.40

Subsystem 5 development
2 → 7 1 2 3 0.05 0.10 0.15
7 → 13 6 8 10 0.90 1.00 1.00
13 → 15 8 10 12 0.10 0.20 0.30

Subsystem 6 development
2 → 8 1 2 3 0.05 0.10 0.10
8 → 14 10 12 14 0.60 0.80 1.00
14 → 15 10 12 12 0.10 0.20 0.30

System assembly 15 → 16 2 4 6 0.30 0.40 0.50
Integrated testing 16 → 17 9 12 15 800 1000 1200

Table 2: The integrated and marginal frequency distribution of total cost and duration.

𝐶
𝑖

𝑇
𝑗

0∼53 53∼56 56∼59 ⋅ ⋅ ⋅ 74∼77 77∼80 ⋅ ⋅ ⋅ 104∼107 107∼110 𝑎
𝑗

0∼5300 0 0 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0 0 1
5300∼5600 0 1 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0 0 5
5600∼5900 0 0 0 ⋅ ⋅ ⋅ 4 1 ⋅ ⋅ ⋅ 0 0 26
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

7400∼7700 0 0 0 ⋅ ⋅ ⋅ 10 17 ⋅ ⋅ ⋅ 0 0 109
7700∼8000 0 0 0 ⋅ ⋅ ⋅ 5 11 ⋅ ⋅ ⋅ 2 0 122
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

10400∼10700 0 0 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0 0 3
10700∼11000 0 0 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0 0 1
𝑎
𝑖

0 1 0 ⋅ ⋅ ⋅ 86 130 ⋅ ⋅ ⋅ 7 1 1000

frequency distribution of total cost 𝑎
𝑖
, themarginal frequency

distribution of total duration 𝑎
𝑗
, and the integrated bivariate

frequency distribution 𝑎
𝑖𝑗
, and the results are shown in

Table 2.
We can also obtain the following results.

(1) According to the simulation results, the mean and
standard deviations of the total cost and duration are
calculated as follows:
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𝑛
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= √

𝑛

∑

𝑘=1

(𝑇
𝑘
− 𝑇)
2

𝑛 − 1
= 8.2054.

(10)

(2) Frequency histograms of total cost and duration can
be drawn and are shown in Figures 3 and 4.

(3) We perform the goodness of fit test and deduce
that the probability distribution of the total cost and
duration is normal distribution. More specifically,
the theoretical probability distribution functions of
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the total cost and duration are subject to 𝑁(𝜇
𝐶
, �̂�
2

𝐶
)

and 𝑁(𝜇
𝑇
, �̂�
2

𝑇
), respectively. Besides, the distribution

curves are shown in Figures 3 and 4.
(4) From the result in (3), we believe that the total cost

and duration are all subject to normal distribution.
Hence, interval estimation of parameter can be car-
ried out.
The confidence interval of 95% for the total cost 𝐶 is

(𝜇
𝐶
− 𝑧
𝛼/2

�̂�
𝐶

√𝑛
, 𝜇
𝐶
+ 𝑧
𝛼/2

�̂�
𝐶

√𝑛
)

= (7419.6213, 7534.5547) Ten thousand RMB.
(11)

The confidence interval of 95% for the total duration
𝑇 is
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𝛼/2

�̂�
𝑇

√𝑛
, 𝜇
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Figure 5: The marginal probability distribution and marginal risk
probability distribution of total cost.
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4.3. Independent Estimation of Risk. We can get the marginal
probability density functions of the total cost and total dura-
tion 𝑓(𝐶

𝑖
) and 𝑓(𝑇

𝑖
), the marginal probability distribution

functions 𝐹(𝐶
𝑖
) and 𝐹(𝑇

𝑖
), and the marginal risk probability

distribution functions 𝑅(𝐶
𝑖
) and 𝑅(𝑇

𝑖
) by substituting data

into formulas (1)–(3); all the results are shown in Table 3.
The marginal probability distribution and the marginal

risk probability distribution of the total cost and the total
duration are shown in Figures 5 and 6, respectively.

4.4. Integrated Estimation of Risk. According to formulas (6)
and (7), we can get the integrated probability distribution
of the total cost and duration 𝐹(𝐶

𝑖
, 𝑇
𝑖
) in Table 4 and the

integrated risk probability distribution of total cost and
duration 𝑅(𝐶

𝑖
, 𝑇
𝑖
) in Table 5.

According to the data in Table 5, we draw the curved
surface of integrated risk probability distribution of total cost
and duration in Figure 7.

4.5. Conditional Estimation of Risk. According to formula (9),
we can get the conditional probability density distributions
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Table 3: Marginal risk probability distribution of total cost and duration.

Total cost 𝐶
𝑖

𝑓(𝐶
𝑖
) 𝐹(𝐶

𝑖
) 𝑅(𝐶

𝑖
) Total duration 𝑇

𝑗
𝑓(𝑇
𝑗
) 𝐹(𝑇

𝑗
) 𝑅(𝑇

𝑗
)

53 0.001 0.001 0.999 53 0.000 0.000 1.000
56 0.005 0.006 0.994 56 0.001 0.001 0.999
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

77 0.109 0.593 0.407 77 0.086 0.225 0.775
80 0.122 0.715 0.285 80 0.130 0.355 0.645
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

107 0.003 0.999 0.001 107 0.001 1.000 0.000
110 0.001 1.000 0.000 110 0.000 1.000 0.000

Table 4: Integrated probability distribution of total cost and duration 𝐹(𝐶
𝑖
, 𝑇
𝑖
).

Total cost 𝐶
𝑖

Total duration 𝑇
𝑗

53 56 ⋅ ⋅ ⋅ 74 77 ⋅ ⋅ ⋅ 107 110
5300 0.000 0.000 ⋅ ⋅ ⋅ 0.000 0.000 ⋅ ⋅ ⋅ 0.001 0.001
5600 0.000 0.001 ⋅ ⋅ ⋅ 0.003 0.003 ⋅ ⋅ ⋅ 0.006 0.006
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

7700 0.000 0.001 ⋅ ⋅ ⋅ 0.135 0.210 ⋅ ⋅ ⋅ 0.593 0.593
8000 0.000 0.001 ⋅ ⋅ ⋅ 0.139 0.219 ⋅ ⋅ ⋅ 0.715 0.715
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

10700 0.000 0.001 ⋅ ⋅ ⋅ 0.139 0.225 ⋅ ⋅ ⋅ 0.999 0.999
11000 0.000 0.001 ⋅ ⋅ ⋅ 0.139 0.225 ⋅ ⋅ ⋅ 1.000 1.000

Table 5: Integrated risk probability distribution of total cost and duration 𝑅(𝐶
𝑖
, 𝑇
𝑖
).

Total cost 𝐶
𝑖

Total duration 𝑇
𝑗

53 56 ⋅ ⋅ ⋅ 74 77 ⋅ ⋅ ⋅ 107 110
5300 1.000 1.000 ⋅ ⋅ ⋅ 1.000 1.000 ⋅ ⋅ ⋅ 0.999 0.999
5600 1.000 0.999 ⋅ ⋅ ⋅ 0.997 0.997 ⋅ ⋅ ⋅ 0.994 0.994
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

7700 1.000 0.999 ⋅ ⋅ ⋅ 0.865 0.790 ⋅ ⋅ ⋅ 0.407 0.407
8000 1.000 0.999 ⋅ ⋅ ⋅ 0.861 0.781 ⋅ ⋅ ⋅ 0.285 0.285
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

10700 1.000 0.999 ⋅ ⋅ ⋅ 0.861 0.775 ⋅ ⋅ ⋅ 0.001 0.001
11000 1.000 0.999 ⋅ ⋅ ⋅ 0.861 0.775 ⋅ ⋅ ⋅ 0.000 0.000
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Figure 7: Curved surface of integrated risk probability distribution of total cost and duration.
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Table 6: Conditional probability distribution of the total cost 𝐹(𝐶
𝑖
/𝑇
𝑗
).

Total cost 𝐶
𝑖

Total duration 𝑇
𝑗

53 56 ⋅ ⋅ ⋅ 74 77 ⋅ ⋅ ⋅ 107 110
5300 0.000 0.000 ⋅ ⋅ ⋅ 0.000 0.000 ⋅ ⋅ ⋅ 0.001 0.001
5600 0.000 1.000 ⋅ ⋅ ⋅ 0.022 0.013 ⋅ ⋅ ⋅ 0.006 0.006
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

7700 0.000 1.000 ⋅ ⋅ ⋅ 0.971 0.933 ⋅ ⋅ ⋅ 0.593 0.593
8000 0.000 1.000 ⋅ ⋅ ⋅ 1.000 0.973 ⋅ ⋅ ⋅ 0.715 0.715
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

10700 0.000 1.000 ⋅ ⋅ ⋅ 1.000 1.000 ⋅ ⋅ ⋅ 0.999 0.999
11000 0.000 1.000 ⋅ ⋅ ⋅ 1.000 1.000 ⋅ ⋅ ⋅ 1.000 1.000

Table 7: Conditional probability distribution of the total duration 𝐹(𝑇
𝑗
/𝐶
𝑖
).

Total cost 𝐶
𝑖

Total duration 𝑇
𝑗

53 56 ⋅ ⋅ ⋅ 74 77 ⋅ ⋅ ⋅ 107 110
5300 0.000 0.000 ⋅ ⋅ ⋅ 0.000 0.000 ⋅ ⋅ ⋅ 0.000 0.000
5600 0.000 0.167 ⋅ ⋅ ⋅ 0.002 0.002 ⋅ ⋅ ⋅ 0.001 0.001
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

7700 0.000 0.500 ⋅ ⋅ ⋅ 0.388 0.354 ⋅ ⋅ ⋅ 0.139 0.139
8000 0.000 0.500 ⋅ ⋅ ⋅ 0.556 0.519 ⋅ ⋅ ⋅ 0.225 0.225
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

10700 1.000 1.000 ⋅ ⋅ ⋅ 1.000 1.000 ⋅ ⋅ ⋅ 1.000 1.000
11000 1.000 1.000 ⋅ ⋅ ⋅ 1.000 1.000 ⋅ ⋅ ⋅ 1.000 1.000

Table 8: Mean and standard deviation of conditional probability distribution of total cost and duration.

Conditional
distribution of total
duration

Mean estimation
𝜇

Standard deviation
estimation �̂�

Conditional
distribution of total

cost

Mean estimation
𝜇

Standard deviation
estimation �̂�

𝐹(𝑇/5600) 73.00 11.41 𝐹(𝐶/56) 5450.00 0.00

𝐹(𝑇/5900) 73.06 6.47 𝐹(𝐶/59) 5450.00 0.00

𝐹(𝑇/6200) 74.81 6.66 𝐹(𝐶/62) 5450.00 0.00

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

F(T/7100) 78.17 7.10 F(C/71) 6543.15 590.41
F(T/7400) 79.16 7.30 F(C/74) 6587.41 596.18
F(T/7700) 79.90 7.49 F(C/77) 6726.00 645.77
𝐹(𝑇/8000) 81.12 7.93 𝐹(𝐶/80) 6900.14 705.49

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝐹(𝑇/10400) 83.25 8.24 𝐹(𝐶/104) 7476.43 929.64

𝐹(𝑇/10700) 83.28 8.25 𝐹(𝐶/107) 7477.40 929.68

𝐹(𝑇/11000) 83.30 8.26 𝐹(𝐶/110) 7477.40 929.68

of the total cost and total duration 𝐹(𝐶
𝑖
/𝑇
𝑗
) and 𝐹(𝑇

𝑗
/𝐶
𝑖
) in

Tables 6 and 7.
According to the above results, the smooth curves of

conditional probability distribution of the total cost and the
total duration are drawn in Figures 8 and 9.

Using goodness of fit test method, we infer that the
conditional probability distributions of the total cost and the
total duration follow normal distributions, and the goodness
of fit is good. Meanwhile, the mean 𝜇 and the standard

deviation �̂� of the conditional probability distribution are
obtained.The results are shown in Table 8; the computational
process is similar to the following example:

𝐹(
𝐶

74
) = 1 − ∫

𝐶

0

1

596.18√2𝜋
𝑒
−(𝐶−6587.41)

2
/(2×596.18)

= 1 − Φ(
𝐶 − 6587.41

596.18
) ,



8 Journal of Applied Mathematics

Total duration (×10
4 RMB)

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00

5
0

0
0

5
2

0
0

5
4

0
0

5
6

0
0

5
8

0
0

6
0

0
0

6
2

0
0

6
4

0
0

6
6

0
0

C
on

di
tio

na
l p

ro
ba

bi
lit

y 
di

str
ib

ut
io

n

F(C/71)

F(C/77)

F(C/83)

F(C/89)

F(C/95)

F(C/101)

F(C/107)

Figure 8: Conditional probability distribution 𝐹(𝐶
𝑖
/𝑇
𝑗
) of the total

cost (partly).

𝐹(
𝑇

7700
) = 1 − ∫

𝐶

0

1

7.49√2𝜋
𝑒
−(𝑇−79.901)

2
/(2×7.49)

= 1 − Φ(
𝑇 − 79.90

7.49
) .

(13)

4.6. Prediction Estimation of Integrated Risk Probability

4.6.1. Prediction Estimation Based on Curved Surface of
Integrated Risk Probability. Through the data in Table 5, we
establish the integrated risk space surface of two-dimensional
continuous random vector (𝐶, 𝑇) of the cost and duration.
Also, we obtain the integrated risk probability approximation
under cost and duration constraints by surface interpolation
method. For example, 𝑅(7800, 75) is the risk probability
value under constraints of the total cost 𝐶 ≥ 7800 ten
thousand RMB and the total duration 𝑇 ≥ 75 months. In
Figure 6, when the number of simulations is large enough, the
small curved surface which consisted of 𝐴(7700, 74, 0.865),
𝐵(7700, 77, 0.790),𝐶(8000, 74, 0.861), and𝐷(8000, 77, 0.781)
can be considered as a plane. In order to avoid underestimat-
ing the probability value, we choose 𝐴, 𝐵, and 𝐶 which have
higher risk probability to establish equation:



𝑇
𝐵
− 𝑇
𝐴
𝑅
𝐵
− 𝑅
𝐴

𝑇
𝐶
− 𝑇
𝐴
𝑅
𝐶
− 𝑅
𝐴



(𝐶 − 𝐶
𝐴
)

+



𝑅
𝐵
− 𝑅
𝐴
𝐶
𝐵
− 𝐶
𝐴

𝑅
𝐶
− 𝑅
𝐴
𝐶
𝐶
− 𝐶
𝐴



(𝑇 − 𝑇
𝐴
)

+



𝐶
𝐵
− 𝐶
𝐴
𝑇
𝐵
− 𝑇
𝐴

𝐶
𝐶
− 𝐶
𝐴
𝑇
𝐶
− 𝑇
𝐴



(𝑅 − 𝑅
𝐴
) = 0.

(14)

After that, the risk probability value 𝑅 is acquired under
constraints of total cost 𝐶 and total duration 𝑇. We can
substitute 𝐴, 𝐵, 𝐶 into (14) to gain 𝑅(7800, 75) = 0.8387.
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Figure 9: Conditional probability distribution 𝐹(𝑇
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𝑖
) of the total

duration (partly).

4.6.2. Prediction Estimation Based on Theory of Integrated
Risk Probability Distribution. Following the definition of
the conditional probability distribution function and the
marginal probability distribution function, the integrated risk
probability of the total cost and duration is calculated as
follows:

𝐹 (𝐶, 𝑇) = 𝐹(
𝐶

𝑇
) × 𝐹 (𝑇) ;

𝐹 (𝑇, 𝐶) = 𝐹(
𝑇

𝐶
) × 𝐹 (𝐶) ;

𝑅 (𝐶, 𝑇) = 1 − 𝐹 (𝐶, 𝑇) ;

𝑅 (𝑇, 𝐶) = 1 − 𝐹 (𝑇, 𝐶) .

(15)

For example, we also get the risk probability value
𝑅(7800, 75) under the integrated constraints of the total cost
𝐶 ≥ 7800 ten thousand RMB and the total duration 𝑇 ≥ 75
months. The specific calculation steps are as follows.

(1) With the data from Table 8, the mean estimation and
the standard variance estimation of the conditional
distribution functions 𝐹(𝐶/75) and 𝐹(𝑇/7800) are
determined by interpolation:

𝜇
(𝐶/75)

= 6633.61; 𝜇
(𝑇/7800)

= 80.307

�̂�
(𝐶/75)

= 612.71; �̂�
(𝑇/7800)

= 7.64.

(16)

(2) Calculate the conditional probability distribution val-
ues by normal distribution:

𝐹(
7800

75
) = Φ(

7800 − 6633.61

612.71
) = Φ (1.9043) = 0.9716

𝐹 (
75

7800
) = Φ(

75 − 80.307

7.64
) = Φ (−0.6946) = 0.2437.

(17)
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(3) According to formula (3), the marginal probability
distributions 𝐹(7800) and 𝐹(75) are obtained as

𝐹 (7800) = 0.634; 𝐹 (75) = 0.168. (18)

(4) Through formula (15), we calculate the values of the
integrated probability distribution 𝐹(7800, 75) and
𝐹(75, 7800) and the integrated risk probability values
𝑅(7800, 75) and 𝑅(75, 7800); that is,

𝐹 (7800, 75) = 𝐹(
7800

75
) × 𝐹 (75)

= 0.9716 × 0.1680 = 0.1632.

𝑅 (7800, 75) = 1 − 𝐹 (7800, 75) = 1 − 0.1632 = 0.8368

𝐹 (75, 7800) = 𝐹(
75

7800
) × 𝐹 (7800)

= 0.2437 × 0.6340 = 0.1545

𝑅 (75, 7800) = 1 − 𝐹 (75, 7800) = 1 − 0.1545 = 0.8455.

(19)

4.6.3. Error Analysis of Prediction. By analyzing the output
data of 1000 times simulation, we can calculate the frequency
of occurrence that the total cost𝐶 ≤ 7800 ten thousand RMB
and the total duration 𝑇 ≤ 75 months are 162. By formula
(15), we get

𝐹 (7800, 75) = 𝑃 (𝐶 ≤ 7800, 𝑇 ≤ 75) =
162

1000
= 0.1620

𝑅 (7800, 75) = 1 − 𝐹 (7800, 75) = 1 − 0.162 = 0.8380.

(20)

For purposes of comparison, we also report results based
on the curved surface method of integrated risk probability.
The prediction result is 𝑅(7800, 75) = 0.8387, and the
relative error of prediction is (|0.8387 − 0.838|/0.838) ×
100% = 0.0835%. Meanwhile, based on the conditions
of risk probability distribution functions proposed in this
paper, we have (a) 𝑅(7800, 75) = 0.8368, where the relative
error is (|0.8368 − 0.838|/0.838) × 100% = 0.143% and (b)
𝑅(75, 7800) = 0.8455, where the relative error is (|0.8455 −
0.838|/0.838) × 100% = 0.895%.

The above comparison results of relative error reveal that
both of the methods are practical. However, it is too compli-
cated to build the equationwhen using the approximate curve
surface method. And the method proposed in this paper
can estimate risk probability more rapidly and accurately by
processing one set of Monte Carlo simulation results.

5. Conclusions

Based on GERT multifeedback simulation and the theory
of probability distribution, we have presented an integrated
risk model of cost and schedule. Using statistical analysis
and Monte Carlo techniques, we get the marginal probability

distribution functions and the conditional probability dis-
tribution functions. Finally, the integrated probability distri-
bution functions of cost and schedule and risk probability
distribution function are obtained. This method is proven to
be more accurate. However, we know that there are many
other factors in complex product systems except cost and
schedule, such as environment and project resources. In the
future, wewill study the risk assessment aboutmore elements.
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