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Abstract. 
The main purpose of this paper is using the properties of Gauss sums and the estimate for character sums to study the hybrid mean value problem involving the two-term exponential sums and two-term character sums and give an interesting asymptotic formula for it.


1. Introduction
Let 
	
		
			
				𝑞
				≥
				3
			

		
	
 be an integer and 
	
		
			

				𝜒
			

		
	
 denotes a Dirichlet character 
	
		
			
				m
				o
				d
				𝑞
			

		
	
. For any integers 
	
		
			

				𝑚
			

		
	
 and 
	
		
			

				𝑛
			

		
	
 with 
	
		
			
				(
				𝑚
				𝑛
				,
				𝑞
				)
				=
				1
			

		
	
, we define the two-term exponential sum 
	
		
			
				𝐶
				(
				𝑚
				,
				𝑛
				,
				𝑘
				;
				𝑞
				)
			

		
	
 and two-term character sum 
	
		
			
				𝑁
				(
				𝑚
				,
				𝑛
				,
				𝜒
				;
				𝑞
				)
			

		
	
 as follows:
						
	
 		
 			
				(
				1
				)
			
 		
	

	
		
			
				𝐶
				(
				𝑚
				,
				𝑛
				,
				𝑘
				;
				𝑞
				)
				=
			

			

				𝑞
			

			

				
			

			
				𝑎
				=
				1
			

			
				𝑒
				
				𝑚
				𝑎
			

			

				𝑘
			

			
				+
				𝑛
				𝑎
			

			
				
			
			
				𝑞
				
				,
				𝑁
				(
				𝑚
				,
				𝑛
				,
				𝑘
				,
				𝜒
				;
				𝑞
				)
				=
			

			

				𝑞
			

			

				
			

			
				𝑎
				=
				1
			

			
				𝜒
				
				𝑚
				𝑎
			

			

				𝑘
			

			
				
				,
				+
				𝑛
				𝑎
			

		
	

					where 
	
		
			
				𝑒
				(
				𝑥
				)
				=
				𝑒
			

			
				2
				𝜋
				𝑖
				𝑥
			

		
	
, 
	
		
			

				𝜒
			

		
	
 denotes a nonprincipal Dirichlet character 
	
		
			
				m
				o
				d
				𝑞
			

		
	
, and 
	
		
			

				𝑘
			

		
	
 is a fixed positive integer.
These sums play a very important role in the study of analytic number theory, so they caused many number theorists’ interest and favor. Some works related to 
	
		
			
				𝐶
				(
				𝑚
				,
				𝑛
				,
				𝑘
				;
				𝑞
				)
			

		
	
 can be found in [1–5]. For example, Cochrane and Zheng [1] show that 
						
	
 		
 			
				(
				2
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				𝐶
				(
				𝑚
				,
				𝑛
				,
				𝑘
				;
				𝑞
				)
				≤
				𝑘
			

			
				𝜔
				(
				𝑞
				)
			

			

				𝑞
			

			
				1
				/
				2
			

			

				,
			

		
	

					where 
	
		
			
				𝜔
				(
				𝑞
				)
			

		
	
 denotes the number of all distinct prime divisors of 
	
		
			

				𝑞
			

		
	
.
On the other hand, the sums 
	
		
			
				𝑁
				(
				𝑚
				,
				𝑛
				,
				𝑘
				,
				𝜒
				;
				𝑞
				)
			

		
	
 are a special case of the general character sums of the polynomials 
						
	
 		
 			
				(
				3
				)
			
 		
	

	
		
			
				𝑁
				+
				𝑀
			

			

				
			

			
				𝑎
				=
				𝑁
				+
				1
			

			
				𝜒
				(
				𝑓
				(
				𝑎
				)
				)
				,
			

		
	

					where 
	
		
			

				𝑀
			

		
	
 and 
	
		
			

				𝑁
			

		
	
 are any positive integers and 
	
		
			
				𝑓
				(
				𝑥
				)
			

		
	
 is a polynomial. If 
	
		
			
				𝑞
				=
				𝑝
			

		
	
 is an odd prime, then Weil (see [6]) obtained the following important conclusion.
Let 
	
		
			

				𝜒
			

		
	
 be a 
	
		
			

				𝑞
			

		
	
th-order character 
	
		
			
				m
				o
				d
				𝑝
			

		
	
; if 
	
		
			
				𝑓
				(
				𝑥
				)
			

		
	
 is not a perfect 
	
		
			

				𝑞
			

		
	
th power 
	
		
			
				m
				o
				d
				𝑝
			

		
	
, then we have the estimate 
						
	
 		
 			
				(
				4
				)
			
 		
	

	
		
			
				𝑁
				+
				𝑀
			

			

				
			

			
				𝑥
				=
				𝑁
				+
				1
			

			
				𝜒
				(
				𝑓
				(
				𝑥
				)
				)
				≪
				𝑝
			

			
				1
				/
				2
			

			
				l
				n
				𝑝
				,
			

		
	

					where “
	
		
			

				≪
			

		
	
” constant depends only on the degree of 
	
		
			
				𝑓
				(
				𝑥
				)
			

		
	
. Some related results can also be found in [7–10].
Now we are concerned about whether there exists an asymptotic formula for the hybrid mean value 
						
	
 		
 			
				(
				5
				)
			
 		
	

	
		
			
				𝑞
				−
				1
			

			

				
			

			
				𝑚
				=
				1
			

			
				|
				|
				|
				|
				|
			

			
				𝑞
				−
				1
			

			

				
			

			
				𝑎
				=
				1
			

			
				𝜒
				
				𝑚
				𝑎
			

			

				𝑘
			

			
				
				|
				|
				|
				|
				|
				+
				𝑎
			

			

				2
			

			
				⋅
				|
				|
				|
				|
				|
			

			
				𝑞
				−
				1
			

			

				
			

			
				𝑏
				=
				1
			

			
				𝑒
				
				𝑚
				𝑏
			

			

				𝑘
			

			
				+
				𝑏
			

			
				
			
			
				𝑞
				
				|
				|
				|
				|
				|
			

			

				2
			

			

				.
			

		
	

In this paper, we will use the analytic method and the properties of character sums to study this problem and give a sharp asymptotic formula for (5) with 
	
		
			
				𝑞
				=
				𝑝
			

		
	
, an odd prime. That is, we will prove the following.
Theorem 1.  Let 
	
		
			

				𝑝
			

		
	
 be an odd prime, let 
	
		
			

				𝜒
			

		
	
 be any nonprincipal even character 
	
		
			
				m
				o
				d
				𝑝
			

		
	
, and let 
	
		
			

				𝜒
			

			

				3
			

			
				≠
				𝜒
			

			

				0
			

		
	
 be the principal character 
	
		
			
				m
				o
				d
				𝑝
			

		
	
. Then we have the asymptotic formula 
							
	
 		
 			
				(
				6
				)
			
 		
	

	
		
			
				𝑝
				−
				1
			

			

				
			

			
				𝑚
				=
				1
			

			
				|
				|
				|
				|
				|
			

			
				𝑝
				−
				1
			

			

				
			

			
				𝑎
				=
				1
			

			
				𝜒
				
				𝑚
				𝑎
			

			

				3
			

			
				
				|
				|
				|
				|
				|
				+
				𝑎
			

			

				2
			

			
				⋅
				|
				|
				|
				|
				|
			

			
				𝑝
				−
				1
			

			

				
			

			
				𝑏
				=
				1
			

			
				𝑒
				
				𝑚
				𝑏
			

			

				3
			

			
				+
				𝑏
			

			
				
			
			
				𝑝
				
				|
				|
				|
				|
				|
			

			

				2
			

			
				=
				2
				𝑝
			

			

				3
			

			
				+
				𝐸
				(
				𝑝
				)
				,
			

		
	

						where 
	
		
			
				𝐸
				(
				𝑝
				)
			

		
	
 satisfies the inequalities 
	
		
			
				−
				1
				2
				𝑝
			

			

				2
			

			
				−
				2
				𝑝
				≤
				𝐸
				(
				𝑝
				)
				≤
				4
				𝑝
			

			

				2
			

			
				−
				2
				𝑝
			

		
	
.
From this theorem we may immediately deduce the following.
Corollary 2.  For any odd prime 
	
		
			

				𝑝
			

		
	
 and any nonprincipal even character 
	
		
			
				𝜒
				m
				o
				d
				𝑝
			

		
	
 with 
	
		
			

				𝜒
			

			

				3
			

			
				≠
				𝜒
			

			

				0
			

		
	
, one has 
							
	
 		
 			
				(
				7
				)
			
 		
	

	
		
			
				𝑝
				−
				1
			

			

				
			

			
				𝑚
				=
				1
			

			
				|
				|
				|
				|
				|
			

			
				𝑝
				−
				1
			

			

				
			

			
				𝑎
				=
				1
			

			
				𝜒
				
				𝑚
				𝑎
			

			

				3
			

			
				
				|
				|
				|
				|
				|
				+
				𝑎
			

			

				2
			

			
				⋅
				|
				|
				|
				|
				|
			

			
				𝑝
				−
				1
			

			

				
			

			
				𝑏
				=
				1
			

			
				𝑒
				
				𝑚
				𝑏
			

			

				3
			

			
				+
				𝑏
			

			
				
			
			
				𝑝
				
				|
				|
				|
				|
				|
			

			

				2
			

			
				=
				2
				𝑝
			

			

				3
			

			
				
				𝑝
				+
				𝑂
			

			

				2
			

			
				
				.
			

		
	
 In the theorem, we only consider the polynomial 
	
		
			
				𝑓
				(
				𝑥
				)
				=
				𝑚
				𝑥
			

			

				3
			

			
				+
				𝑥
			

		
	
. For general polynomial 
	
		
			
				𝑓
				(
				𝑥
				)
				=
				𝑚
				𝑥
			

			

				𝑘
			

			
				+
				𝑥
			

			

				ℎ
			

		
	
 with 
	
		
			
				𝑘
				≥
				4
			

		
	
 and 
	
		
			
				1
				≤
				ℎ
				<
				𝑘
			

		
	
, whether there exists an asymptotic formula is complex problem for (5), it needs us to further study. For general positive integer 
	
		
			
				𝑞
				≥
				4
			

		
	
, whether there exists an asymptotic formula for (5) is also an interesting open problem.
2. Several Lemmas
To complete the proof of our theorem, we need the following several lemmas.
Lemma 1.  Let 
	
		
			

				𝑝
			

		
	
 be an odd prime and let 
	
		
			

				𝜒
			

		
	
 be any nonprincipal even character 
	
		
			
				m
				o
				d
				𝑝
			

		
	
. Then for any integer 
	
		
			

				𝑚
			

		
	
 with 
	
		
			
				(
				𝑚
				,
				𝑝
				)
				=
				1
			

		
	
, the identity 
							
	
 		
 			
				(
				8
				)
			
 		
	

	
		
			
				𝑝
				−
				1
			

			

				
			

			
				𝑎
				=
				1
			

			
				𝜒
				
				𝑚
				𝑎
			

			

				3
			

			
				
				=
				𝜏
				
				𝜒
				+
				𝑎
			

			

				1
			

			
				
				𝜏
				
			

			
				
			
			

				𝜒
			

			
				1
				3
			

			

				
			

			
				
			
			

				𝜒
			

			

				1
			

			
				(
				𝑚
				)
			

			
				
			
			
				𝜏
				
			

			
				
			
			
				𝜒
				
				×
				⎛
				⎜
				⎜
				⎝
				
				𝑚
				1
				+
			

			
				
			
			
				𝑝
				
				𝜏
				
				𝜒
			

			

				1
			

			

				𝜒
			

			

				2
			

			
				
				𝜏
				
			

			
				
			
			

				𝜒
			

			
				1
				3
			

			

				𝜒
			

			

				2
			

			

				
			

			
				
			
			
				𝜏
				
				𝜒
			

			

				1
			

			
				
				𝜏
				
			

			
				
			
			

				𝜒
			

			
				1
				3
			

			
				
				⎞
				⎟
				⎟
				⎠
				,
			

		
	

						where 
	
		
			
				(
				∗
				/
				𝑝
				)
				=
				𝜒
			

			

				2
			

		
	
 denotes the Legendre symbol and 
	
		
			
				𝜒
				=
				𝜒
			

			
				2
				1
			

		
	
.
Proof. Since 
	
		
			
				𝜒
				(
				−
				1
				)
				=
				1
			

		
	
, there exists one and only one character 
	
		
			

				𝜒
			

			

				1
			

			
				m
				o
				d
				𝑝
			

		
	
 such that 
	
		
			
				𝜒
				=
				𝜒
			

			
				2
				1
			

		
	
. Thus, from the properties of Gauss sums we have
							
	
 		
 			
				(
				9
				)
			
 		
	

	
		
			
				𝑝
				−
				1
			

			

				
			

			
				𝑎
				=
				1
			

			
				𝜒
				
				𝑚
				𝑎
			

			

				3
			

			
				
				=
				1
				+
				𝑎
			

			
				
			
			
				𝜏
				
			

			
				
			
			
				𝜒
				
			

			
				𝑝
				−
				1
			

			

				
			

			
				𝑎
				=
				1
				𝑝
				−
				1
			

			

				
			

			
				𝑏
				=
				1
			

			
				
			
			
				
				𝑏
				
				𝜒
				(
				𝑏
				)
				𝑒
				𝑚
				𝑎
			

			

				3
			

			
				
				+
				𝑎
			

			
				
			
			
				𝑝
				
				=
				1
			

			
				
			
			
				𝜏
				
			

			
				
			
			
				𝜒
				
			

			
				𝑝
				−
				1
			

			

				
			

			
				𝑎
				=
				1
				𝑝
				−
				1
			

			

				
			

			
				𝑏
				=
				1
			

			
				
			
			
				𝜒
				
				𝑏
			

			
				
			
			
				𝑎
				
				𝑒
				
				𝑏
			

			
				
			
			
				𝑎
				
				𝑚
				𝑎
			

			

				3
			

			
				
				+
				𝑎
			

			
				
			
			
				𝑝
				
				=
				1
			

			
				
			
			
				𝜏
				
			

			
				
			
			
				𝜒
				
			

			
				𝑝
				−
				1
			

			

				
			

			
				𝑏
				=
				1
			

			
				
			
			
				
				𝑏
				𝜒
				(
				𝑏
				)
				𝑒
			

			
				
			
			
				𝑝
				
			

			
				𝑝
				−
				1
			

			

				
			

			
				𝑎
				=
				1
			

			
				
				𝜒
				(
				𝑎
				)
				𝑒
				𝑏
				𝑚
				𝑎
			

			

				2
			

			
				
			
			
				𝑝
				
				=
				1
			

			
				
			
			
				𝜏
				
			

			
				
			
			
				𝜒
				
			

			
				𝑝
				−
				1
			

			

				
			

			
				𝑏
				=
				1
			

			
				
			
			
				
				𝑏
				𝜒
				(
				𝑏
				)
				𝑒
			

			
				
			
			
				𝑝
				
			

			
				𝑝
				−
				1
			

			

				
			

			
				𝑎
				=
				1
			

			

				𝜒
			

			
				2
				1
			

			
				
				(
				𝑎
				)
				𝑒
				𝑏
				𝑚
				𝑎
			

			

				2
			

			
				
			
			
				𝑝
				
				=
				1
			

			
				
			
			
				𝜏
				
			

			
				
			
			
				𝜒
				
			

			
				𝑝
				−
				1
			

			

				
			

			
				𝑏
				=
				1
			

			
				
			
			
				𝜒
				
				𝑏
				(
				𝑏
				)
				𝑒
			

			
				
			
			
				𝑝
				
				×
			

			
				𝑝
				−
				1
			

			

				
			

			
				𝑎
				=
				1
			

			

				𝜒
			

			

				1
			

			
				
				
				𝑎
				(
				𝑎
				)
				1
				+
			

			
				
			
			
				𝑝
				𝑒
				
				
				
				𝑏
				𝑚
				𝑎
			

			
				
			
			
				𝑝
				
				=
				1
			

			
				
			
			
				𝜏
				
			

			
				
			
			
				𝜒
				
			

			
				𝑝
				−
				1
			

			

				
			

			
				𝑏
				=
				1
			

			
				
			
			
				
				𝑏
				𝜒
				(
				𝑏
				)
				𝑒
			

			
				
			
			
				𝑝
				
				×
				
			

			
				
			
			

				𝜒
			

			

				1
			

			
				
				𝜒
				(
				𝑏
				𝑚
				)
				𝜏
			

			

				1
			

			
				
				+
			

			
				
			
			

				𝜒
			

			

				1
			

			
				(
				𝑏
				𝑚
				)
				𝜒
			

			

				2
			

			
				
				𝜒
				(
				𝑏
				𝑚
				)
				𝜏
			

			

				1
			

			

				𝜒
			

			

				2
			

			
				=
				
				
			

			
				
			
			

				𝜒
			

			

				1
			

			
				(
				𝑚
				)
			

			
				
			
			
				𝜏
				
			

			
				
			
			
				𝜒
				
				
				𝜏
				
				𝜒
			

			

				1
			

			
				
				𝜏
				
			

			
				
			
			

				𝜒
			

			
				1
				3
			

			
				
				+
				
				𝑚
			

			
				
			
			
				𝑝
				
				𝜏
				
				𝜒
			

			

				1
			

			

				𝜒
			

			

				2
			

			
				
				𝜏
				
			

			
				
			
			

				𝜒
			

			
				1
				3
			

			

				𝜒
			

			

				2
			

			
				
				
				=
				𝜏
				
				𝜒
			

			

				1
			

			
				
				𝜏
				
			

			
				
			
			

				𝜒
			

			
				1
				3
			

			

				
			

			
				
			
			

				𝜒
			

			

				1
			

			
				(
				𝑚
				)
			

			
				
			
			
				𝜏
				
			

			
				
			
			
				𝜒
				
				×
				⎛
				⎜
				⎜
				⎝
				
				𝑚
				1
				+
			

			
				
			
			
				𝑝
				
				𝜏
				
				𝜒
			

			

				1
			

			

				𝜒
			

			

				2
			

			
				
				𝜏
				
			

			
				
			
			

				𝜒
			

			
				1
				3
			

			

				𝜒
			

			

				2
			

			

				
			

			
				
			
			
				𝜏
				
				𝜒
			

			

				1
			

			
				
				𝜏
				
			

			
				
			
			

				𝜒
			

			
				1
				3
			

			
				
				⎞
				⎟
				⎟
				⎠
				.
			

		
	
This proves Lemma 1.
Lemma 2.  Let 
	
		
			

				𝑝
			

		
	
 be an odd prime, let 
	
		
			

				𝜒
			

		
	
 be any nonprincipal even character 
	
		
			
				m
				o
				d
				𝑝
			

		
	
, 
	
		
			
				𝜒
				=
				𝜒
			

			
				2
				1
			

		
	
, and 
	
		
			

				𝜒
			

			

				3
			

			
				≠
				𝜒
			

			

				0
			

		
	
, the principal character 
	
		
			
				m
				o
				d
				𝑝
			

		
	
. Then for any integer 
	
		
			

				𝑚
			

		
	
 and any quadratic nonresidue 
	
		
			
				𝑟
				m
				o
				d
				𝑝
			

		
	
 with 
	
		
			
				(
				𝑚
				,
				𝑝
				)
				=
				1
			

		
	
, we have the identity 
							
	
 		
 			
				(
				1
				0
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				|
			

			
				𝑝
				−
				1
			

			

				
			

			
				𝑎
				=
				1
			

			
				𝜒
				
				𝑚
				𝑎
			

			

				3
			

			
				
				|
				|
				|
				|
				|
				+
				𝑎
			

			

				2
			

			
				
				𝑚
				=
				2
				𝑝
				+
			

			
				
			
			
				𝑝
				
				𝜏
			

			

				2
			

			
				
				𝜒
			

			

				2
			

			

				
			

			
				
			
			
				2
				𝑝
			

			
				𝑝
				−
				1
			

			

				
			

			
				𝑎
				=
				1
			

			
				
				𝜒
				(
				𝑎
				)
				+
			

			
				
			
			
				
				×
				𝜒
				(
				𝑎
				)
			

			
				𝑝
				−
				1
			

			

				
			

			
				𝑏
				=
				1
			

			
				
				1
				−
				𝑎
			

			

				2
			

			

				𝑏
			

			

				3
			

			
				
			
			
				𝑝
				
				
				1
				−
				𝑏
			

			
				
			
			
				𝑝
				
				+
				
				𝑚
			

			
				
			
			
				𝑝
				
				𝜏
			

			

				2
			

			
				
				𝜒
			

			

				2
			

			

				
			

			
				
			
			
				×
				2
				𝑝
			

			
				𝑝
				−
				1
			

			

				
			

			
				𝑎
				=
				1
			

			
				
				𝜒
			

			

				1
			

			
				(
				𝑟
				)
				𝜒
				(
				𝑎
				)
				+
			

			
				
			
			

				𝜒
			

			

				1
			

			
				(
				𝑟
				)
			

			
				
			
			
				
				×
				𝜒
				(
				𝑎
				)
			

			
				𝑝
				−
				1
			

			

				
			

			
				𝑏
				=
				1
			

			
				
				1
				−
				𝑟
				𝑎
			

			

				2
			

			

				𝑏
			

			

				3
			

			
				
			
			
				𝑝
				
				
				1
				−
				𝑏
			

			
				
			
			
				𝑝
				
				.
			

		
	

Proof. From the properties of Gauss sums we have 
							
	
 		
 			
				(
				1
				1
				)
			
 		
	

	
		
			
				
			
			
				𝜏
				
				𝜒
			

			

				1
			

			
				
				𝜏
				
				𝜒
			

			

				1
			

			

				𝜒
			

			

				2
			

			
				
				=
			

			
				𝑝
				−
				1
			

			

				
			

			
				𝑎
				=
				1
			

			
				
			
			

				𝜒
			

			

				1
			

			
				(
				𝑎
				)
			

			
				𝑝
				−
				1
			

			

				
			

			
				𝑏
				=
				1
			

			

				𝜒
			

			

				1
			

			
				(
				𝑏
				)
				𝜒
			

			

				2
			

			
				
				(
				𝑏
				)
				𝑒
				𝑏
				−
				𝑎
			

			
				
			
			
				𝑝
				
				=
			

			
				𝑝
				−
				1
			

			

				
			

			
				𝑎
				=
				1
			

			
				
			
			

				𝜒
			

			

				1
			

			
				(
				𝑎
				)
			

			
				𝑝
				−
				1
			

			

				
			

			
				𝑏
				=
				1
			

			

				𝜒
			

			

				2
			

			
				
				(
				𝑏
				)
				𝑒
				𝑏
				(
				1
				−
				𝑎
				)
			

			
				
			
			
				𝑝
				
				
				𝜒
				=
				𝜏
			

			

				2
			

			

				
			

			
				𝑝
				−
				1
			

			

				
			

			
				𝑎
				=
				1
			

			
				
			
			

				𝜒
			

			

				1
			

			
				
				(
				𝑎
				)
				1
				−
				𝑎
			

			
				
			
			
				𝑝
				
				.
			

		
	
So from (11) we have 
							
	
 		
 			
				(
				1
				2
				)
			
 		
	

	
		
			
				𝜏
				
				𝜒
			

			

				1
			

			

				𝜒
			

			

				2
			

			
				
				𝜏
				
			

			
				
			
			

				𝜒
			

			
				1
				3
			

			

				𝜒
			

			

				2
			

			

				
			

			
				
			
			
				𝜏
				
				𝜒
			

			

				1
			

			
				
				𝜏
				
			

			
				
			
			

				𝜒
			

			
				1
				3
			

			
				
				=
				1
			

			
				
			
			

				𝑝
			

			

				2
			

			
				
			
			
				𝜏
				
				𝜒
			

			

				1
			

			
				
				𝜏
				
			

			
				
			
			

				𝜒
			

			
				1
				3
			

			
				
				𝜏
				
				𝜒
			

			

				1
			

			

				𝜒
			

			

				2
			

			
				
				𝜏
				
			

			
				
			
			

				𝜒
			

			
				1
				3
			

			

				𝜒
			

			

				2
			

			
				
				=
				𝜏
			

			

				2
			

			
				
				𝜒
			

			

				2
			

			

				
			

			
				
			
			

				𝑝
			

			
				2
				𝑝
				−
				1
			

			

				
			

			
				𝑎
				=
				1
			

			
				
			
			

				𝜒
			

			

				1
			

			
				
				(
				𝑎
				)
				1
				−
				𝑎
			

			
				
			
			
				𝑝
				
			

			
				𝑝
				−
				1
			

			

				
			

			
				𝑏
				=
				1
			

			

				𝜒
			

			
				3
				1
			

			
				
				(
				𝑏
				)
				1
				−
				𝑏
			

			
				
			
			
				𝑝
				
				=
				𝜏
			

			

				2
			

			
				
				𝜒
			

			

				2
			

			

				
			

			
				
			
			

				𝑝
			

			
				2
				𝑝
				−
				1
			

			

				
			

			
				𝑎
				=
				1
			

			
				
			
			

				𝜒
			

			

				1
			

			
				(
				𝑎
				)
			

			
				𝑝
				−
				1
			

			

				
			

			
				𝑏
				=
				1
			

			
				
				1
				−
				𝑎
				𝑏
			

			

				3
			

			
				
			
			
				𝑝
				
				
				1
				−
				𝑏
			

			
				
			
			
				𝑝
				
				=
				𝜏
			

			

				2
			

			
				
				𝜒
			

			

				2
			

			

				
			

			
				
			
			
				2
				𝑝
			

			
				2
				𝑝
				−
				1
			

			

				
			

			
				𝑎
				=
				1
			

			
				
			
			
				𝜒
				(
				𝑎
				)
			

			
				𝑝
				−
				1
			

			

				
			

			
				𝑏
				=
				1
			

			
				
				1
				−
				𝑎
			

			

				2
			

			

				𝑏
			

			

				3
			

			
				
			
			
				𝑝
				
				
				1
				−
				𝑏
			

			
				
			
			
				𝑝
				
				+
			

			
				
			
			

				𝜒
			

			

				1
			

			
				𝜏
				(
				𝑟
				)
			

			

				2
			

			
				
				𝜒
			

			

				2
			

			

				
			

			
				
			
			
				2
				𝑝
			

			
				2
				𝑝
				−
				1
			

			

				
			

			
				𝑎
				=
				1
			

			
				
			
			
				𝜒
				(
				𝑎
				)
			

			
				𝑝
				−
				1
			

			

				
			

			
				𝑏
				=
				1
			

			
				
				1
				−
				𝑟
				𝑎
			

			

				2
			

			

				𝑏
			

			

				3
			

			
				
			
			
				𝑝
				
				
				1
				−
				𝑏
			

			
				
			
			
				𝑝
				
				.
			

		
	

					Note that 
	
		
			
				|
				𝜏
				(
				𝜒
				)
				|
				=
				|
				𝜏
				(
				𝜒
			

			

				1
			

			
				)
				|
				=
				|
				𝜏
				(
				𝜒
			

			
				3
				1
			

			
				√
				)
				|
				=
			

			
				
			
			

				𝑝
			

		
	
 and 
	
		
			

				𝜏
			

			

				2
			

			
				(
				𝜒
			

			

				2
			

			
				)
				=
				±
				𝑝
			

		
	
; from (12) and Lemma 1 we may immediately deduce the identity 
							
	
 		
 			
				(
				1
				3
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				|
			

			
				𝑝
				−
				1
			

			

				
			

			
				𝑎
				=
				1
			

			
				𝜒
				
				𝑚
				𝑎
			

			

				3
			

			
				
				|
				|
				|
				|
				|
				+
				𝑎
			

			

				2
			

			
				|
				|
				|
				|
				|
				|
				
				𝑚
				=
				𝑝
				⋅
				1
				+
			

			
				
			
			
				𝑝
				
				𝜏
				
				𝜒
			

			

				1
			

			

				𝜒
			

			

				2
			

			
				
				𝜏
				
			

			
				
			
			

				𝜒
			

			
				1
				3
			

			

				𝜒
			

			

				2
			

			

				
			

			
				
			
			
				𝜏
				
				𝜒
			

			

				1
			

			
				
				𝜏
				
			

			
				
			
			

				𝜒
			

			
				1
				3
			

			
				
				|
				|
				|
				|
				|
				|
			

			

				2
			

			
				
				𝑚
				=
				2
				𝑝
				+
			

			
				
			
			
				𝑝
				
				𝜏
			

			

				2
			

			
				
				𝜒
			

			

				2
			

			

				
			

			
				
			
			
				2
				𝑝
			

			
				𝑝
				−
				1
			

			

				
			

			
				𝑎
				=
				1
			

			
				
				𝜒
				(
				𝑎
				)
				+
			

			
				
			
			
				
				×
				𝜒
				(
				𝑎
				)
			

			
				𝑝
				−
				1
			

			

				
			

			
				𝑏
				=
				1
			

			
				
				1
				−
				𝑎
			

			

				2
			

			

				𝑏
			

			

				3
			

			
				
			
			
				𝑝
				
				
				1
				−
				𝑏
			

			
				
			
			
				𝑝
				
				+
				
				𝑚
			

			
				
			
			
				𝑝
				
				𝜏
			

			

				2
			

			
				
				𝜒
			

			

				2
			

			

				
			

			
				
			
			
				×
				2
				𝑝
			

			
				𝑝
				−
				1
			

			

				
			

			
				𝑎
				=
				1
			

			
				
				𝜒
			

			

				1
			

			
				(
				𝑟
				)
				𝜒
				(
				𝑎
				)
				+
			

			
				
			
			

				𝜒
			

			

				1
			

			
				(
				𝑟
				)
			

			
				
			
			
				
				×
				𝜒
				(
				𝑎
				)
			

			
				𝑝
				−
				1
			

			

				
			

			
				𝑏
				=
				1
			

			
				
				1
				−
				𝑟
				𝑎
			

			

				2
			

			

				𝑏
			

			

				3
			

			
				
			
			
				𝑝
				
				
				1
				−
				𝑏
			

			
				
			
			
				𝑝
				
				.
			

		
	
This proves Lemma 2.
Lemma 3.  Let 
	
		
			

				𝑝
			

		
	
 be an odd prime, let 
	
		
			

				𝜒
			

		
	
 be any nonprincipal even character 
	
		
			
				m
				o
				d
				𝑝
			

		
	
, 
	
		
			
				𝜒
				=
				𝜒
			

			
				2
				1
			

		
	
, and 
	
		
			

				𝜒
			

			

				3
			

			
				≠
				𝜒
			

			

				0
			

		
	
, the principal character 
	
		
			
				m
				o
				d
				𝑝
			

		
	
. Then for any integer 
	
		
			

				𝑚
			

		
	
 and any quadratic nonresidue 
	
		
			
				𝑟
				m
				o
				d
				𝑝
			

		
	
 with 
	
		
			
				(
				𝑚
				,
				𝑝
				)
				=
				1
			

		
	
, one has the estimate 
							
	
 		
 			
				(
				1
				4
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				|
			

			
				𝑝
				−
				1
			

			

				
			

			
				𝑎
				=
				1
			

			
				
				𝜒
			

			

				1
			

			
				(
				𝑟
				)
				𝜒
				(
				𝑎
				)
				+
			

			
				
			
			

				𝜒
			

			

				1
			

			
				(
				𝑟
				)
			

			
				
			
			
				
				𝜒
				(
				𝑎
				)
			

			
				𝑝
				−
				1
			

			

				
			

			
				𝑏
				=
				1
			

			
				
				1
				−
				𝑟
				𝑎
			

			

				2
			

			

				𝑏
			

			

				3
			

			
				
			
			
				𝑝
				
				
				1
				−
				𝑏
			

			
				
			
			
				𝑝
				
				+
			

			
				𝑝
				−
				1
			

			

				
			

			
				𝑎
				=
				1
			

			
				
				𝜒
				(
				𝑎
				)
				+
			

			
				
			
			
				
				𝜒
				(
				𝑎
				)
			

			
				𝑝
				−
				1
			

			

				
			

			
				𝑏
				=
				1
			

			
				
				1
				−
				𝑎
			

			

				2
			

			

				𝑏
			

			

				3
			

			
				
			
			
				𝑝
				
				
				1
				−
				𝑏
			

			
				
			
			
				𝑝
				
				|
				|
				|
				|
				|
				≤
				4
				𝑝
				.
			

		
	

Proof. Let 
	
		
			

				𝑛
			

		
	
 be any integer such that 
	
		
			
				(
				𝑚
				𝑛
				/
				𝑝
				)
				=
				−
				1
			

		
	
 or 
	
		
			
				(
				𝑚
				/
				𝑝
				)
				+
				(
				𝑛
				/
				𝑝
				)
				=
				0
			

		
	
. Then from Lemma 2 we have 
							
	
 		
 			
				(
				1
				5
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				|
			

			
				𝑝
				−
				1
			

			

				
			

			
				𝑎
				=
				1
			

			
				𝜒
				
				𝑚
				𝑎
			

			

				3
			

			
				
				|
				|
				|
				|
				|
				+
				𝑎
			

			

				2
			

			
				+
				|
				|
				|
				|
				|
			

			
				𝑝
				−
				1
			

			

				
			

			
				𝑎
				=
				1
			

			
				𝜒
				
				𝑛
				𝑎
			

			

				3
			

			
				
				|
				|
				|
				|
				|
				+
				𝑎
			

			

				2
			

			
				=
				4
				𝑝
				.
			

		
	

					Note that 
	
		
			
				|
				(
				𝑚
				/
				𝑝
				)
				(
				𝜏
			

			

				2
			

			
				(
				𝜒
			

			

				2
			

			
				)
				/
				𝑝
				)
				|
				=
				1
			

		
	
; applying (15) and Lemma 2 we have the estimate 
							
	
 		
 			
				(
				1
				6
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				|
			

			
				𝑝
				−
				1
			

			

				
			

			
				𝑎
				=
				1
			

			
				
				𝜒
			

			

				1
			

			
				(
				𝑟
				)
				𝜒
				(
				𝑎
				)
				+
			

			
				
			
			

				𝜒
			

			

				1
			

			
				(
				𝑟
				)
			

			
				
			
			
				
				𝜒
				(
				𝑎
				)
			

			
				𝑝
				−
				1
			

			

				
			

			
				𝑏
				=
				1
			

			
				
				1
				−
				𝑟
				𝑎
			

			

				2
			

			

				𝑏
			

			

				3
			

			
				
			
			
				𝑝
				
				
				1
				−
				𝑏
			

			
				
			
			
				𝑝
				
				+
			

			
				𝑝
				−
				1
			

			

				
			

			
				𝑎
				=
				1
			

			
				
				𝜒
				(
				𝑎
				)
				+
			

			
				
			
			
				
				𝜒
				(
				𝑎
				)
			

			
				𝑝
				−
				1
			

			

				
			

			
				𝑏
				=
				1
			

			
				
				1
				−
				𝑎
			

			

				2
			

			

				𝑏
			

			

				3
			

			
				
			
			
				𝑝
				
				
				1
				−
				𝑏
			

			
				
			
			
				𝑝
				
				|
				|
				|
				|
				|
				=
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
			

			
				𝑝
				−
				1
			

			

				
			

			
				𝑎
				=
				1
			

			
				𝜒
				
				𝑚
				𝑎
			

			

				3
			

			
				
				|
				|
				|
				|
				|
				+
				𝑎
			

			

				2
			

			
				−
				|
				|
				|
				|
				|
			

			
				𝑝
				−
				1
			

			

				
			

			
				𝑎
				=
				1
			

			
				𝜒
				
				𝑛
				𝑎
			

			

				3
			

			
				
				|
				|
				|
				|
				|
				+
				𝑎
			

			

				2
			

			
				|
				|
				|
				|
				|
				|
				≤
				|
				|
				|
				|
				|
			

			
				𝑝
				−
				1
			

			

				
			

			
				𝑎
				=
				1
			

			
				𝜒
				
				𝑚
				𝑎
			

			

				3
			

			
				
				|
				|
				|
				|
				|
				+
				𝑎
			

			

				2
			

			
				+
				|
				|
				|
				|
				|
			

			
				𝑝
				−
				1
			

			

				
			

			
				𝑎
				=
				1
			

			
				𝜒
				
				𝑛
				𝑎
			

			

				3
			

			
				
				|
				|
				|
				|
				|
				+
				𝑎
			

			

				2
			

			
				≤
				4
				𝑝
				.
			

		
	
This proves Lemma 3.
Lemma 4.  Let 
	
		
			
				𝑝
				>
				3
			

		
	
 be a prime. Then we have the identity 
							
	
 		
 			
				(
				1
				7
				)
			
 		
	

	
		
			
				𝑝
				−
				1
			

			

				
			

			
				𝑚
				=
				1
			

			
				
				𝑚
			

			
				
			
			
				𝑝
				
				|
				|
				|
				|
				|
			

			
				𝑝
				−
				1
			

			

				
			

			
				𝑎
				=
				1
			

			
				𝑒
				
				𝑚
				𝑎
			

			

				3
			

			
				+
				𝑎
			

			
				
			
			
				𝑝
				
				|
				|
				|
				|
				|
			

			

				2
			

			
				=
				−
				𝜏
			

			

				2
			

			
				
				𝜒
			

			

				2
			

			
				
				
				
				3
				2
				+
			

			
				
			
			
				𝑝
				,
				
				
			

		
	

						where 
	
		
			
				(
				∗
				/
				𝑝
				)
				=
				𝜒
			

			

				2
			

		
	
 denotes the Legendre symbol.
Proof. For any odd prime 
	
		
			

				𝑝
			

		
	
 and integer 
	
		
			

				𝑛
			

		
	
 with 
	
		
			
				(
				𝑛
				,
				𝑝
				)
				=
				1
			

		
	
, from Hua's book [11] (Section 7.8, Theorem 8.2) we know that
							
	
 		
 			
				(
				1
				8
				)
			
 		
	

	
		
			

				𝑝
			

			

				
			

			
				𝑎
				=
				1
			

			
				
				𝑎
			

			

				2
			

			
				+
				𝑛
			

			
				
			
			
				𝑝
				
				=
				−
				1
				.
			

		
	

					From this identity and the definition and properties of Gauss sums we have 
							
	
 		
 			
				(
				1
				9
				)
			
 		
	

	
		
			
				𝑝
				−
				1
			

			

				
			

			
				𝑚
				=
				1
			

			
				
				𝑚
			

			
				
			
			
				𝑝
				
				|
				|
				|
				|
				|
			

			
				𝑝
				−
				1
			

			

				
			

			
				𝑎
				=
				1
			

			
				𝑒
				
				𝑚
				𝑎
			

			

				3
			

			
				+
				𝑎
			

			
				
			
			
				𝑝
				
				|
				|
				|
				|
				|
			

			

				2
			

			

				=
			

			
				𝑝
				−
				1
			

			

				
			

			
				𝑎
				=
				1
				𝑝
				−
				1
			

			

				
			

			
				𝑏
				=
				1
				𝑝
				−
				1
			

			

				
			

			
				𝑚
				=
				1
			

			
				
				𝑚
			

			
				
			
			
				𝑝
				
				𝑒
				
				𝑚
				
				𝑎
			

			

				3
			

			
				−
				𝑏
			

			

				3
			

			
				
				+
				𝑎
				−
				𝑏
			

			
				
			
			
				𝑝
				
				=
			

			
				𝑝
				−
				1
			

			

				
			

			
				𝑎
				=
				1
				𝑝
				−
				1
			

			

				
			

			
				𝑏
				=
				1
				𝑝
				−
				1
			

			

				
			

			
				𝑚
				=
				1
			

			
				
				𝑚
			

			
				
			
			
				𝑝
				
				𝑒
				
				𝑚
				𝑏
			

			

				3
			

			
				
				𝑎
			

			

				3
			

			
				
				−
				1
				+
				𝑏
				(
				𝑎
				−
				1
				)
			

			
				
			
			
				𝑝
				
				
				𝜒
				=
				𝜏
			

			

				2
			

			

				
			

			
				𝑝
				−
				1
			

			

				
			

			
				𝑎
				=
				1
				𝑝
				−
				1
			

			

				
			

			
				𝑏
				=
				1
			

			
				
				𝑏
			

			

				3
			

			
				
				𝑎
			

			

				3
			

			
				
				−
				1
			

			
				
			
			
				𝑝
				
				𝑒
				
				𝑏
				(
				𝑎
				−
				1
				)
			

			
				
			
			
				𝑝
				
				
				𝜒
				=
				𝜏
			

			

				2
			

			

				
			

			
				𝑝
				−
				1
			

			

				
			

			
				𝑎
				=
				1
			

			
				
				𝑎
			

			

				3
			

			
				−
				1
			

			
				
			
			
				𝑝
				
			

			
				𝑝
				−
				1
			

			

				
			

			
				𝑏
				=
				1
			

			
				
				𝑏
			

			
				
			
			
				𝑝
				
				𝑒
				
				𝑏
				(
				𝑎
				−
				1
				)
			

			
				
			
			
				𝑝
				
				=
				𝜏
			

			

				2
			

			
				
				𝜒
			

			

				2
			

			

				
			

			
				𝑝
				−
				1
			

			

				
			

			
				𝑎
				=
				1
			

			
				
				
				𝑎
			

			

				3
			

			
				
				−
				1
				(
				𝑎
				−
				1
				)
			

			
				
			
			
				𝑝
				
				=
				𝜏
			

			

				2
			

			
				
				𝜒
			

			

				2
			

			
				
				
			

			

				𝑝
			

			

				
			

			
				𝑎
				=
				1
			

			
				
				4
				𝑎
			

			

				2
			

			
				+
				4
				𝑎
				+
				4
			

			
				
			
			
				𝑝
				
				
				3
				−
				1
				−
			

			
				
			
			
				𝑝
				
				
				=
				𝜏
			

			

				2
			

			
				
				𝜒
			

			

				2
			

			
				
				
			

			

				𝑝
			

			

				
			

			
				𝑎
				=
				1
			

			
				
				(
				2
				𝑎
				+
				1
				)
			

			

				2
			

			
				+
				3
			

			
				
			
			
				𝑝
				
				
				3
				−
				1
				−
			

			
				
			
			
				𝑝
				
				
				=
				𝜏
			

			

				2
			

			
				
				𝜒
			

			

				2
			

			
				
				
			

			

				𝑝
			

			

				
			

			
				𝑎
				=
				1
			

			
				
				𝑎
			

			

				2
			

			
				+
				3
			

			
				
			
			
				𝑝
				
				
				3
				−
				1
				−
			

			
				
			
			
				𝑝
				
				
				=
				−
				𝜏
			

			

				2
			

			
				
				𝜒
			

			

				2
			

			
				
				
				
				3
				2
				+
			

			
				
			
			
				𝑝
				.
				
				
			

		
	
This proves Lemma 4.
3. Proof of the Theorem
In this section, we will complete the proof of our theorem. Note that the identities 
	
		
			
				|
				𝜏
				(
				𝜒
			

			

				2
			

			
				)
				|
			

			

				2
			

			
				=
				𝑝
			

		
	
 and 
						
	
 		
 			
				(
				2
				0
				)
			
 		
	

	
		
			
				𝑝
				−
				1
			

			

				
			

			
				𝑚
				=
				1
			

			
				|
				|
				|
				|
				|
			

			
				𝑝
				−
				1
			

			

				
			

			
				𝑎
				=
				1
			

			
				𝑒
				
				𝑚
				𝑎
			

			

				3
			

			
				+
				𝑎
			

			
				
			
			
				𝑝
				
				|
				|
				|
				|
				|
			

			

				2
			

			

				=
			

			

				𝑝
			

			

				
			

			
				𝑚
				=
				1
			

			
				|
				|
				|
				|
				|
			

			
				𝑝
				−
				1
			

			

				
			

			
				𝑎
				=
				1
			

			
				𝑒
				
				𝑚
				𝑎
			

			

				3
			

			
				+
				𝑎
			

			
				
			
			
				𝑝
				
				|
				|
				|
				|
				|
			

			

				2
			

			
				=
				−
				1
			

			
				𝑝
				−
				1
			

			

				
			

			
				𝑎
				=
				1
				𝑝
				−
				1
			

			

				
			

			
				𝑝
				𝑏
				=
				1
			

			

				
			

			
				𝑚
				=
				1
			

			
				𝑒
				
				𝑚
				
				𝑎
			

			

				3
			

			
				−
				𝑏
			

			

				3
			

			
				
				+
				𝑎
				−
				𝑏
			

			
				
			
			
				𝑝
				
				=
				−
				1
			

			
				𝑝
				−
				1
			

			

				
			

			
				𝑎
				=
				1
				𝑝
				−
				1
			

			

				
			

			
				𝑝
				𝑏
				=
				1
			

			

				
			

			
				𝑚
				=
				1
			

			
				𝑒
				
				𝑚
				
				𝑎
			

			

				3
			

			
				
				−
				1
				+
				𝑏
				(
				𝑎
				−
				1
				)
			

			
				
			
			
				𝑝
				
				=
				
				𝑝
				−
				1
			

			

				2
			

			
				𝑝
				−
				𝑝
				−
				1
				,
				i
				f
				3
				†
				𝑝
				−
				1
				,
			

			

				2
			

			
				−
				3
				𝑝
				−
				1
				,
				i
				f
				3
				∣
				𝑝
				−
				1
				.
			

		
	


				So from (20), Lemmas 2, 3, and 4, and noting that 
	
		
			
				|
				𝜏
				(
				𝜒
			

			

				2
			

			
				)
				|
			

			

				2
			

			
				=
				𝑝
			

		
	
 we have
						
	
 		
 			
				(
				2
				1
				)
			
 		
	

	
		
			
				𝑝
				−
				1
			

			

				
			

			
				𝑚
				=
				1
			

			
				|
				|
				|
				|
				|
			

			
				𝑝
				−
				1
			

			

				
			

			
				𝑎
				=
				1
			

			
				𝜒
				
				𝑚
				𝑎
			

			

				3
			

			
				
				|
				|
				|
				|
				|
				+
				𝑎
			

			

				2
			

			
				⋅
				|
				|
				|
				|
				|
			

			
				𝑝
				−
				1
			

			

				
			

			
				𝑏
				=
				1
			

			
				𝑒
				
				𝑚
				𝑏
			

			

				3
			

			
				+
				𝑏
			

			
				
			
			
				𝑝
				
				|
				|
				|
				|
				|
			

			

				2
			

			
				=
				2
				𝑝
				⋅
			

			
				𝑝
				−
				1
			

			

				
			

			
				𝑚
				=
				1
			

			
				|
				|
				|
				|
				|
			

			
				𝑝
				−
				1
			

			

				
			

			
				𝑐
				=
				1
			

			
				𝑒
				
				𝑚
				𝑐
			

			

				3
			

			
				+
				𝑐
			

			
				
			
			
				𝑝
				
				|
				|
				|
				|
				|
			

			

				2
			

			
				+
				𝜏
			

			

				2
			

			
				
				𝜒
			

			

				2
			

			

				
			

			
				
			
			
				2
				𝑝
			

			
				𝑝
				−
				1
			

			

				
			

			
				𝑎
				=
				1
			

			
				
				𝜒
				(
				𝑎
				)
				+
			

			
				
			
			
				
				×
				𝜒
				(
				𝑎
				)
			

			
				𝑝
				−
				1
			

			

				
			

			
				𝑏
				=
				1
			

			
				
				1
				−
				𝑎
			

			

				2
			

			

				𝑏
			

			

				3
			

			
				
			
			
				𝑝
				
				
				1
				−
				𝑏
			

			
				
			
			
				𝑝
				
				×
			

			
				𝑝
				−
				1
			

			

				
			

			
				𝑚
				=
				1
			

			
				
				𝑚
			

			
				
			
			
				𝑝
				
				|
				|
				|
				|
				|
			

			
				𝑝
				−
				1
			

			

				
			

			
				𝑐
				=
				1
			

			
				𝑒
				
				𝑚
				𝑐
			

			

				3
			

			
				+
				𝑐
			

			
				
			
			
				𝑝
				
				|
				|
				|
				|
				|
			

			

				2
			

			
				+
				𝜏
			

			

				2
			

			
				
				𝜒
			

			

				2
			

			

				
			

			
				
			
			
				×
				2
				𝑝
			

			
				𝑝
				−
				1
			

			

				
			

			
				𝑎
				=
				1
			

			
				
				𝜒
			

			

				1
			

			
				(
				𝑟
				)
				𝜒
				(
				𝑎
				)
				+
			

			
				
			
			

				𝜒
			

			

				1
			

			
				(
				𝑟
				)
			

			
				
			
			
				
				×
				𝜒
				(
				𝑎
				)
			

			
				𝑝
				−
				1
			

			

				
			

			
				𝑏
				=
				1
			

			
				
				1
				−
				𝑎
			

			

				2
			

			

				𝑏
			

			

				3
			

			
				
			
			
				𝑝
				
				
				1
				−
				𝑏
			

			
				
			
			
				𝑝
				
				×
			

			
				𝑝
				−
				1
			

			

				
			

			
				𝑚
				=
				1
			

			
				
				𝑚
			

			
				
			
			
				𝑝
				
				|
				|
				|
				|
				|
			

			
				𝑝
				−
				1
			

			

				
			

			
				𝑐
				=
				1
			

			
				𝑒
				
				𝑚
				𝑐
			

			

				3
			

			
				+
				𝑐
			

			
				
			
			
				𝑝
				
				|
				|
				|
				|
				|
			

			

				2
			

			
				=
				2
				𝑝
			

			

				3
			

			
				+
				𝐸
				(
				𝑝
				)
				,
			

		
	

					where 
	
		
			
				𝐸
				(
				𝑝
				)
			

		
	
 satisfies the inequalities 
	
		
			
				−
				1
				2
				𝑝
			

			

				2
			

			
				−
				2
				𝑝
				≤
				𝐸
				(
				𝑝
				)
				≤
				4
				𝑝
			

			

				2
			

			
				−
				2
				𝑝
			

		
	
.
This completes the proof of our theorem.
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