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We consider hyperbolic rotation (𝐺
0
), hyperbolic translation (𝐺

1
), and horocyclic rotation (𝐺

2
) groups in H3, which is called

Minkowski model of hyperbolic space.Then, we investigate extrinsic differential geometry of invariant surfaces under subgroups of
𝐺

0
in H3. Also, we give explicit parametrization of these invariant surfaces with respect to constant hyperbolic curvature of profile

curves. Finally, we obtain some corollaries for flat andminimal invariant surfaces which are associated with de Sitter and hyperbolic
shape operator in H3.

1. Introduction

Hyperbolic space has five analytic models, which are isomet-
rically equivalent to each other [1, 2]. In this study, we choose
Minkowski model of hyperbolic space which is denoted by
H3. In a different point of view, we may consider invariant
surface as rotational surface. In this sense, rotational surfaces
in different ambient spaceswere studied bymany authors. For
instance, in [3], Carmo and Dajczer define rotational hyper-
surfaces with constant mean curvature (cmc) in hyperbolic
𝑛-space.They also give a local parametrization of this surface
in terms of the cmc under some special conditions. In [4],
Mori studied elliptic, spherical, and parabolic type rotational
surfaces with cmc in H3. In [5], the total classification of the
timelike and spacelike hyperbolic rotation surfaces is given
in terms of cmc in 3-dimensional de Sitter space S3

1
. As a

general form, explicit parametrizations of rotational surfaces
with cmc are given in Minkowski 𝑛-space by [6].

This paper is organized as follows. In Section 2, we give
briefly the notions of H-point, H-line, H-plane, and H-
distance in hyperbolic geometry ofH3.Throughout this work,
the prefix “H-” is used is the sense of belonging to hyperbolic
space. It is well known that H-isometry is a map which is
preserved H-distance in H3. The set of H-isometries is a

group which is identified with restriction of isometries of
Minkowski 4-space R4

1
to H3. Let the group of H-isometries

be denoted by 𝐺 in H3. We consider subgroups 𝐺
0
, 𝐺

1
, and

𝐺
2
of 𝐺 with respect to leaving fixed timelike, spacelike,

and lightlike planes of R4

1
, respectively. Then, we give the

notions of H-rotation, H-translation, and horocyclic rotation
which are one-parameter actions of 𝐺 in H3. Moreover, we
obtain some properties of H-isometries. There exist three
kinds of totally umbilical surfaces which are called H-sphere,
equidistant surface, and horosphere in H3. We obtain a
classification ofH-isometries by the subgroups𝐺

0
,𝐺

1
, and𝐺

2

with respect to leaving fixed equidistant surfaces, H-spheres,
and horospheres in H3, respectively. In Section 3, we give
the basic theory of extrinsic differential geometry of curves
and surfaces in H3. In Section 4, we investigate surfaces
which are invariant under a subgroup of H-translations in
H3. Moreover, in the sense of de Sitter and hyperbolic shape
operator in H3, we study extrinsic differential geometry of
these invariant surfaces by using notations in [7, 8]. We give
a relation between one of the principal curvatures of the
invariant surface and hyperbolic curvature of profile curve of
the invariant surface inH3. In a different viewpoint, we obtain
explicit parametrization of some invariant surfaces in terms

Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2014, Article ID 838564, 12 pages
http://dx.doi.org/10.1155/2014/838564



2 Journal of Applied Mathematics

of constant hyperbolic curvature of profile curve. Moreover,
we give some geometric results with respect to constant
hyperbolic curvature of profile curve for flat and minimal
invariant surfaces in H3. Finally, we give a classification
theorem for the totally umbilical invariant surfaces in H3.

2. Isometries of H3

In [9], Reynold give a brief introduction to hyperbolic
geometry of hyperbolic plane H2. Also, he described explicit
descriptions of the hyperbolic metric and the isometries of
the hyperbolic plane. In this section, we consider hyperbolic
geometry in H3. We especially determine isometry groups of
H3with respect to causal character of hyperplanes ofR4

1
; then,

these isometry groups are classified in terms of leaving those
totally umbilic surfaces of H3 fixed.

Let R4

1
denote the 4-dimensional Minkowski space, that

is, the real vector space R4 endowed with the scalar product

⟨x, y⟩ = −𝑥
0
𝑦
0

+

3

∑

𝑖=1

𝑥
𝑖
𝑦
𝑖

(1)

for all x = (𝑥
0
, 𝑥

1
, 𝑥

2
, 𝑥

3
), y = (𝑦

0
, 𝑦

1
, 𝑦

2
, 𝑦

3
) ∈ R4.

Let {e
0
, e

1
, e

2
, e

3
} be pseudo-orthonormal basis forR4

1
. Then,

⟨e
𝑖
, e

𝑗
⟩ = 𝛿

𝑖𝑗
𝜀
𝑗
for signatures 𝜀

0
= −1, 𝜀

1
= 𝜀

2
= 𝜀

3
= 1. The

function

𝑞 : R
4

1
󳨀→ R, 𝑞 (x) = ⟨x, x⟩ (2)

is called the associated quadratic form of ⟨⋅, ⋅⟩.
A vector k ∈ R4

1
is called spacelike, timelike, and lightlike

if ⟨k, k⟩ > 0 (or k = 0), ⟨k, k⟩ < 0, and ⟨k, k⟩ = 0,
respectively. The Lorentzian norm of a vector k is defined by
‖k‖ = √|⟨k, k⟩|.

The sets

H
3

= {x ∈ R
4

1
⟨x, x⟩ = −1, 𝑥

0
≥ 1} ,

S
3

1
= {x ∈ R

4

1
⟨x, x⟩ = 1} ,

LC
+

= {x ∈ R
4

1
| ⟨x, x⟩ = 0, 𝑥

0
> 0}

(3)

are calledMinkowskimodel of hyperbolic space, de Sitter space,
and future light cone, respectively.

Let 𝑃 be a vector subspace of R4

1
. Then, 𝑃 is said to be

timelike, spacelike, and lightlike if and only if 𝑃 contains a
timelike vector and every nonzero vector in 𝑃 is spacelike
otherwise, respectively.

Now,we give basic notions for hyperbolic geometry inH3.
From now on, we use the prefix “H-” instead of “hyperbolic”
for brevity.

An H-point is intersection 𝑈
0

∩ H3 such that 𝑈
0
is 1-

dimensional timelike subspace of R4

1
and is called 𝐴

𝑈0
. An

H-line is intersection 𝑈
1

∩ H3 such that 𝑈
1
is 2-dimensional

timelike subspace of R4

1
and is called 𝑙

𝑈1
. An H-plane is

intersection 𝑈
2

∩ H3 such that 𝑈
2
is 3-dimensional timelike

subspace of R4

1
and is called 𝐷

𝑈2
.

H-coordinate axes 𝑙
0𝑗

are denoted by intersections 𝑙
0𝑗

=

𝑉
0𝑗

∩H3 such that𝑉
0𝑗

= Sp{e
0
, e

𝑗
} for 𝑗 = 1, 2, 3.H-coordinate

planes 𝐷
𝑖𝑗
are denoted by intersections 𝐷

𝑖𝑗
= 𝑊

0𝑖𝑗
∩ H3 such

that 𝑊
0𝑖𝑗

= Sp{e
0
, e

𝑖
, e

𝑗
} for 𝑖, 𝑗 = 1, 2, 3. H-upper (H-lower)

half-spaces of 𝐷
𝑖𝑗
are defined by intersections H3 and upper

(lower) half-space of 𝑊
0𝑖𝑗
.

A hyperplane in R4

1
is defined by HP(k, 𝑐) = {x ∈ R4

1
|

⟨x, k⟩ = 𝑐} for a pseudo-normal k ∈ R4

1
and a real number 𝑐. If

k is spacelike, timelike, or lightlike, HP(k, 𝑐) is called timelike,
spacelike, or lightlike, respectively.

Three kinds of totally umbilic surfaces haveH3 which are
given by intersections of H3 and hyperplanes HP(k, 𝑐) in R4

1
.

A surface HP(k, 𝑐)∩H3 is calledH-sphere, equidistant surface,
and horosphere if HP(k, 𝑐) is spacelike, timelike, and lightlike,
respectively.

We now give the existence and uniqueness of any H-line
or H-plane in H3. Any given two distinct points determine
unique 2-plane through origin inR4

1
and three distinct points

determine unique 3-plane through origin in R4

1
. So the

following propositions are clear.

Proposition 1. Any given two distinct H-points lie on a unique
H-line in H3.

Proposition 2. Any given three distinct H-points lie on a
unique H-plane in H3.

Also, we say that H-line segments 𝑙
𝐴𝐵
, H-ray 𝑙󳨀󳨀→

𝐴𝐵
are

determined by two different H-points𝐴 and𝐵 in natural way.

Definition 3. Let 𝛾 : [𝑎, 𝑏] ⊂ R → 𝑙
𝐴𝐵

⊂ H3 be
parametrization of 𝑙

𝐴𝐵
. Then, H-length of 𝑙

𝐴𝐵
is given by

𝑑H (𝐴, 𝐵) = ∫

𝑏

𝑎

󵄩󵄩󵄩󵄩󵄩
𝛾
󸀠
(𝑡)

󵄩󵄩󵄩󵄩󵄩
𝑑𝑡. (4)

If we take any hyperbolic space curve instead of 𝑙
𝐴𝐵

in
Definition 3, thenH-arc length of any hyperbolic space curve
is calculated by formula (4) in the same way. Moreover, H-
distance between H-points 𝐴 and 𝐵 is given by

𝑑H (𝐴, 𝐵) = −arccosh (⟨𝐴, 𝐵⟩) . (5)

Let 𝑇 : R4

1
→ R4

1
be a linear transformation. Then 𝑇

is called linear isometry (with respect to 𝑞) if it satisfies the
following equation:

𝑞 (𝑇 (𝑥)) = 𝑞 (𝑥) . (6)

Letmatrix form of linear transformation𝑇 be denoted byT =

[𝑡
𝑖𝑗
], 0 ⩽ 𝑖, 𝑗 ⩽ 3 with respect to pseudo-orthonormal basis

{e
0
, e

1
, e

2
, e

3
}. The set of all linear isometries of R4

1
is a group

under matrix multiplication and it is denoted by

𝑂
1

(4) = {T ∈ GL (4,R) | T𝑡J
0
T = J

0
} , (7)

where signature matrix J
0

= diag(−1, 1, 1, 1). It is also called
semiorthogonal group of R4

1
and so

det (T) = ±1. (8)
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The subgroup 𝑆𝑂
1
(4) = {T ∈ 𝑂

1
(4) | det(T) = 1} is

called special semiorthogonal group. Let block matrix form of
T ∈ 𝑂

1
(4) be T = [

T𝑡 𝑏

𝑐 T𝑠 ]. Then, T
𝑡
and T

𝑠
are called timelike

and spacelike part of T, respectively.

Definition 4. (i) If det(T
𝑡
) > 0 (det(T

𝑡
) < 0), thenTpreserves

(reverses) time orientation.
(ii) If det(T

𝑠
) > 0 (det(T

𝑠
) < 0), then T preserves

(reverses) space orientation.

Thus,𝑂
1
(4) is decomposed into four disjoint sets indexed

by the signs of det(T
𝑡
) and det(T

𝑠
) in that order. They are

called 𝑂
++

1
(4), 𝑂

+−

1
(4), 𝑂

−+

1
(4), and 𝑂

−−

1
(4). We define the

group

𝐺 = {𝑇 ∈ 𝑂
1

(4) | 𝑇H3 : H
3

󳨀→ H
3
} . (9)

Elements of 𝐺 preserve H-distance in H3. It is clear that

𝑑H (𝑇 (𝐴) , 𝑇 (𝐵)) = 𝑑H (𝐴, 𝐵) (10)

for every 𝑇 ∈ 𝐺 and 𝐴, 𝐵 ∈ H3. Thus, we are ready to give the
following definition.

Definition 5. Every element of 𝐺 is an H-isometry in H3.

Thus, we say that 𝐺 is union of subgroup which preserves
time orientation of 𝑂

1
(4). That is, 𝐺 = 𝑂

++

1
(4) ∪ 𝑂

+−

1
(4).

We consider 𝐺
0
, 𝐺

1
, and 𝐺

2
subgroups of 𝐺 which

leave fixed timelike, spacelike, and lightlike planes of R4

1
,

respectively. Let matrix representation of H-isometries be
T = [𝑡

𝑖𝑗
], 0 ⩽ 𝑖, 𝑗 ⩽ 3 and let H-isometries J

1
, J

2
, and J

3

be denoted by J
1

= diag(1, −1, 1, 1), J
2

= diag(1, 1, −1, 1), and
J
3

= diag(1, 1, 1, −1), respectively.
We suppose that 𝑇 ∈ 𝐺

0
. Then, 𝑇 leaves fixed timelike

planes 𝑉
0𝑗

= Sp{e
0
, e

𝑗
} for 𝑗 = 1, 2, 3 of R4

1
. So that 𝑇(𝑉

0𝑗
) =

𝑉
0𝑗
.
If 𝑇(𝑉

01
) = 𝑉

01
for 𝑗 = 1, then entries of matrix T must

be 𝑡
00

= 1, 𝑡
10

= 0, 𝑡
20

= 0, and 𝑡
30

= 0 and 𝑡
01

= 0, 𝑡
11

= 1,
𝑡
21

= 0, and 𝑡
31

= 0. By using (7) and (8), we have 𝑡
03

= 0,
𝑡
02

= 0, 𝑡
12

= 0, and 𝑡
13

= 0 and the following equation
system:

𝑡
2

22
+ 𝑡

2

32
= 1, 𝑡

2

23
+ 𝑡

2

33
= 1,

𝑡
22

𝑡
23

+ 𝑡
32

𝑡
33

= 0,

𝑡
22

𝑡
33

− 𝑡
23

𝑡
32

= ±1.

(11)

If the above system is solved under time orientation preserv-
ing and sign cases, then general form of H-isometries that
leave fixed timelike plane 𝑉

01
of R4

1
is given by

T
01

= R01

𝜃
J𝑚
1
J𝑛
3
, 𝑚, 𝑛 = 0, 1 (12)

such that

R01

𝜃
=

[
[
[

[

1 0 0 0

0 1 0 0

0 0 cos 𝜃 − sin 𝜃

0 0 sin 𝜃 cos 𝜃

]
]
]

]

(13)

for all 𝜃 ∈ R. In other cases, if 𝑇(𝑉
02

) = 𝑉
02
and 𝑇(𝑉

03
) = 𝑉

03
,

then general forms of H-isometries that leave fixed timelike
planes 𝑉

02
and 𝑉

03
of R4

1
are given by

T
02

= R02

𝜃
J𝑚
1
J𝑛
2
,

T
03

= R03

𝜃
J𝑚
2
J𝑛
3
,

𝑚, 𝑛 = 0, 1

(14)

such that

R02

𝜃
=

[
[
[

[

1 0 0 0

0 cos 𝜃 0 sin 𝜃

0 0 1 0

0 − sin 𝜃 0 cos 𝜃

]
]
]

]

,

R03

𝜃
=

[
[
[

[

1 0 0 0

0 cos 𝜃 − sin 𝜃 0

0 sin 𝜃 cos 𝜃 0

0 0 0 1

]
]
]

]

(15)

for all 𝜃 ∈ R, respectively. Thus, we say that the group 𝐺
0
is

union of disjoint subgroups of 𝐺
+

0
and 𝐺

−

0
such that

𝐺
+

0
= {R01

𝑚1𝜃1
R02

𝑚2𝜃2
R03

𝑚3𝜃3
| 𝑚

𝑖
∈ Z, 𝜃

𝑗
∈ R} ,

𝐺
−

0
= {R01

𝑚1𝜃1
R02

𝑚2𝜃2
R03

𝑚3𝜃3
J𝑚4
1
J𝑚5
2
J𝑚6
3

|

𝑚
𝑖
∈ Z, 𝜃

𝑗
∈ R, 𝑚

4
+ 𝑚

5
+ 𝑚

6
≡ 1 (mod 2)} ;

(16)

that is, 𝐺
0

= 𝐺
+

0
∪ 𝐺

−

0
.

We suppose that 𝑇 ∈ 𝐺
1
. Then, 𝑇 leaves fixed spacelike

planes 𝑉
𝑖𝑗

= Sp{e
𝑖
, e

𝑗
} for 𝑖, 𝑗 = 1, 2, 3 of R4

1
. That is, 𝑇(𝑉

𝑖𝑗
) =

𝑉
𝑖𝑗
.
If 𝑇(𝑉

23
) = 𝑉

23
for 𝑖 = 2, 𝑗 = 3, then entries of T must

be 𝑡
02

= 0, 𝑡
12

= 0, 𝑡
22

= 1, and 𝑡
32

= 0 and 𝑡
03

= 0, 𝑡
13

= 0,
𝑡
23

= 0, and 𝑡
33

= 1. By using (7) and (8), we have 𝑡
20

= 0,
𝑡
30

= 0, 𝑡
21

= 0, and 𝑡
31

= 0 and the following equation
system:

−𝑡
2

00
+ 𝑡

2

10
= −1, −𝑡

2

01
+ 𝑡

2

11
= 1,

−𝑡
00

𝑡
01

+ 𝑡
10

𝑡
11

= 0, (𝑡
00

𝑡
11

− 𝑡
01

𝑡
10

) 𝑡
22

𝑡
33

= ±1.

(17)

If the above system is solved under time orientation preserv-
ing and sign cases, then general form of H-isometries that
leave fixed spacelike plane 𝑉

23
of R4

1
is given by

T
23

= L01
𝑠
J𝑚
1
J𝑛
2
J𝑘
3
, 𝑚, 𝑛, 𝑘 = 0, 1 (18)

such that

L01
𝑠

=
[
[
[

[

cosh 𝑠 sinh 𝑠 0 0

sinh 𝑠 cosh 𝑠 0 0

0 0 1 0

0 0 0 1

]
]
]

]

(19)
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for all 𝑠 ∈ R. In other cases, if 𝑇(𝑉
13

) = 𝑉
13
and 𝑇(𝑉

12
) = 𝑉

12
,

then general forms of H-isometries that leave fixed spacelike
planes 𝑉

13
and 𝑉

12
of R4

1
are given by

T
13

= L02
𝑠
J𝑚
1
J𝑛
2
J𝑘
3
,

T
12

= L03
𝑠
J𝑚
1
J𝑛
2
J𝑘
3
,

𝑚, 𝑛, 𝑘 = 0, 1

(20)

such that

L02
𝑠

=
[
[
[

[

cosh 𝑠 0 sinh 𝑠 0

0 1 0 0

sinh 𝑠 0 cosh 𝑠 0

0 0 0 1

]
]
]

]

, (21)

L03
𝑠

=
[
[
[

[

cosh 𝑠 0 0 sinh 𝑠

0 1 0 0

0 0 1 0

sinh 𝑠 0 0 cosh 𝑠

]
]
]

]

(22)

for all 𝑠 ∈ R, respectively. Thus, we say that the group 𝐺
1
is

union of disjoint subgroups of 𝐺
+

1
and 𝐺

−

1
such that

𝐺
+

1
= {L01

𝑚1𝑠1
L02
𝑚2𝑠2

L03
𝑚3𝑠3

J𝑚4
1
J𝑚5
2
J𝑚6
3

|

𝑚
𝑖
∈ Z, 𝑠

𝑗
∈ R, 𝑚

4
+ 𝑚

5
+ 𝑚

6
≡ 0 (mod 2)} ,

(23)

𝐺
−

1
= {L01

𝑚1𝑠1
L02
𝑚2𝑠2

L03
𝑚3𝑠3

J𝑚4
1
J𝑚5
2
J𝑚6
3

|

𝑚
𝑖
∈ Z, 𝑠

𝑗
∈ R, 𝑚

4
+ 𝑚

5
+ 𝑚

6
≡ 1 (mod 2)} ;

(24)

that is, 𝐺
1

= 𝐺
+

1
∪ 𝐺

−

1
.

We suppose that 𝑇 ∈ 𝐺
2
. Then, 𝑇 leaves fixed lightlike

planes D
𝑖𝑗

= Sp{e
0

+ e
𝑖
, e

𝑗
} for 𝑗 = 1, 2, 3 of R4

1
. So that

𝑇(D
𝑖𝑗
) = D

𝑖𝑗
.

If 𝑇(D
12

) = D
12
for 𝑖 = 1, 𝑗 = 2, then entries of matrix T

must be

𝑡
00

+ 𝑡
01

= 1, 𝑡
10

+ 𝑡
11

= 1, 𝑡
20

+ 𝑡
21

= 0,

𝑡
30

+ 𝑡
31

= 0, 𝑡
02

= 𝑡
12

= 𝑡
32

= 0, 𝑡
22

= 1.

(25)

By using (7) and (8), we obtain the following equation system:

1 − 2𝑡
00

+ 𝑡
2

03
= −1, 1 − 2𝑡

10
+ 𝑡

2

13
= 1,

𝑡
2

23
= 0, 𝑡

2

33
= 1,

1 − 𝑡
00

− 𝑡
10

+ 𝑡
03

𝑡
13

= 0, −𝑡
30

+ 𝑡
03

𝑡
33

= 0,

−𝑡
20

+ 𝑡
13

𝑡
23

= 0, −𝑡
30

+ 𝑡
13

𝑡
33

= 0,

𝑡
23

𝑡
33

= 0, −𝑡
03

𝑡
30

+ 𝑡
13

𝑡
30

+ (𝑡
00

− 𝑡
10

) 𝑡
33

= ±1.

(26)

If the above system is solved under time orientation preserv-
ing and sign cases, then general form of H-isometries that
leaves fixed lightlike plane D

12
of R4

1
is given by

T
012

= H012

𝜆
J𝑚
2
J𝑛
3
, 𝑚, 𝑛 = 0, 1 (27)

such that

H012

𝜆
=

[
[
[
[
[
[

[

1 +
𝜆
2

2
−

𝜆
2

2
0 𝜆

𝜆
2

2
1 −

𝜆
2

2
0 𝜆

0 0 1 0

𝜆 −𝜆 0 1

]
]
]
]
]
]

]

(28)

for all 𝜆 ∈ R. In other cases, we apply similar method. Hence,
if H-isometry that leaves fixed lightlike plane D

𝑖𝑗
of R4

1
is

denoted byH0𝑖𝑗

𝜆
, then we have the following H-isometries:

H013

𝜆
=

[
[
[
[
[
[

[

1 +
𝜆
2

2
−

𝜆
2

2
𝜆 0

𝜆
2

2
1 −

𝜆
2

2
𝜆 0

𝜆 −𝜆 1 0

0 0 0 1

]
]
]
]
]
]

]

,

H021

𝜆
=

[
[
[
[
[
[

[

1 +
𝜆
2

2
0 −

𝜆
2

2
𝜆

0 1 0 0

𝜆
2

2
0 1 −

𝜆
2

2
𝜆

𝜆 0 −𝜆 1

]
]
]
]
]
]

]

,

H023

𝜆
=

[
[
[
[
[
[

[

1 +
𝜆
2

2
𝜆 −

𝜆
2

2
0

𝜆 1 −𝜆 0

𝜆
2

2
𝜆 1 −

𝜆
2

2
0

0 0 0 1

]
]
]
]
]
]

]

,

H031

𝜆
=

[
[
[
[
[
[

[

1 +
𝜆
2

2
0 𝜆 −

𝜆
2

2
0 1 0 0

𝜆 0 1 −𝜆

𝜆
2

2
0 𝜆 1 −

𝜆
2

2

]
]
]
]
]
]

]

,

H032

𝜆
=

[
[
[
[
[
[

[

1 +
𝜆
2

2
𝜆 0 −

𝜆
2

2
𝜆 1 0 −𝜆

0 0 1 0

𝜆
2

2
𝜆 0 1 −

𝜆
2

2

]
]
]
]
]
]

]

,

(29)

and we obtained the following general forms:

T
013

= H013

𝜆
J𝑚
2
J𝑛
3

T
021

= H021

𝜆
J𝑚
1
J𝑛
3

T
023

= H023

𝜆
J𝑚
1
J𝑛
3

T
031

= H031

𝜆
J𝑚
1
J𝑛
2

T
032

= H032

𝜆
J𝑚
1
J𝑛
2
,

𝑚, 𝑛 = 0, 1.

(30)
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So, we say that the group 𝐺
2
is union of disjoint subgroups of

𝐺
+

2
and 𝐺

−

2
such that

𝐺
+

2
= {H012

𝑚1𝜆1
H013

𝑚2𝜆2
H021

𝑚3𝜆3
H023

𝑚4𝜆4
H031

𝑚5𝜆5
H032

𝑚6𝜆6
J𝑚7
1
J𝑚8
2
J𝑚9
3

|

𝑚
𝑖
∈ Z, 𝜆

𝑗
∈ R, 𝑚

7
+ 𝑚

8
+ 𝑚

9
≡ 0 (mod 2)} ,

𝐺
−

2
= {H012

𝑚1𝜆1
H013

𝑚2𝜆2
H021

𝑚3𝜆3
H023

𝑚4𝜆4
H031

𝑚5𝜆5
H032

𝑚6𝜆6
J𝑚7
1
J𝑚8
2
J𝑚9
3

|

𝑚
𝑖
∈ Z, 𝜆

𝑗
∈ R, 𝑚

7
+ 𝑚

8
+ 𝑚

9
≡ 1 (mod 2)} ;

(31)

that is, 𝐺
2

= 𝐺
+

2
∪ 𝐺

−

2
.

Hence, it is clear that

𝐺 = 𝐺
0

∪ 𝐺
1

∪ 𝐺
2
,

𝐺
0

∩ 𝐺
1

∩ 𝐺
2

= {I
4
, J1, J2, J3, J1J2, J1J3, J2J3, J1J2J3} .

(32)

However, we see that easily from matrix multiplication

R0𝑗

𝜃1
R0𝑗

𝜃2
= R0𝑗

𝜃1+𝜃2
,

L0𝑗
𝑠1
L0𝑗
𝑠2

= L0𝑗
𝑠1+𝑠2

,

H0𝑖𝑗

𝜆1
H0𝑖𝑗

𝜆2
= H0𝑖𝑗

𝜆1+𝜆2
,

(33)

for any 𝑠
1
, 𝑠

2
, 𝜃

1
, 𝜃

2
, 𝜆

1
, 𝜆

2
∈ R.

Let parametrization of H-coordinate axes 𝑙
01
, 𝑙

02
, and 𝑙

03

be

𝑙
01

: [0, ∞) 󳨀→ 𝐻
3
, 𝑙

01 (𝑟) = (cosh 𝑟, sinh 𝑟, 0, 0) ,

𝑙
02

: [0, ∞) 󳨀→ 𝐻
3
, 𝑙

02
(𝑟) = (cosh 𝑟, 0, sinh 𝑟, 0) ,

𝑙
03

: [0, ∞) 󳨀→ 𝐻
3
, 𝑙

03
(𝑟) = (cosh 𝑟, 0, 0, sinh 𝑟)

(34)

and let their matrix forms be

l01
𝑟

=
[
[
[

[

cosh 𝑟

sinh 𝑟

0

0

]
]
]

]

, l02
𝑟

=
[
[
[

[

cosh 𝑟

0

sinh 𝑟

0

]
]
]

]

, l03
𝑟

=
[
[
[

[

cosh 𝑟

0

0

sinh 𝑟

]
]
]

]

,

(35)

respectively. After applying suitable H-isometry to H-
coordinate axis l0𝑗

𝑟
for 𝑗 = 1, 2, 3, we obtain the following

different parametrizations:

H
(𝑟,𝜃1,𝜃2)

= R01

𝜃2
R03

𝜃1
l01
𝑟

,

H̃
(𝑟,𝜃1,𝜃2)

= R02

𝜃2
R01

𝜃1
l02
𝑟

,

̃̃H
(𝑟,𝜃1,𝜃2)

= R03

𝜃2
R02

𝜃1
l03
𝑟

(36)

for hyperbolic polar coordinates 𝑟 > 0, 𝜃
1

∈ [0, 𝜋] and 𝜃
2

∈

[0, 2𝜋]. Thus, we see roles of H-isometries R0𝑗

𝜃𝑖
and L0𝑘

𝑠
in H3

from equations

R01

𝜑
H

(𝑟,𝜃1,𝜃2)
= H

(𝑟,𝜃1,𝜑+𝜃2)
,

R02

𝜑
H̃

(𝑟,𝜃1,𝜃2)
= H̃

(𝑟,𝜃1,𝜑+𝜃2)
,

R03

𝜑

̃̃H
(𝑟,𝜃1,𝜃2)

=
̃̃H

(𝑟,𝜃1,𝜑+𝜃2)
,

R03

𝜃
H

(𝑟,𝜃1,0)
= H

(𝑟,𝜃+𝜃1 ,0)
,

R01

𝜙
H̃

(𝑟,𝜃1,0)
= H̃

(𝑟,𝜙+𝜃1 ,0)
,

R02

𝜙

̃̃H
(𝑟,𝜃1,0)

=
̃̃H

(𝑟,𝜙+𝜃1 ,0)
,

L01
𝑠
H

(𝑟,0,0)
= H

(𝑠+𝑟,0,0)
,

L02
𝑠
H̃

(𝑟,0,0)
= H̃

(𝑠+𝑟,0,0)
,

L03
𝑠

̃̃H
(𝑟,0,0)

=
̃̃H

(𝑠+𝑟,0,0)
.

(37)

Moreover, L0𝑗
𝑠
and R0𝑗

𝜃
leave fixed l0𝑗

𝑟
; that is,

L0𝑗
𝑠
l0𝑗
𝑟

= l0𝑗
𝑠+𝑟

,

R0𝑗

𝜃
l0𝑗
𝑟

= l0𝑗
𝑟

.

(38)

Thus, we are ready to give the following definitions by (33)
and (38).

Definition 6. L0𝑗
𝑠
isH-translation by 𝑠 alongH-coordinate axis

𝑙
0𝑗
for 𝑗 = 1, 2, 3 in H3.

Definition 7. R0𝑗

𝜃
is H-rotation by 𝜃 about H-coordinate axis

𝑙
0𝑗
for 𝑗 = 1, 2, 3 in H3.

Definition 8. H0𝑖𝑗

𝜆
is horocyclic rotation by 𝜆 about lightlike

plane D
𝑖𝑗
for 𝑖, 𝑗 = 1, 2, 3 (𝑖 ̸= 𝑗) in H3.

Now, we give corollaries about some properties of H-
isometries and transition relation betweenH-coordinate axes
𝑙
0𝑗
with H-coordinate planes 𝐷

𝑖𝑗
.

Corollary 9. Any H-coordinate axis is converted to each other
by suitable H-rotation. That is,

R0𝑗

𝜃
l01
𝑟

=

{{{

{{{

{

l02
𝑟

, 𝑗 = 3, 𝜃 =
𝜋

2

l03
𝑟

, 𝑗 = 2, 𝜃 =
3𝜋

2
.

(39)

Corollary 10. AH-plane consists in suitableH-coordinate axis
and H-rotation. Namely,

R0𝑗

𝜙
l0𝑘
𝑟

=

{{

{{

{

D23

(𝑟,𝜙)
, 𝑗 = 1, 𝑘 = 2

D13

(𝑟,𝜙)
, 𝑗 = 2, 𝑘 = 3

D12

(𝑟,𝜙)
, 𝑗 = 3, 𝑘 = 1.

(40)
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Corollary 11. Any H-coordinate plane is converted to each
other by suitable H-rotation. That is,

R0𝑗

𝜃
D12

(𝑟,𝜙)
=

{{{

{{{

{

D23

(𝑟,𝜙)
, 𝑗 = 3, 𝜃 =

3𝜋

2

D13

(𝑟,𝜙)
, 𝑗 = 1, 𝜃 =

𝜋

2
.

(41)

Corollary 12. Any horocyclic rotation is converted to each
other by suitable H-rotations. Namely,

R0𝑙

−𝜓
R0𝑘

−𝜙
R0𝑗

−𝜃
H012

𝜆
R0𝑗

𝜃
R0𝑘

𝜙
R0𝑙

𝜓

=

{{{{{{{{{{

{{{{{{{{{{

{

H013

𝜆
, 𝑗 = 1, 𝜃 =

𝜋

2
, 𝜙 = 0, 𝜓 = 0

H031

𝜆
, 𝑗 = 1, 𝑘 = 2, 𝜃 =

𝜋

2
, 𝜙 =

𝜋

2
, 𝜓 = 0

H032

𝜆
, 𝑗 = 1, 𝑘 = 2, 𝑙 = 3, 𝜃 =

𝜋

2
, 𝜙 =

𝜋

2
, 𝜓 =

𝜋

2

H023

𝜆
, 𝑗 = 3, 𝑘 = 2, 𝜃 = −

𝜋

2
, 𝜙 = −

𝜋

2
, 𝜓 = 0

H021

𝜆
, 𝑗 = 3, 𝜃 = −

𝜋

2
, 𝜙 = 0, 𝜓 = 0.

(42)

After the notion of congruent in H3, we will give a
different classification theorem of H-isometries in terms of
leaving those totally umbilic surfaces of H3 fixed.

Definition 13. Let 𝑆 and 𝑆
󸀠 be two subsets of H3. If 𝑇(𝑆) = 𝑆

󸀠

for some 𝑇 ∈ 𝐺, then 𝑆 and 𝑆
󸀠 are called congruent in H3.

Theorem 14. An H-sphere is invariant under H-translation in
H3.

Proof. Suppose that 𝑀 is an H-sphere. Then, there exists a
spacelike hyperplane HP(k, −𝑘) with timelike normal k such
that 𝑀 = H3

∩ HP(k, −𝑘) for 𝑘 > 0. So,

HP (k, −𝑘) = {x ∈ R
4

1
|

− V
0
𝑥
0

+ V
1
𝑥
1

+ V
2
𝑥
2

+ V
3
𝑥
3

= −𝑘, 𝑘 > 0} .

(43)

Moreover, for w = k/‖k‖ ∈ H3 and 𝑐 = 𝑘/‖k‖, we have

HP (w, −𝑐) = {x ∈ R
4

1
| ⟨x,w⟩ = −𝑐} . (44)

Since w ∈ H3,

w = (cosh 𝑠
0
, sinh 𝑠

0
cos𝜙

0
, sinh 𝑠

0
sin𝜙

0
cos 𝜃

0
,

sinh 𝑠
0
sin𝜙

0
sin 𝜃

0
)

(45)

for any hyperbolic polar coordinates 𝑠
0

∈ [0, ∞), 𝜙
0

∈ [0, 𝜋]

and 𝜃
0

∈ [0, 2𝜋]. If we apply H-isometry T = L01
−𝑠0

R03

−𝜙0
R01

−𝜃0
∈

𝐺, then we have unit timelike vector e
0
such that

𝑇 (w) = e
0
. (46)

However, unit timelike normal vector e
0
is invariant under

𝐿
0𝑗

𝑠
. That is,

𝐿
0𝑗

𝑠
(e

0
) = (cosh 𝑠) e

0
, 𝑗 = 1, 2, 3. (47)

For this reason, if 𝑀̃ is an H-sphere which is generated from
spacelike hyperplane

HP (e
0
, −𝑐) = {x ∈ R

4

1
| 𝑥

0
= 𝑐, 𝑐 ≥ 1} , (48)

then we have

𝐿
0𝑗

𝑠
(𝑀̃) = 𝑀̃ (49)

by (47). Therefore, 𝑀̃ is invariant under H-translations.
Finally,The proof is completed since𝑀 and 𝑀̃ are congruent
by (46).

The following theorems also can be proved using similar
method.

Theorem 15. An equidistant surface is invariant under H-
rotation in H3.

Theorem 16. A horosphere is invariant under horocyclic
rotation in H3.

Finally, we give the following corollary.

Corollary 17. Equidistant surfaces, H-spheres, and horo-
spheres are invariant under groups 𝐺

0
, 𝐺

1
, and 𝐺

2
in H3,

respectively.

3. Differential Geometry of Curves and
Surfaces in H3

In this section, we give the basic theory of extrinsic differen-
tial geometry of curves and surfaces in H3. Unless otherwise
stated, we use the notation in [7, 8].

TheLorentzian vector product of vectors x1, x2, x3 is given
by

x1 ∧ x2 ∧ x3 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

−e
0

e
1

e
2

e
3

𝑥
1

0
𝑥
1

1
𝑥
1

2
𝑥
1

3

𝑥
2

0
𝑥
2

1
𝑥
2

2
𝑥
2

3

𝑥
3

0
𝑥
3

1
𝑥
3

2
𝑥
3

3

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

, (50)

where {e
0
, e

1
, e

2
, e

3
} is the canonical basis of R4

1
and x𝑖 =

(𝑥
𝑖

0
, 𝑥

𝑖

1
, 𝑥

𝑖

2
, 𝑥

𝑖

3
), 𝑖 = 1, 2, 3. Also, it is clear that

⟨x, x1 ∧ x2 ∧ x3⟩ = det (x, x1, x2, x3) (51)

for any x ∈ R4

1
. Therefore, x1 ∧ x2 ∧ x3 is pseudo-orthogonal

to any x𝑖, 𝑖 = 1, 2, 3.
We recall the basic theory of curves inH3. Let𝛼 : 𝐼 → H3

be a unit speed regular curve for open subset 𝐼 ⊂ R. Since
⟨𝛼

󸀠
(𝑠), 𝛼

󸀠
(𝑠)⟩ = 1, tangent vector of 𝛼 is given by t(𝑠) = 𝛼

󸀠
(𝑠).

The vector 𝛼
󸀠󸀠
(𝑠) − 𝛼(𝑠) is orthogonal to 𝛼(𝑠) and t(𝑠). We

suppose that 𝛼
󸀠󸀠
(𝑠) − 𝛼(𝑠) ̸= 0. Then, the normal vector of 𝛼

is given by n(𝑠) = (𝛼
󸀠󸀠
(𝑠) − 𝛼(𝑠))/‖𝛼

󸀠󸀠
(𝑠) − 𝛼(𝑠)‖. However,

the binormal vector of 𝛼 is given by e(𝑠) = 𝛼(𝑠) ∧ t(𝑠) ∧ n(𝑠).
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Hence, we have a pseudo-orthonormal frame field
{𝛼(𝑠), t(𝑠),n(𝑠), e(𝑠)} of R4

1
along 𝛼 and the following Frenet-

Serret formulas:

[
[
[

[

𝛼
󸀠
(𝑠)

t󸀠 (𝑠)

n󸀠
(𝑠)

e󸀠 (𝑠)

]
]
]

]

=
[
[
[

[

0 1 0 0

1 0 𝜅
ℎ (𝑠) 0

0 −𝜅
ℎ

(𝑠) 0 𝜏
ℎ

(𝑠)

0 0 −𝜏
ℎ

(𝑠) 0

]
]
]

]

[
[
[

[

𝛼 (𝑠)

t (𝑠)

n (𝑠)

e (𝑠)

]
]
]

]

, (52)

where hyperbolic curvature and hyperbolic torsion of 𝛼

are given by 𝜅
ℎ
(𝑠) = ‖𝛼

󸀠󸀠
(𝑠) − 𝛼(𝑠)‖ and 𝜏

ℎ
(𝑠) =

(− det(𝛼(𝑠), 𝛼
󸀠
(𝑠), 𝛼

󸀠󸀠
(𝑠), 𝛼

󸀠󸀠󸀠
(𝑠)))/(𝜅

ℎ
(𝑠))

2 under the assump-
tion ⟨𝛼

󸀠󸀠
(𝑠), 𝛼

󸀠󸀠
(𝑠)⟩ ̸= −1, respectively.

Remark 18. The condition ⟨𝛼
󸀠󸀠
(𝑠), 𝛼

󸀠󸀠
(𝑠)⟩ ̸= −1 is equivalent

to 𝜅
ℎ
(𝑠) ̸= 0. Moreover, we see easily that 𝜅

ℎ
(𝑠) = 0 if and only

if there exists a lightlike vector c such that 𝛼(𝑠) − 𝑐 a geodesic
(H-line).

If 𝜅
ℎ
(𝑠) = 1 and 𝜏

ℎ
(𝑠) = 0, then 𝛼 in H3 is called a

horocycle. We give a lemma about existence and uniqueness
for horocycles (cf. [8, Proposition 4.3]).

Lemma 19. For any a
0

∈ H3 and a
1
, a

2
∈ S3

1
such that

⟨a
𝑖
, a

𝑗
⟩ = 0, the unique horocycle with the initial conditions

𝛾(0) = a
0
, 𝛾󸀠(0) = a

1
, and 𝛾

󸀠󸀠
(0) = a

0
+ a

2
is given by

𝛾 (𝑠) = a
0

+ 𝑠a
1

+
𝑠
2

2
(a

0
+ a

2
) . (53)

Now, we recall the basic theory of surfaces in H3. Let x :

𝑈 → H3 be embedding such that open subset 𝑈 ⊂ R2. We
denote that regular surface 𝑀 = x(𝑈) and identify 𝑀 and 𝑈

through the embedding x, where 𝑖 : 𝑈 → 𝑀 is a local chart.
For x(𝑢) = 𝑝 ∈ 𝑀 and 𝑢 = (𝑢

1
, 𝑢

2
) ∈ 𝑈, if we define spacelike

unit normal vector

𝜂 (𝑢) =
x (𝑢) ∧ x

𝑢1
(𝑢) ∧ x

𝑢2
(𝑢)

󵄩󵄩󵄩󵄩󵄩
x (𝑢) ∧ x

𝑢1
(𝑢) ∧ x

𝑢2
(𝑢)

󵄩󵄩󵄩󵄩󵄩

, (54)

where x
𝑢𝑖

= 𝜕x/𝜕𝑢
𝑖
, 𝑖 = 1, 2, thenwehave ⟨x

𝑢𝑖
, x⟩ = ⟨x

𝑢𝑖
, 𝜂⟩ =

0, 𝑖 = 1, 2. We also regard 𝜂 as unit normal vector field along
𝑀 in H3. Moreover, x(𝑢) ± 𝜂(𝑢) is a lightlike vector since
x(𝑢) ∈ H3, 𝜂(𝑢) ∈ S3

1
. Then the following maps 𝐸 : 𝑈 → 𝑆

3

1
,

𝐸(𝑢) = 𝜂(𝑢) and 𝐿
±

: 𝑈 → 𝐿𝐶
+
, 𝐿

±
(𝑢) = x(𝑢) ± 𝜂(𝑢)

are called de Sitter Gauss map and light cone Gauss map of
x, respectively [8]. Under the identification of 𝑈 and 𝑀 via
the embedding x, the derivative 𝑑x(𝑢

0
) can be identified with

identity mapping 𝐼
𝑇𝑝𝑀

on the tangent space 𝑇
𝑝
𝑀 at x(𝑢

0
) =

𝑝 ∈ 𝑀. We have that −𝑑𝐿
±

= −𝐼
𝑇𝑝𝑀

± (−𝑑𝐸).
For any given x(𝑢

0
) = 𝑝 ∈ 𝑀, the linear transforms 𝐴

𝑝
=

−𝑑𝐸(𝑢
0
) : 𝑇

𝑝
𝑀 → 𝑇

𝑝
𝑀 and 𝑆

±

𝑝
= −𝑑𝐿

±
(𝑢

0
) : 𝑇

𝑝
𝑀 →

𝑇
𝑝
𝑀 are called de Sitter shape operator and hyperbolic shape

operator of x(𝑈) = 𝑀, respectively.The eigenvalues of𝐴
𝑝
and

𝑆
±

𝑝
are denoted by 𝑘

𝑖
(𝑝) and 𝑘

±

𝑖
(𝑝) for 𝑖 = 1, 2, respectively.

Obviously, 𝐴
𝑝
and 𝑆

±

𝑝
have same eigenvectors. Also, the

eigenvalues satisfy

𝑘
±

𝑖
(𝑝) = −1 ± 𝑘

𝑖
(𝑝) , 𝑖 = 1, 2, (55)

where 𝑘
𝑖
(𝑝) and 𝑘

±

𝑖
(𝑝) are called de Sitter principal curvature

and hyperbolic principal curvature of 𝑀 at x(𝑢
0
) = 𝑝 ∈ 𝑀,

respectively.
The de Sitter Gauss curvature and the de Sitter mean

curvature of 𝑀 are given by

𝐾
𝑑

(𝑢
0
) = det𝐴

𝑝
= 𝑘

1
(𝑝) 𝑘

2
(𝑝) ,

𝐻
𝑑

(𝑢
0
) =

1

2
Tr𝐴

𝑝
=

𝑘
1

(𝑝) + 𝑘
2

(𝑝)

2

(56)

at x(𝑢
0
) = 𝑝, respectively. Similarly, The hyperbolic Gauss

curvature and the hyperbolic mean curvature of 𝑀 are given
by

𝐾
±

ℎ
(𝑢

0
) = det 𝑆

±

𝑝
= 𝑘

±

1
(𝑝) 𝑘

±

2
(𝑝) ,

𝐻
±

ℎ
(𝑢

0
) =

1

2
Tr 𝑆

±

𝑝
=

𝑘
±

1
(𝑝) + 𝑘

±

2
(𝑝)

2

(57)

at x(𝑢
0
) = 𝑝, respectively. Evidently, we have the following

relations:
𝐾

±

ℎ
= 1 ∓ 2𝐻

𝑑
+ 𝐾

𝑑
,

𝐻
±

ℎ
= −1 ± 𝐻

𝑑
.

(58)

We say that a point x(𝑢
0
) = 𝑝 ∈ 𝑀 is an umbilical point

if 𝑘
1
(𝑝) = 𝑘

2
(𝑝). Also, 𝑀 is totally umbilical if all points

on 𝑀 are umbilical. Now, we give the following classification
theoremof totally umbilical surfaces inH3 (cf. [8, Proposition
2.1]).

Lemma 20. Suppose that𝑀 = x(𝑈) is totally umbilical.Then,
𝑘(𝑝) is a constant 𝑘. Under this condition, one has the following
classification.

(1) Supposing that 𝑘
2

̸= 1,

(a) if 𝑘 ̸= 0 and 𝑘
2

< 1, then M is a part of an
equidistant surface;

(b) if 𝑘 ̸= 0 and 𝑘
2

> 1, then M is a part of a sphere;
(c) if 𝑘 = 0, then M is a part of a plane (H-plane).

(2) If 𝑘
2

= 1, then M is a part of horosphere.

4. 𝐺
1
-Invariant Surfaces in H3

In this section, we investigate surfaces which are invariant
under some one parameter subgroup of H-translations inH3.
Moreover, we study extrinsic differential geometry of these
invariant surfaces.

Let 𝑀 = x(𝑈) be a regular surface via embedding x :

𝑈 → H3 such that open subset 𝑈 ⊂ R2. We denote by 𝐴

the shape operator of 𝑀 with respect to unit normal vector
field 𝜂 in H3. Let us represent by 𝐷, 𝐷, and 𝐷 the Levi-Civita
connections of R4

1
,H3, and 𝑀, respectively. Then the Gauss

and Weingarten explicit formulas for 𝑀 in H3 are given by

𝐷
𝑋

𝑌 = 𝐷
𝑋

𝑌 + ⟨𝐴 (𝑋) , 𝑌⟩ 𝜂 + ⟨𝑋, 𝑌⟩ x, (59)

𝐴 (𝑋) = −𝐷
𝑋

𝜂 = −𝐷
𝑋

𝜂 (60)

for all tangent vector fields 𝑋, 𝑌 ∈ X(𝑀), respectively.
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Let 𝐼 be an open interval of R and let

𝛼 : 𝐼 󳨀→ 𝐷
23

⊂ 𝐻
3
, 𝛼 (𝑡) = (𝛼

1
(𝑡) , 0, 𝛼

3
(𝑡) , 𝛼

4
(𝑡))

(61)

be a unit speed regular curve which is lying onH-plane𝐷
23

=

{(𝑥
0
, 𝑥

1
, 𝑥

2
, 𝑥

3
) ∈ H3

| 𝑥
1

= 0}. Without loss of generality, we
consider the subgroup

𝐺
1

=

{{{

{{{

{

L
𝑠

=
[
[
[

[

cosh 𝑠 sinh 𝑠 0 0

sinh 𝑠 cosh 𝑠 0 0

0 0 1 0

0 0 0 1

]
]
]

]

: 𝑠 ∈ R

}}}

}}}

}

⊂ 𝐺
1

(62)

which isH-translation group alongH-coordinate axis 𝑙
01

(𝑠) =

(cosh 𝑠, sinh 𝑠, 0, 0) in H3. Let 𝑀 = x(𝑈) be a regular surface
which is given by the embedding

x : 𝑈 󳨀→ H
3
, x (𝑠, 𝑡) = 𝐿

𝑠
(𝛼 (𝑡)) , (63)

where 𝑈 = R × 𝐼 is open subset of R2. Since 𝐿
𝑠
(𝑀) = 𝑀

for all 𝑠 ∈ R, 𝑀 is invariant under H-translation group 𝐺
1
.

Hence we say that 𝑀 is a 𝐺
1
-invariant surface and 𝛼 is the

profile curve of 𝑀 in H3.

Remark 21. From now on, we will not use the parameter “t”
in case of necessity for brevity.

By (61) and (62), the parametrization of 𝑀 is

x (𝑠, 𝑡) = (𝛼
1

(𝑡) cosh 𝑠, 𝛼
1

(𝑡) sinh 𝑠, 𝛼
3

(𝑡) , 𝛼
4

(𝑡)) (64)

for all (𝑠, 𝑡) ∈ 𝑈. By (59),

𝜕
𝑠

= 𝐷x𝑠x − ⟨x
𝑠
, x⟩ x = 𝐷x𝑠x = x

𝑠
,

𝜕
𝑡

= 𝐷x𝑡x − ⟨x
𝑡
, x⟩ x = 𝐷x𝑡x = x

𝑡
,

(65)

where 𝜕
𝑠

= 𝐷x𝑠x, 𝜕
𝑡

= 𝐷x𝑡x, x𝑠 = 𝜕x/𝜕𝑠, and x
𝑡

= 𝜕x/𝜕𝑡. So,
we have

𝜕
𝑠 (𝑠, 𝑡) = (𝛼

1 (𝑡) sinh 𝑠, 𝛼
1 (𝑡) cosh 𝑠, 0, 0) ,

𝜕
𝑡 (𝑠, 𝑡) = (𝛼

󸀠

1
(𝑡) cosh 𝑠, 𝛼

󸀠

1
(𝑡) sinh 𝑠, 𝛼

󸀠

3
(𝑡) , 𝛼

󸀠

4
(𝑡)) ,

⟨𝜕
𝑠 (𝑠, 𝑡) , 𝜕

𝑡 (𝑠, 𝑡)⟩ = 0.

(66)

Hence, 𝜓 = {𝜕
𝑠
, 𝜕

𝑡
} is orthogonal tangent frame of X(𝑀).

If 𝜔(𝑠, 𝑡) = x(𝑠, 𝑡) ∧ 𝜕
𝑠
(𝑠, 𝑡) ∧ 𝜕

𝑡
(𝑠, 𝑡), then we have that

⟨𝜔(𝑠, 𝑡), 𝜔(𝑠, 𝑡)⟩ = 𝛼
1
(𝑡)

2 and also 𝛼
1
(𝑡) > 0 for all 𝑡 ∈ 𝐼 since

𝛼(𝐼) ∈ H3. If the unit normal vector of 𝑀 inH3 is denoted by
𝜂(𝑠, 𝑡) = 𝜔(𝑠, 𝑡)/‖𝜔(𝑠, 𝑡)‖, then we have that

𝜂 (𝑠, 𝑡) = ((𝛼
3
𝛼
󸀠

4
− 𝛼

󸀠

3
𝛼
4
) cosh 𝑠, (𝛼

3
𝛼
󸀠

4
− 𝛼

󸀠

3
𝛼
4
) sinh 𝑠,

𝛼
1
𝛼
󸀠

4
− 𝛼

󸀠

1
𝛼
4
, 𝛼

󸀠

1
𝛼
3

− 𝛼
1
𝛼
󸀠

3
)

(67)

and it is clear that

⟨𝜂, 𝜕
𝑠
⟩ ≡ ⟨𝜂, 𝜕

𝑡
⟩ ≡ 0 (68)

for all (𝑠, 𝑡) ∈ 𝑈. From (59) and (60), the matrix of de Sitter
shape operator of𝑀with respect to orthogonal tangent frame
𝜓 ofX(𝑀) is A

𝑝
= [

𝑎 𝑐

𝑏 𝑑
] at any x(𝑠, 𝑡) = 𝑝 ∈ 𝑀, where

𝑎 =

⟨−𝐷
𝜕𝑠

𝜂, 𝜕
𝑠
⟩

⟨𝜕
𝑠
, 𝜕

𝑠
⟩

=

⟨𝐷
𝑥𝑠

𝑥
𝑠
, 𝜂⟩

⟨𝑥
𝑠
, 𝑥

𝑠
⟩

,

𝑏 =

⟨−𝐷
𝜕𝑠

𝜂, 𝜕
𝑡
⟩

⟨𝜕
𝑡
, 𝜕

𝑡
⟩

=

⟨𝐷
𝑥𝑠

𝑥
𝑡
, 𝜂⟩

⟨𝑥
𝑡
, 𝑥

𝑡
⟩

; 𝑐 = 𝑏,

𝑑 =

⟨−𝐷
𝜕𝑡

𝜂, 𝜕
𝑡
⟩

⟨𝜕
𝑡
, 𝜕

𝑡
⟩

=

⟨𝐷
𝑥𝑡

𝑥
𝑡
, 𝜂⟩

⟨𝑥
𝑡
, 𝑥

𝑡
⟩

.

(69)

After basic calculations, the de Sitter principal curvatures of
𝑀 are

𝑘
1

=
𝛼
󸀠

3
𝛼
4

− 𝛼
3
𝛼
󸀠

4

𝛼
1

, (70)

𝑘
2

= 𝛼
󸀠󸀠

1
(𝛼

󸀠

3
𝛼
4

− 𝛼
3
𝛼
󸀠

4
) + 𝛼

󸀠󸀠

3
(𝛼

1
𝛼
󸀠

4
− 𝛼

󸀠

1
𝛼
4
)

+ 𝛼
󸀠󸀠

4
(𝛼

󸀠

1
𝛼
3

− 𝛼
1
𝛼
󸀠

3
) .

(71)

Let Frenet-Serret apparatus of 𝑀 be denoted by
{t,n, e, 𝜅

ℎ
, 𝜏

ℎ
} in H3.

Proposition 22. Thebinormal vector of the profile curve of𝐺
1
-

invariant surface 𝑀 is constant in H3.

Proof. Let 𝛼 be the profile curve of 𝑀. By (61), we know that
𝛼 is a hyperbolic plane curve; that is, 𝜏

ℎ
= 0. Moreover, by

(52) and (59), we have that 𝐷te = −𝜏
ℎ
n = 0. Hence, by (52),

𝐷te = 0. This completes the proof.

From now on, let the binormal vector of the profile
curve of 𝑀 be given by e = (𝜆

0
, 𝜆

1
, 𝜆

2
, 𝜆

3
) such that 𝜆

𝑖

is scalar for 𝑖 = 0, 1, 2, 3. Now, we will give the important
relation between the one of de Sitter principal curvatures and
hyperbolic curvature of the profile curve of 𝑀.

Theorem 23. Let𝑀 be𝐺
1
-invariant surface inH3. Then, 𝑘

2
=

𝜆
1
𝜅
ℎ
.

Proof. Let the binormal vector of the profile curve of 𝑀 be
denoted by e. In Section 3, from the definition of Serret-
Frenet vectors, we have that 𝜅

ℎ
e = 𝛼 ∧ 𝛼

󸀠
∧ 𝛼

󸀠󸀠. Also, by (50)
and (71), we obtain that 𝛼 ∧ 𝛼

󸀠
∧ 𝛼

󸀠󸀠
= (0, 𝑘

2
, 0, 0). Thus, it

follows that 𝜅
ℎ
e = (0, 𝑘

2
, 0, 0). For this reason, we have that

𝑘
2

= 𝜆
1
𝜅
ℎ
.

As a result of Theorem 23, the de Sitter Gauss curvature
and the de Sitter mean curvature of 𝑀 = x(𝑈) are

𝐾
𝑑

(𝑝) =
𝛼
󸀠

3
𝛼
4

− 𝛼
3
𝛼
󸀠

4

𝛼
1

𝜆
1
𝜅
ℎ
, (72)

𝐻
𝑑

(𝑝) =

(𝛼
󸀠

3
𝛼
4

− 𝛼
3
𝛼
󸀠

4
) + 𝜆

1
𝜅
ℎ
𝛼
1

2𝛼
1

, (73)
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at any x(𝑠, 𝑡) = 𝑝, respectively. Moreover, if we apply (58),
then the hyperbolicGauss curvature and the hyperbolicmean
curvature of 𝑀 are

𝐾
±

ℎ
(𝑝) =

(𝛼
1

∓ (𝛼
󸀠

3
𝛼
4

− 𝛼
3
𝛼
󸀠

4
)) (1 ∓ 𝜆

1
𝜅
ℎ
)

𝛼
1

, (74)

𝐻
±

ℎ
(𝑝) =

𝛼
1

(−2 ± 𝜆
1
𝜅
ℎ
) ± (𝛼

󸀠

3
𝛼
4

− 𝛼
3
𝛼
󸀠

4
)

2𝛼
1

, (75)

at any x(𝑠, 𝑡) = 𝑝, respectively.

Proposition 24. Let 𝛼 : 𝐼 → 𝐷
23

⊂ 𝐻
3, 𝛼(𝑡) =

(𝛼
1
(𝑡), 0, 𝛼

3
(𝑡), 𝛼

4
(𝑡)), be unit speed regular profile curve of𝐺

1
-

invariant surface 𝑀. Then its components are given by

𝛼
3

(𝑡) = √𝛼
1

(𝑡)
2

− 1 cos𝜑 (𝑡) ,

𝛼
4

(𝑡) = √𝛼
1

(𝑡)
2

− 1 sin𝜑 (𝑡) ,

𝜑 (𝑡) = ∫

𝑡

0

√𝛼
1 (𝑢)

2
− 𝛼

󸀠

1
(𝑢)

2
− 1

𝛼
1

(𝑢)
2

− 1
𝑑𝑢.

(76)

Proof. Suppose that the profile curve of 𝑀 is unit speed and
regular. So that, it satisfies the following equations:

−𝛼
1

(𝑡)
2

+ 𝛼
3

(𝑡)
2

+ 𝛼
4

(𝑡)
2

= −1, (77)

−𝛼
󸀠

1
(𝑡)

2
+ 𝛼

󸀠

3
(𝑡)

2
+ 𝛼

󸀠

4
(𝑡)

2
= 1, (78)

for all 𝑡 ∈ 𝐼. By (77) and 𝛼
1
(𝑡) ≥ 1, we have that

𝛼
3 (𝑡) = √𝛼

1 (𝑡)
2

− 1 cos𝜑 (𝑡) ,

𝛼
4 (𝑡) = √𝛼

1 (𝑡)
2

− 1 sin𝜑 (𝑡) ,

(79)

such that 𝜑 is a differentiable function. Moreover, by (78) and
(79), we obtain that

𝜑
󸀠
(𝑡)

2
=

𝛼
1 (𝑡)

2
− 𝛼

󸀠

1
(𝑡)

2
− 1

(𝛼
1

(𝑡)
2

− 1)
2

. (80)

Finally, by (80), we have that

𝜑 (𝑡) = ± ∫

𝑡

0

√𝛼
1

(𝑢)
2

− 𝛼
󸀠

1
(𝑢)

2
− 1

𝛼
1 (𝑢)

2
− 1

𝑑𝑢 (81)

such that 𝛼
1
(𝑡)

2
− 𝛼

󸀠

1
(𝑡)

2
− 1 > 0 for all 𝑡 ∈ 𝐼. Without loss

of generality, when we choose positive of signature of 𝜑, this
completes the proof.

Remark 25. If 𝑀 is a de Sitter flat surface in H3, then we say
that 𝑀 is an H-plane in H3.

Now, we will give some results which are obtained by (72)
and (74).

Corollary 26. Let 𝛼 be the profile curve of 𝐺
1
-invariant

surface 𝑀 in H3. Then,

(i) if 𝛼
3

= 0 or 𝛼
4

= 0, then 𝑀 is a part of de Sitter flat
surface;

(ii) if 𝜅
ℎ

= 0, then 𝑀 is a part of de Sitter flat surface;

(iii) if 𝜆
1

= 0, then 𝑀 is a part of de Sitter flat surface.

Corollary 27. Let 𝛼 be the profile curve of 𝐺
1
-invariant

surface 𝑀 in H3. If 𝛼
3

= 𝜇𝛼
4
such that 𝜇 ∈ R, then 𝑀 is a

de Sitter flat surface.

Theorem 28. Let 𝛼 be the profile curve of𝐺
1
-invariant surface

𝑀 in H3. Then, 𝑀 is hyperbolic flat surface if and only if 𝜅
ℎ

=

±1/𝜆
1
.

Proof. Suppose that𝑀 is hyperbolic flat surface; that is,𝐾±

ℎ
=

0. By (74), it follows that

𝛼
1

(𝑡) ∓ (𝛼
󸀠

3
(𝑡) 𝛼

4
(𝑡) − 𝛼

3
(𝑡) 𝛼

󸀠

4
(𝑡)) = 0 (82)

or

1 ∓ 𝜆
1
𝜅
ℎ

(𝑡) = 0 (83)

for all 𝑡 ∈ 𝐼. Firstly, let us find solution of (82). If
Proposition 24 is applied to (82), we have that 𝛼

1
(𝑡) ∓

(−√𝛼
1
(𝑡)

2
− 𝛼

󸀠

1
(𝑡)

2
− 1) = 0. Hence, it follows that

𝛼
󸀠

1
(𝑡)

2
+ 1 = 0. (84)

There is no real solution of (84). This means that the only
one solution is 𝜅

ℎ
= ±1/𝜆

1
by (83). On the other hand, if we

assume that 𝜅
ℎ

= ±1/𝜆
1
, then the proof is clear.

Corollary 29. Let 𝛼 be the profile curve of 𝐺
1
-invariant

surface 𝑀 in H3. Then,

(i) if 𝜆
1

= 1 and 𝜅
ℎ

= 1, then 𝑀 is 𝐾
+

ℎ
-flat surface which

is generated from horocyle;

(ii) if 𝜆
1

= −1 and 𝜅
ℎ

= 1, then 𝑀 is 𝐾
−

ℎ
-flat surface which

is generated from horocyle.

Now, we will give theorem and corollaries for 𝐺
1
-

invariant surface which satisfy minimal condition in H3 by
(73) and (75).

Theorem 30. Let 𝛼 be the profile curve with constant hyper-
bolic curvature of 𝐺

1
-invariant surface 𝑀 inH3. Then, 𝑀 is de
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Sitter minimal surface if and only if the parametrization of 𝛼 is
given by

𝛼
1

(𝑡) = ((−2 + 𝜆
2

1
𝜅
2

ℎ
) cosh ((𝑡 + 𝑐

1
) √1 − 𝜆

2

1
𝜅
2

ℎ
)

−𝜆
2

1
𝜅
2

ℎ
sinh((𝑡 + 𝑐

1
) √1 − 𝜆

2

1
𝜅
2

ℎ
))

× (−2 (1 − 𝜆
2

1
𝜅
2

ℎ
))

−1

,

𝛼
3

(𝑡) = √𝛼
1

(𝑡)
2

− 1 cos𝜑 (𝑡) ,

𝛼
4 (𝑡) = √𝛼

1 (𝑡)
2

− 1 sin𝜑 (𝑡) ,

𝜑 (𝑡) = ∫

𝑡

0

√𝛼
1 (𝑢)

2
− 𝛼

󸀠

1
(𝑢)

2
− 1

𝛼
1

(𝑢)
2

− 1
𝑑𝑢,

(85)

with the condition 𝜅
ℎ

∈ (−1/𝜆
1
, 1/𝜆

1
) such that 𝑐

1
is an

arbitrary constant.

Proof. Suppose that 𝑀 is de Sitter minimal surface; that is,
𝐻

𝑑
≡ 0. By (73), it follows that

(𝛼
󸀠

3
(𝑡) 𝛼

4 (𝑡) − 𝛼
3 (𝑡) 𝛼

󸀠

4
(𝑡)) + 𝜆

1
𝜅
ℎ
𝛼
1 (𝑡) = 0, (86)

for all 𝑡 ∈ 𝐼. By using Proposition 24, we have the following
differential equation:

𝛼
󸀠

1
(𝑡)

2
− (1 − 𝜆

2

1
𝜅
2

ℎ
) 𝛼

1 (𝑡)
2

+ 1 = 0. (87)

There exists only one real solution of (87) under the condition
1 − 𝜆

2

1
𝜅
2

ℎ
> 0. Moreover, 𝜆

1
must not be zero by Corollary 26.

So that, we obtain

𝜅
ℎ

∈ (−
1

𝜆
1

,
1

𝜆
1

) . (88)

Hence, the solution is

𝛼
1

(𝑡) = ((−2 + 𝜆
2

1
𝜅
2

ℎ
) cosh ((𝑡 + 𝑐

1
) √1 − 𝜆

2

1
𝜅
2

ℎ
)

−𝜆
2

1
𝜅
2

ℎ
sinh((𝑡 + 𝑐

1
) √1 − 𝜆

2

1
𝜅
2

ℎ
))

× (−2 (1 − 𝜆
2

1
𝜅
2

ℎ
))

−1

,

(89)

where 𝑐
1
is an arbitrary constant under the condition (88).

Finally, the parametrization of 𝛼 is given explicitly by
Proposition 24.

On the other hand, let the parametrization of profile curve
𝛼 of 𝑀 be given by (85) under the condition (87). Then it
satisfies (86). It means that 𝐻

𝑑
≡ 0.

Theorem 31. Let 𝛼 be the profile curve with constant hyper-
bolic curvature of 𝐺

1
-invariant surface 𝑀 in H3. Then, 𝑀 is

hyperbolic minimal surface if and only if the parametrization
of 𝛼 is given by

𝛼
1

(𝑡)

= (((2 ∓ 𝜆
1
𝜅
ℎ
)
2

− 2) cosh ((𝑡 + 𝑐
1
) √1 − (2 ∓ 𝜆

1
𝜅
ℎ
)
2
)

+ (2 − 𝜆
1
𝜅
ℎ
)
2 sinh((𝑡 + 𝑐

1
) √1 − (2 ∓ 𝜆

1
𝜅
ℎ
)
2
))

× (2 (−1 + (2 ∓ 𝜆
1
𝜅
ℎ
)
2
))

−1

,

𝛼
3

(𝑡) = √𝛼
1

(𝑡)
2

− 1 cos𝜑 (𝑡) ,

𝛼
4

(𝑡) = √𝛼
1

(𝑡)
2

− 1 sin𝜑 (𝑡) ,

𝜑 (𝑡) = ∫

𝑡

0

√𝛼
1

(𝑡)
2

− 𝛼
󸀠

1
(𝑡)

2
− 1

𝛼
1 (𝑡)

2
− 1

𝑑𝑢,

(90)

with the condition 1−(2∓𝜆
1
𝜅
ℎ
)
2

> 0 such that 𝑐
1
is an arbitrary

constant.

Proof. Suppose that 𝑀 is hyperbolic minimal surface; that is,
𝐻

±

ℎ
≡ 0. By (75), it follows that

(−2 ± 𝜆
1
𝜅
ℎ
) 𝛼

1
(𝑡) ± (𝛼

󸀠

3
(𝑡) 𝛼

4
(𝑡) − 𝛼

3
(𝑡) 𝛼

󸀠

4
(𝑡)) = 0. (91)

If Proposition 24 is applied to (91), we have that

𝛼
󸀠

1
(𝑡)

2
+ ((−2 ± 𝜆

1
𝜅
ℎ
)
2

− 1) 𝛼
1

(𝑡)
2

+ 1 = 0. (92)

There exists only one real solution of (92) under the condition

(−2 ± 𝜆
1
𝜅
ℎ
)
2

− 1 < 0. (93)

Thus, the solution is

𝛼
1

(𝑡)

= (((2 ∓ 𝜆
1
𝜅
ℎ
)
2

− 2) cosh ((𝑡 + 𝑐
1
) √1 − (2 ∓ 𝜆

1
𝜅
ℎ
)
2
)

+ (2 − 𝜆
1
𝜅
ℎ
)
2 sinh((𝑡 + 𝑐

1
) √1 − (2 ∓ 𝜆

1
𝜅
ℎ
)
2
))

× (2 (−1 + (2 ∓ 𝜆
1
𝜅
ℎ
)
2
))

−1

,

(94)

where 𝑐
1
is an arbitrary constant under the condition (93).

However, 𝜆
1
must not be zero by Corollary 26. So that, if 𝑀

is𝐻
+

ℎ
-minimal surface (𝐻−

ℎ
-minimal surface), thenwe obtain

𝜅
ℎ

∈ (1/𝜆
1
, 3/𝜆

1
) (𝜅

ℎ
∈ (−3/𝜆

1
, −1/𝜆

1
)) by (93). Finally, the

parametrization of 𝛼 is given explicitly by Proposition 24.
Conversely, let the parametrization of profile curve 𝛼 of

𝑀 be given by (90) under the condition (93).Then, it satisfies
(91). It means that 𝐻

±

ℎ
≡ 0.

Now, we will give classification theorem for totally umbil-
ical 𝐺

1
-invariant surfaces.
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Theorem 32. Let 𝛼 be the profile curve of totally umbilical 𝐺
1
-

invariant surface 𝑀 inH3. Then, the hyperbolic curvature of 𝛼

is constant.

Proof. Let 𝑀 be totally umbilical 𝐺
1
-invariant surface. By

Theorem 23 and (70), we may assume that 𝑘
1
(𝑝) = 𝑘

2
(𝑝) =

𝜆
1
𝜅
ℎ
(𝑡) for all x(𝑠, 𝑡) = 𝑝 ∈ 𝑀. Then, we have the following

equations:

𝐴 (𝜕
𝑠
) = −𝐷

𝜕𝑠
𝜂 = −𝐷x𝑠𝜂 = −𝜆

1
𝜅
ℎ (𝑡) x𝑠,

𝐴 (𝜕
𝑡
) = −𝐷

𝜕𝑡
𝜂 = −𝐷x𝑡𝜂 = −𝜆

1
𝜅
ℎ

(𝑡) x
𝑡
,

𝐷
𝜕𝑡

(𝐷
𝜕𝑠

𝜂) = 𝐷x𝑡 (𝐷x𝑠𝜂) = 𝐷x𝑡𝜂𝑠,

𝐷
𝜕𝑠

(𝐷
𝜕𝑡

𝜂) = 𝐷x𝑠 (𝐷x𝑡𝜂) = 𝐷x𝑠𝜂𝑡.

(95)

By (95), we obtain that

−𝐷x𝑡𝜂𝑠 = −𝜆
1

(𝜅
󸀠

ℎ
(𝑡) x𝑠 + 𝜅

ℎ (𝑡) x𝑠𝑡) ,

−𝐷x𝑠𝜂𝑡 = −𝜆
1
𝜅
ℎ

(𝑡) x
𝑡𝑠

.

(96)

Also, if we use the equations 𝐷x𝑡𝜂𝑠 = 𝐷x𝑠𝜂𝑡 and x
𝑠𝑡

= x
𝑡𝑠
in

(96), then it follows that 𝜆
1
𝜅
󸀠

ℎ
(𝑡) = 0 for all 𝑡 ∈ 𝐼. Moreover,

𝜆
1
must not be zero by Corollary 26.Thus, 𝜅

ℎ
is constant.

Corollary 33. Let 𝛼 be the profile curve of totally umbilical
𝐺
1
-invariant surface 𝑀 in H3. Then we have the following

classification.

(1) Supposing that 𝜉
2

̸= 1,

(a) if 𝜉 ̸= 0 and 𝜉
2

< 1, then 𝑀 is a part of an
equidistant surface;

(b) if 𝜉 ̸= 0 and 𝜉
2

> 1, then 𝑀 is a part of a sphere;
(c) if 𝜉 = 0, then 𝑀 is a part of a H-plane.

(2) If 𝜉
2

= 1, then 𝑀 is a part of horosphere,

where 𝜉 = 𝜆
1
𝜅
ℎ
is a constant.

Proof. We suppose that 𝜉 = 𝜆
1
𝜅
ℎ
. By Proposition 22 and

Theorem 32,we have that 𝜉 is constant.Moreover, 𝜉 is de Sitter
principal curvature of 𝑀 by Theorem 23. Since 𝑀 is totally
umbilical surface, de Sitter shape operator of 𝑀 is 𝐴

𝑝
= 𝜉𝐼

2

where 𝐼
2
is identity matrix. Finally, the proof is complete by

Lemma 20.

Now, we will give some examples of 𝐺
1
-invariant surface

in H3. Let the Poincaré ball model of hyperbolic space be
given by

B
3

= {(𝑥
1
, 𝑥

2
, 𝑥

3
) ∈ R

3
|

3

∑

𝑖=1

𝑥
2

𝑖
< 1} (97)

with the hyperbolic metric 𝑑𝑠
2

= 4(𝑑𝑥
2

1
+𝑑𝑥

2

2
+𝑑𝑥

2

3
)/(1−𝑥

2

1
−

𝑥
2

2
− 𝑥

2

3
). Then, it is well known that stereographic projection

of H3 is given by

Φ : H
3

󳨀→ B
3
,

Φ (𝑥
0
, 𝑥

1
, 𝑥

2
, 𝑥

3
) = (

𝑥
1

1 + 𝑥
0

,
𝑥
2

1 + 𝑥
0

,
𝑥
3

1 + 𝑥
0

) .

(98)

We can draw the pictures of surface x(𝑈) = 𝑀 by using
stereographic projection Φ. That is, Φ(𝑀) ⊂ B3 such that
x(𝑈) = 𝑀 ⊂ H3.

Example 34. The 𝐺
1
-invariant surface which is generated

from 𝛼(𝑡) = (√2, 0, cos 𝑡, sin 𝑡) with hyperbolic curvature
𝜅
ℎ

= √2 is drawn in Figure 1(a).

Example 35. Let the profile curve of 𝑀 be given by

𝛼 (𝑡) = (√2 +
1

2
(−1 + √2) 𝑡

2
, 0, 1 −

1

2
(−1 + √2) 𝑡

2
, 𝑡)

(99)

such that hyperbolic curvature 𝜅
ℎ

= 1. Then, 𝑀 is hyperbolic
flat 𝐺

1
-invariant surface which is generated from horocycle

in H3 (see Figure 1(b)).

Example 36. The 𝐺
1
-invariant surface which is generated

from

𝛼 (𝑡) = (
1

3
(−1 + 4 cosh

√3𝑡

2
) , 0,

2

3
(−1 + cosh

√3𝑡

2
) ,

2

√3
sinh

√3𝑡

2
)

(100)

with hyperbolic curvature 𝜅
ℎ

= 1/2 is drawn in Figure 1(c).

Example 37. Let the profile curve of 𝑀 be given by

𝛼 (𝑡)

= (2 cosh 𝑡

√3
− sinh 𝑡

√3
, 0, cosh 𝑡

√3
− 2 sinh 𝑡

√3
, √2)

(101)

such that hyperbolic curvature 𝜅
ℎ

= √2/√3. Then, 𝑀 is
totally umbilical 𝐺

1
-invariant surface with 𝜉

2
= 2/3 in H3

(see Figure 1(d)).
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Figure 1: Examples of some 𝐺
1
-invariant surfaces.
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