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An alternative to the Nash equilibrium (NE) is presented for two-person, one-shot prescriptive games in normal form, where the
outcome is determined by an arbiter. The NE is the fundamental solution concept in noncooperative game theory. It is based on
the assumption that players are completely selfish. However, NEs are often not played in practice, so we present a cooperative dual
as an alternative solution concept by which an arbiter can assign the players’ actions. In this dual equilibrium (DE), each player acts
in the other’s best interest. We formally define prescriptive games and the DE, then summarize the duality relationships between
the NE and DE for two players. We also apply the DE to some prescriptive games and compare it to other outcomes.

1. Introduction

Game theory is the study of strategic interactions among
agents called players. Ultimately it involves a solution concept
to describe, predict, or prescribe the choices of these players
[1]. Modern game theory [2, 3] is predominantly noncoop-
erative and assumes that any joint rational actions by the
players must be a Nash equilibrium (NE) [1–5]. In other
words, rational players act in their individual self-interest.
Each player’s action maximizes his payoff for the actions of
the other players. The result is that no player can improve his
expected payoff by unilaterally changing his strategy. Various
refinements of the NE [2, 3] have been proposed, yet players
can often do better by cooperating. Social dilemmas such as
the Prisoner’s Dilemma, Snow drift, and Ultimatum games
[6–9] illustrate that selfish behavior may conflict with group
interests.

To address such issues, we consider here one-shot, two-
person prescriptive games in normal form, where the out-
come is determined by an arbiter. In this paper we provide the
arbiter with an alternative approach to the NE for assigning
the players’ actions. Our framework is prescriptive because
the assumptions of noncooperative games are often not met

in practice and because outcomes are often influenced by
external forces. An arbiter can assign reasonable actions to
both players that would be precluded by selfish strategies cho-
sen by the players themselves. Pure strategies are emphasized
here. Mixed strategies are somewhat problematic to interpret
[1, 10] for noncooperative games but even more so when an
arbiter for a one-shot game must specify an action for each
player.

In Section 2 we define prescriptive games and the dual
equilibrium (DE) in which each player acts in the other’s best
interest. In Section 3 we describe how to obtain pure DEs
and present some examples. In Section 4 we summarize the
duality relationships between the DE and NE, which do not
extend to one-shot prescriptive games with more than two
players. In Section 5 we consider the special case of zero-sum
games. In Section 6we present conclusions and discuss future
work.

2. The Dual Equilibrium

Let Γ = ⟨A,B, 𝛼⟩ denote a two-person, one-shot prescriptive
game in normal form, whereA is the 𝑛×𝑚 payoffmatrix [𝑎

𝑖𝑗
]
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Table 1: Prisoner’s Dilemma game matrices.

Player II
𝑡
1

Cooperate
𝑡
2

Defect
𝑡
1

Cooperate
𝑡
2

Defect
𝑡
1

Cooperate
𝑡
2

Defect

Player I

𝑠
1

Cooperate (4, 4) (0, 5) (1, 1) (2, 0) (0, 0) (4, 0)

𝑠
2

Defect (5, 0) (2, 2) (0, 2) (0, 0) (0, 4) (3, 3)

of von Neumann-Morgenstern (VNM) utilities for Player
I when Player I plays pure strategy 𝑠

𝑖
and Player II plays

pure strategy 𝑡
𝑗
. Similarly, B is the 𝑛 × 𝑚 payoff matrix [𝑏

𝑖𝑗
]

for Player II. The prescriptive mechanism 𝛼 is an arbiter
who assigns unique actions to the players for their one shot.
The arbiter could be a person or group of people. It could,
for example, be a licensing agreement for the licensees of a
patent. The arbiter could also be a person selected to rule in
a formal legal arbitration. It could be a computer algorithm
formaking real-time decisions on a website where the players
have agreed to its terms and conditions, as well as a policy
imposed by a governmental agency on some segment of
the population. In this paper, the arbiter will assign pure
DE strategies to the two players. Hence the arbiter could
even be a tacit agreement between the two players based on
social pressures that dictate that the players should cooperate
unselfishly. In this case, their joint notion of rationality based
on social pressure is incorporated in the DE. When 𝛼 is
implicit, as in such an agreement, Γ is simply referred to as
the game (A,B). If there are multiple pure DEs, we assume
that the arbiter selects a unique one. Regardless, a strategy
pair (𝑠

𝑖
, 𝑡
𝑗
) assigned by 𝛼 is an equilibrium in the sense that

the players cannot change the prescribed actions.
An NE and DE for (A,B) are next defined in terms of

mixed strategies. Let 𝑋 = {x | x = [𝑥
1
, . . . , 𝑥

𝑚
]
𝑇
} be the set

of mixed strategies of Player I and 𝑌 = {y | y = [𝑦
1
, . . . , 𝑦

𝑛
]
𝑇
}

the set of mixed strategies for Player II.

Definition 1 (NE). The mixed strategy pair (x∗, y∗) is an NE
for (A,B) if and only if

max
𝑥∈𝑋

x𝑇Ay∗ = x∗𝑇Ay∗, max
𝑦∈𝑌

x∗𝑇By = x∗𝑇By∗. (1)

Definition 2 (DE). Themixed strategy pair (x∗, y∗) is a DE for
(A,B) if and only if

max
𝑦∈𝑌

x∗𝑇Ay = x∗𝑇Ay∗, max
𝑥∈𝑋

x𝑇By∗ = x∗𝑇By∗. (2)

Definitions 1 and 2 depict one aspect of the duality
between the NE and the DE, which is the players’ opposing
behaviors. In (1) each player selfishly responds to the NE
strategy for the other player so as to maximize his own
expected utility. In (2) each player unselfishly responds to
the DE strategy for the other player so as to maximize the
expected utility of the other player. In other words, in an NE
no player can improve his payoff with a unilateral change
in his strategy. In a DE a unilateral change in either player’s

strategy cannot improve the other player’s payoff. A DE is a
mutual-max outcome used in [11, page 1282] in defining a
fairness equilibrium. A joint equilibrium (JE), which is both
an NE and DE, incorporates selfishness and unselfishness
in one outcome. It is a special case of the Rabin fairness
equilibrium.

3. Computing Pure DEs

Pure NEs and DEs are easily obtained from the notions
of regret and disappointment for a game (A,B). The regret
function is a transformation of a player’s VNM utilities for
pure strategies to a loss function. For a fixed pure strategy 𝑡

𝑗

of Player II, Player I’s regret for using pure strategy 𝑠
𝑖
is the

regret function value 𝑟
1
(𝑠
𝑖
, 𝑡
𝑗
) = max

𝑘
𝑎
𝑘𝑗
− 𝑎
𝑖𝑗
. For Player

II, 𝑟
2
(𝑠
𝑖
, 𝑡
𝑗
) = max

𝑙
𝑏
𝑖𝑙
− 𝑏
𝑖𝑗
. The bimatrix (A,B) can thus be

transformed into a regret bimatrix R(A,B) that has the same
NEs [5] as the bimatrix (A,B). In particular, a pure strategy
pair is an NE if and only if (0, 0) is the corresponding entry
in R(A,B). Likewise, the bimatrix (A,B) can be transformed
into a disappointmentmatrixD(A,B), where disappointment
for a player may be interpreted as regret with respect to the
other player. For a fixed pure strategy 𝑠

𝑖
of Player I, Player I’s

disappointment at Player II’s using pure strategy 𝑡
𝑗
is Player

I’s disappointment function value 𝑑
1
(𝑠
𝑖
, 𝑡
𝑗
) = max

𝑙
𝑎
𝑖𝑙
− 𝑎
𝑖𝑗
,

while 𝑑
2
(𝑠
𝑖
, 𝑡
𝑗
) = max

𝑘
𝑏
𝑘𝑗
− 𝑏
𝑖𝑗
for Player II. The proof of

Proposition 3 below is similar to that in [5] showing that
R(A,B) has the same NEs as (A,B).

Proposition 3. D(A,B) has the same DEs as (A,B), and
a pure strategy pair is a DE if and only if (0, 0) is the
corresponding entry inD(A,B).

Example 4 (Prisoner’s Dilemma game). Table 1 shows the
matrices (A,B), R, and D from left to right for a Prisoner’s
Dilemma game [6], where the two players are arrested for
a crime and held in separate rooms. To cooperate means to
deny that either player had any part in the crime. To defect
means to swear that the other player committed the crime
alone. For each strategy pair, the VNM utility 𝑢 denotes 5 − 𝑢
years spent in jail. In a prescriptive version of the game,
the arbiter 𝛼 could be a lawyer who represents both players
and tells them how to respond when interrogated. There is
a pure NE (defect, defect) whose payoff (2, 2) is dominated
[12] by the payoff (4, 4) of the pureDE (cooperate, cooperate).
The maximin outcome [2], in which each player’s action
maximizes his minimum payoff resulting from the actions of
the other players, is the NE (defect, defect).
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Table 2: Snow Drift game matrices.

Player II
𝑡
1

Shovel
𝑡
2

Refuse
𝑡
1

Shovel
𝑡
2

Refuse
𝑡
1

Shovel
𝑡
2

Refuse

Player I

𝑠
1

Shovel (200, 200) (100, 300) (100, 100) (0, 0) (0, 0) (100, 0)

𝑠
2

Refuse (300, 100) (0, 0) (0, 0) (100, 100) (0, 100) (300, 300)

Table 3: Game with JE.

Player II
𝑡
1

𝑡
2

𝑡
3

𝑡
1

𝑡
2

𝑡
3

𝑡
1

𝑡
2

𝑡
3

Player I
𝑠
1

(3, 3) (2, 2) (1, 1) (0, 0) (2, 1) (6, 2) (0, 0) (1, 5) (2, 4)
𝑠
2

(2, 3) (3, 1) (7, 2) (1, 0) (1, 2) (0, 1) (5, 0) (4, 6) (0, 3)
𝑠
3

(2, 1) (4, 7) (5, 5) (1, 4) (0, 0) (2, 2) (3, 0) (1, 0) (0, 0)

Example 5 (Snow Drift game). Table 2 gives (A,B), R, andD
for the Snow Drift game, which involves two drivers trapped
on opposite sides of a snow drift blocking a road. Each has the
option of staying in his car or shoveling snow to clear a path.
TheSnowDrift gamehas been said tomore realistically reflect
social situations that humans face than Prisoner’s Dilemma
[7]. In a prescriptive version of the game, the two drivers
could be neighbors, and the arbiter 𝛼 could be the social
pressure to cooperate and preserve good will in the players’
future interactions as neighbors. The pure NEs are (shovel,
refuse) and (refuse, shovel). The pure DE is (shovel, shovel).
The maximin outcome is the DE (shovel, shovel), in contrast
to being the NE in Example 4. There is also a mixed NE and
DE.

Example 6 (JE). Consider the matrices (A,B), R, and D of
Table 3. The strategy pair (𝑠

1
, 𝑡
1
) is a JE, but (3, 3) for (𝑠

1
, 𝑡
1
)

is dominated by the DE (𝑠
3
, 𝑡
3
) with payoffs (5, 5) and so is

not a Pareto optimum [12] for (A,B). However, it is a Rabin
fairness equilibrium. An arbiter prescribing a pure DE would
assign (𝑠

3
, 𝑡
3
) to the players. Any outcome in the 𝑠

2
or 𝑠
3
rows

of Table 3 is a maximin outcome. That includes the DE but
not the JE.

4. Duality Relationships

We now summarize the duality relationships between the NE
and DE that exist for two-person games. The propositions
below follow immediately from the definitions.

Definition 7. The two-person game (B,A)with Player I as the
row player and Player II as the columnplayer is the dual of the
game (A,B) also with Player I as the row player and Player II
as the column player.

Proposition 8. The dual game of the dual game of (A,B) is
(A,B).

Definition 9. For the bimatrix (A,B), define its swap matrix
as (A,B)𝑆 = (B,A). Denote the swap matrices of R(A,B) and
D(A,B) by R(A,B)𝑆 andD(A,B)𝑆, respectively.

Proposition 10. D(A,B) = R(B,A)𝑆 and R(A,B) =
D(B,A)𝑆. Hence, the set of DEs for (A,B) is the set of NEs for
(B,A), and the set of NEs for (A,B) is the set of DEs for (B,A).

In the dual game of Definition 7 the players simply play
for each other. Proposition 10 implies that any computational
approaches and existence properties for two-player NEs are
also valid for two-player DEs. In particular, a computational
method for finding an NE for (B,A) can therefore be used to
find a DE for (A,B). Moreover, a DE exists for (A,B) since an
NE exists for (B,A) [2]. Games with more than two players,
however, do not exhibit such duality.

5. Zero-Sum Games

To find DEs for the zero-sum game (A, −A) we need only
consider the A matrix for Player I as in the case for zero-
sum NEs. Proposition 11 states the standard NE version of
the minimax theorem [13] for zero-sum games in (3) below
for comparison with the DE version stated in (4). The proof
of (4) follows immediately from (3) and Proposition 10.

Proposition 11. Consider the zero-sum game (A, −A). Then
there exists a value V such that for any NE (x∗, y∗)

max
𝑥∈𝑋

min
𝑦∈𝑌

x𝑇Ay = x∗𝑇Ay∗ = min
𝑦∈𝑌

max
𝑥∈𝑋

x𝑇Ay = V. (3)

In addition, there exists a value w such that, for any DE
(𝑥
∗∗
, 𝑦
∗∗
),

min
𝑥∈𝑋

max
𝑦∈𝑌

x𝑇Ay = x∗∗𝑇Ay∗∗ = max
𝑦∈𝑌

min
𝑥∈𝑋

x𝑇Ay = 𝑤. (4)

Proposition 11 asserts that a pure DE is obtained for zero-
sum games when the minimax value for row Player I equals
the maximin value for column Player II. This situation is
exactly the opposite of the standard approach for finding
pure zero-sum NEs, which are also called saddle points. It
should be noted that the value V in (3) may be larger, smaller,
or equal to the value 𝑤 in (4). In addition, it follows from
Proposition 10 that the linear programs for finding mixed DE
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Table 4: Zero-sum game.

Player II
𝑡
1

𝑡
2

𝑡
3

max

Player I 𝑠
1

5 2 6 6
𝑠
2

3 6 7 7
min 3 2 6

strategies x and y for the zero-sum game (A, −A) are identical
to the linear programs [2] for finding mixed NE strategies x
and y, respectively, for the dual game (−A,A). In other words,
the 𝑎
𝑖𝑗
in the NE linear programs are replaced by −𝑎

𝑖𝑗
.

Example 12. Consider the zero-sum matrix game with A as
in Table 4. There is no pure NE. The single mixed NE is x =
(0.5, 0.5)

𝑇 and y = (0.67, 0.33, 0)𝑇 with an expected payoff
of 4 for Player I. On the other hand, the single DE occurs at
(𝑠
1
, 𝑡
3
) from the discussion followingProposition 11. At (𝑠

1
, 𝑡
3
)

the minimax payoff for Player I is 6, and the maximin payoff
for Player II is therefore –6. In this example, the pure DE does
not seem as good for Player II as Player I. The arbiter might
well assign some outcome different from the DE.

6. Conclusions

In this paper we defined a two-person, one-shot prescriptive
game, as well as a cooperative dual to the Nash equilibrium.
Prescriptive games allow other factors than the players them-
selves to influence outcomes and also let nonselfish behavior
be regarded as rational. In particular, the DE sometimes gives
the players better payoffs than the NE and may thus be a
better choice for an arbiter 𝛼 assigning pure strategies to
the players. Unfortunately there may be either no pure DE
or none satisfactory to the arbiter. Future research should
address these issues. One possibility is a scalar equilibrium
as in [14] that gives a reasonable outcome in pure strategies.
In addition, the DE should be studied for n-person games.
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