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The main purposes of this paper are two contributions: (1) it presents a new method, which is the first passage time generalized
for all passage times (PT method), in order to estimate the parameters of stochastic jump-diffusion process. (2) It compares in a
time series model, share price of gold, the empirical results of the estimation and forecasts obtained with the PT method and those
obtained by the moments method applied to the MJD model.

1. Introduction

The parameters estimation is one of main dynamic models
problems in many scientific fields, particularly in economics
and finance. In the reference model proposed in 1973 by
Black and Scholes [1] some assumptions (constant volatility,
log-normality of returns, continuities of trajectories,. . .) are
required. This process is known as the geometric Brownian.
A number of empirical observations clearly contradict these
assumptions [2–7]. Now,many differentmodels are proposed
(see [4, 7, 8]) tomodify the Black-Scholes model. To solve the
problems associated with the Black-Scholes model, Merton,
in 1976, introduced a new financial model by using the
discontinuities by a Poisson process with Gaussian jumps.
We take Merton-Jump Diffusion (MJD) model to estimate
the parameters using the method of moments. We then
present anduse the PassageTime (PT)method to estimate the
same parameters andwe finally compare the empirical results
obtained by the differents methods on a time series model:
gold share price. Our sample comprises observations data of
gold share price (US$ Gold Fixing Price in London Bullion
Market, in U.S. Dollars per Ounce) and observations started
on January 2, 2007 to October 31, 2007 covering a period of
212 days.

2. Merton Jump-Diffusion Model

We consider that the asset price 𝑆
𝑡
presents log-normal

jumps 𝑉
1
, . . . , 𝑉

𝑗
at random times 𝜏

1
, . . . , 𝜏

𝑗
, which represent

the moments of jumping of a Poisson process [3, 4, 9–11].
Between two instants, we assume that the dynamics of the
model follows the Black-Sholes process model. It is a con-
tinuous time model. We suppose that the behavior of the
stock price is determined by the stochastic differential equa-
tion:

𝑑𝑆

𝑡
= 𝜇𝑆

𝑡
𝑑𝑡 + 𝜎𝑆

𝑡
𝑑𝑊

𝑡
, 𝑆

0
= 𝑥

0
, (1)

where 𝑊 is a standard Brownian motion and 𝜇 and 𝜎 are,
respectively, the drift and diffuse coefficient.

In the MJD model, the price process 𝑆
𝑡
is assumed to fol-

low the stochastic differential equation

𝑑𝑆

𝑡

𝑆

𝑡
−

= 𝜇𝑑𝑡 + 𝜎𝑑𝑊

𝑡
+ 𝑑(

𝑁
𝑡

∑

𝑗=0

(𝑉

𝑗
− 1)) , (2)

where log𝑉
𝑗
∼ i.i.d. 𝑁(𝛼, 𝛿2), normally distributed. The last

term models the jumps. A jump is modelled by the random
variable𝑉which transforms the price 𝑆

𝑡
to𝑉𝑆
𝑡
.Thedifference
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(𝑉 − 1) is the relative change in price when a Poisson jump
occurs. Using Ito’ lemma, the solution of (2) is

𝑆

𝑡
= 𝑆

0
exp {(𝜇 − 1

2

𝜎

2
) 𝑡 + 𝜎𝑊

𝑡
}

𝑁
𝑡

∏

𝑗=0

𝑉

𝑗
, (3)

where 𝑆
0
is the asset price at time zero and with 𝑌

𝑗
= log𝑉

𝑗

we can write

𝑋

𝑡
= log

𝑆

𝑡

𝑆

0

= (𝜇 −

1

2

𝜎

2
) 𝑡 + 𝜎𝑊

𝑡
+

𝑁
𝑡

∑

𝑗=0

𝑌

𝑗
. (4)

The processes 𝑊, 𝑁 and the random variables 𝑌
𝑗
∼

𝑁(𝛼, 𝛿

2
) are supposed to be independent.

The discontinuities of the price process are described by
the Poisson process 𝑁 with intensity 𝜆 (mean arrival rate of
jumps per unit time) and jump 𝑉

𝑗
. Introduction of the MJD

model adds three extra parameters (𝛼, 𝛿2, 𝜆) to the Black-
Sholes process model which contains two parameters (𝜇, 𝜎2).
We consider that the jumps, so Ball and Torous [12] and
Beckers [13], are symmetrical andwithmean value null.More
sophistical asymmetric models are proposed [14–16].

Discretized over [𝑡, 𝑡 + Δ[, the MJDmodel takes the form

Δ𝑋

𝑡
= (𝜇 −

1

2

𝜎

2
)Δ + 𝜎Δ𝑊

𝑡
+

Δ𝑁
𝑡

∑

𝑗=0

𝑌

𝑗
, (5)

whereΔ𝑊
𝑡
= 𝑊

𝑡+Δ
−𝑊

𝑡
∼ 𝑁(0, Δ) andΔ𝑁

𝑡
= 𝑁

𝑡+Δ
−𝑁

𝑡
is the

number of jumps occuring during the time interval [𝑡, 𝑡 + Δ[.
The probability density of Δ𝑋

𝑡
can be expressed [17] as

𝑓 (𝑥) =
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2
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,

(6)

where 𝑛 = 0, 1, 2, . . . are the possible number of jumps.
Putting Δ = 1, that is, the interval [𝑡, 𝑡 + 1[ and 𝛼 = 0

(i.e., symmetrical jumps) the density function for Δ𝑋
𝑡
= 𝑥

𝑡

becomes
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(7)

From this density we can deduce

𝐸 (𝑋) =

∞
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(8)

for 𝑘 ≥ 1. We note that the improper integral is the central
moment of order 𝑘 of the normal law𝑁(𝜇−(𝜎2/2), 𝜎2 +𝑛𝛿2).

3. Parameter Estimation

3.1. Method of Moments. Our model is described by four
parameters 𝜇, 𝜎2, 𝜆, and 𝛿2 and we will calculate the estima-
tors by the moments method which was used by Beckers [13]
and Press [18].The idea was based on the equalization of four
empirical moments with the corresponding theorical central
moments. This leads to solve a system of four equations that
allowed determination of estimators [17]. Given the law of
returns𝑋, the central moments of odd order are null and the
central moments of even order can be written

𝐸 ((𝑋 − 𝐸 (𝑋))

2𝑘
) =

(2𝑘)!

2
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𝑘

. (9)

One way to determine the values of the parameters 𝜇, 𝜎2,
𝜆, and 𝛿2 is to fit the market data, is to solve the following
system of equations
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𝐸 ((𝑋 − 𝐸 (𝑋))

6
)

= 15
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3.2. PT Method. This method proposes the parameter esti-
mation of the process𝑋 by the observation of the first passage
time 𝑇, [14, 19, 20], by the line of equation 𝑋 = 𝑆. Janssen
et al. used the first passage time method to estimate the
two parameters of the stochastic differential equation (Black-
Scholes equation). This method consists of determining a
constant boundary limit 𝑆 after having decomposed the
original time-series in several (𝑘) independent series having
the same initial point 𝑥

0
= 𝑥

1,0
= ⋅ ⋅ ⋅ = 𝑥

𝑘,0
, where 𝑥

𝑖,0

(𝑖 = 1, . . . , 𝑘) denotes the initial point of the series number 𝑖.
This constant terminal 𝑆 intersects all the 𝑘 trajectories. Each
first intersection (with the trajectory 𝑖) determines a moment
𝑡

𝑖
(called first passage time).The random variable𝑇 is the first

passage time of the process 𝑋(𝑡) = exp(𝑌(𝑡)) by the point 𝑆.
We have 𝑇 = inf{𝑡 | 𝑋(𝑡) = 𝑆, 𝑡 > 0}. The first passage time
𝑇 follows, as proved by Chhikara and Folks [21] and Folks
and Chhikara [22], an inverse Gaussian distribution, and its
density function, with𝑋(𝑡

0
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(11)

In finance, the trajectory which is composed of 𝑛 obser-
vations of the stock price is unique and to apply this method
we consider several 𝑘 trajectories from only one.The random
variables 𝑇

1
, . . . , 𝑇

𝑘
are the moments of the first passage

time by the constant 𝑆 in the 𝑘 trajectories (Figure 1), with
observed values 𝑡

𝑖
: 𝑖 = 1, . . . , 𝑘.

Solving the maximum likelihood equations (11) gives the
following estimators:

𝜇 =

(log (𝑆/𝑥
0
))

𝑡

+

1

2

�̂�

2
,

�̂�

2
=

[log (𝑆/𝑥
0
)]

2

𝑘

𝑘

∑

𝑖=1

((

1

𝑡

𝑖

) − (

1

𝑡

)) ,

(12)

where 𝑡 = (1/𝑘)∑𝑘
𝑖=1
𝑡

𝑖
.
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Figure 1: First passage time.
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Figure 2: All passage times.

In our work we study, in the first step, the quality
of the estimations. We solve this problem by adopting an
algorithm (from the simulation of uniform law on the varia-
tion intervals of 𝑆) to determine the best estimators 𝜇 and �̂�2,
according to certain criteria (RMSE, %RMSE, and %RME)
by comparison with the initial series. The chosen couple is
the one which minimizes the optimization criteria.

(i) We consider the 𝑘 independent trajectories, each with
𝑛

𝑖
observations (𝑖 = 1, . . . , 𝑘) and we define

𝑛

𝑖
: observations number of the trajectory 𝑖, with

∑

𝑘

𝑖=1
𝑛

𝑖
= 𝑛.

𝑥

𝑖𝑗
: observation number 𝑗 of the trajectory number 𝑖,

(𝑖 = 1, . . . , 𝑘; 𝑗 = 1, . . . , 𝑛
𝑖
).

𝑡

𝑖𝑗
: observation number instant 𝑗 of the trajectory

number 𝑖.

(ii) We find the value 𝑆 by random simulation of
the uniform law on the interval [max

1≤𝑖≤𝑘
min
1≤𝑗≤𝑛

𝑖

𝑥

𝑖𝑗
,

min
1≤𝑖≤𝑘

max
1≤𝑗𝑛
𝑖

𝑥

𝑖𝑗
].

We note and distinguish two cases: when (𝜇 − (1/2)𝜎2) >
0 (resp. < 0), 𝑆 > 𝑥

0
(resp. < 𝑥

0
).

In the second step, we generalize this method. Figure 2
shows many passage times for each trajectory. The difference
is that we use all passage times crossed at the value 𝑆 so
that this value is reached by all possible trajectories. This
method principle is similar to that of the first method. The
randomvariable𝑇 follows an inverseGaussian law. Its density
function is written in the form (11).
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Figure 3: Returns evolution.

Solving the maximum likelihood equations (11) gives the
following estimations:

𝜇 =

log (𝑆/𝑥
0
)

𝑡

+

1

2

�̂�

2
,

�̂�

2
=

[log (𝑆/𝑥
0
)]

2

𝑚

𝑚

∑

𝑖=1

(

1

𝑡

𝑙

𝑖

−

1

𝑡

) ,

(13)

with 𝑡 = (1/𝑚)∑𝑘
𝑖=1
∑

𝑚
𝑘

𝑙=1
𝑡

𝑙

𝑖
andwhere𝑚 = ∑

𝑘

𝑙=1
𝑚

𝑙
is the total

number of passage times, 𝑚
𝑙
is the number of passage times

in the trajectory number 𝑙, and 𝑡𝑙
𝑖
is the passage time number

𝑙 in the trajectory number 𝑖.
The random variables 𝑇

1
, . . . , 𝑇

𝑚
are the instants of the

passage time by the line 𝑋 = 𝑆 in the 𝑘 trajectories, with
observed values 𝑡𝑙

𝑖
: 𝑖 = 1, . . . , 𝑘; 𝑙 = 1, . . . , 𝑚

𝑘
.

4. Empirical Results

4.1. Observations. Weused the 212 daily observations of share
price of gold to calculate the returns 𝑋

𝑡
= log(𝑆

𝑡+1
/𝑆

𝑡
),

𝑡 = 0, 1, . . . , 211. We obtain an i.i.d. sample with which
we calculate the empirical estimators of the necessary four
moments: the empirical expectation and the first moments.
These observations are represented in Figure 3. We note that
our data are not Gaussian. Otherwise, the Black-Scholes
model is sufficiently robust. The normality test of Jarque and
Bera [23] gives a 𝑃-value equal to 46.0063 < 𝜒2

1−𝛼
= 5.99 for

𝛼 = 0.05. This leads to reject the null hypothesis; that is, the
law of return can not be a normal distribution (see [10]).

4.2. Estimations

4.2.1. Method of Moments. According to the MJD model, the
parametrization, solving the system (10), gives 𝜇 = 1.0288 ×
10

−3, �̂�2 = 4.8731 × 10−5, ̂𝜆 = 0.244, ̂𝛿2 = 1.2361 × 10−4.
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4.2.2. PT Method. This study is based on certain crite-
ria to chose the best method, in particular the criterion
wich minimizes the RMSE (root mean squared error loss
function), %RMSE (relative root mean squared error loss
function), and %RME (relative mean error): RMSE =

√
(1/𝑁)∑

𝑁

𝑖=1
𝑒

2

𝑖
(Θ), %RMSE = √(1/𝑁)∑𝑁

𝑖=1
(𝑒

𝑖
(Θ)/𝑥

𝑖
)

2, and
%RME where 𝑒𝑖(Θ) = 𝑥

𝑖
− 𝑥

𝑖
(Θ) are the error terms, such

that 𝑥
𝑖
and 𝑥

𝑖
(Θ) are, respectively, the observed and simu-

lated values. In our time-series the initial value 𝑥
0
= 608.4

divides the trajectory in two (𝑘 = 2) trajectories and by
random simulation we find 𝑆 = 640.75, such that all the 2
trajectories are reached by this value 𝑆. The numerical results
are 𝜇 = 0.0021 and �̂�2 = 6.5117 × 10−4.

4.3. Simulation. We take the parameters 𝜇 and �̂�2 estimated
by the two methods. Concerning the other parameters 𝜆 and
𝛿

2, we used the estimated values by the method of moments
(the PT method gives only 𝜇 and �̂�2). Figure 4 represents the
simulation graph and the real values.

According to the criteria (see Table 1), the PT method
minimizises the errors relatively to the method of moments.

4.4. Forecast. The forecast days are 10 days. The graphs of the
forecast errors for each method are represented in Figure 5.
The result analysis shows that the PTmethod𝑚𝑎𝑥 error does
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Table 1: Simulation errors.

RMSE %RMSE %RME
Method of moments 22.891 0.0327 2.743
PT Method 17.959 0.0271 2.171

Table 2: Forecast errors.

%RME
Method of moments 10.836
PT Method 2.751

not exceed 7%. Table 2 represents the forecast errors for the
two methods.

5. Conclusion

In this paper, we evaluate the performance of a newmethod in
the parameters estimation problemofMJDmodel. According
to the simulation and forecast results, we deduce that this
PT method gives better results than the method of moments
and can be used in other problems based on the stochastic
differential equations with jumps.
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