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Abstract. 
Through an Alexandrov-Fenchel inequality, we establish the general Brunn-Minkowski inequality. Then we obtain the uniqueness of solutions to a nonlinear elliptic Hessian equation on .



1. Introduction
According to a general Brunn-Minkowski inequality, we obtain a proof of the uniqueness of solutions to the following fully nonlinear elliptic Hessian equation: where  is the support function of convex bodies,  are the second-order covariant derivations of  with respect to any orthonormal frame  on ,  is the standard Kronecker symbol,  is the unit sphere of -dimension,  is a positive function defined on , , , and  is the th elementary symmetric function defined as follows: for , The definition can be extended to any symmetric matrix  by , where  is the eigenvalue vector of .
Equation (1) arrives from the geometry of convex bodies. A compact convex subset of Euclidean -space  with nonempty interiors is called a convex body. An important concept related to a convex body  is its support function.
Definition 1. Let  (the boundary of a convex body ) be a smooth, closed, uniformly convex hypersurface enclosing the origin in . Assume that  is parameterized by its inverse Gauss map ; the support function  of  (or ) is defined by where  denotes the standard inner product in .
 is convex after being extended as a function of homogeneous degree  in . Conversely, any continuous convex function  of homogeneous degree  determines a convex body as follows: From some basic concepts to support function, Minkowski sum [see Definition 4], and mixed volumes [see Definition 5], Minkowski developed a set of theories related to convex bodies. If  and , (1) is the Monge-Ampère equation corresponding to the classical Minkowski problem which has been solved by Nirenberg [1], Pogorelov [2, 3], Cheng and Yau [4], and many others. When , (1) is the classical Christoffel-Minkowski problem: A necessary condition [3] for (6) to have a solution is where  is the standard area form on . Guan et al. [5] obtained that (7) is sufficient for (6) to have an admissible solution [see Definition 6].
Firey [6] generalized the Minkowski sum to -sum [see Definition 4] from  to  in 1962. Later, Lutwak [7] extended the classical surface area measure to the -sum cases. Also in [7], Lutwak first introduced the general Minkowski problem, which is called -Minkowski problem thereafter. In the smooth category, -Minkowski problem is equivalent to considering the following Monge-Ampère equation: The uniqueness of -Minkowski problem for  and  (the uniqueness holds up to a dilation if ) has been solved in [7]. However, the uniqueness for  is difficult and still open. In [8], Jian et al. obtained that, for any , there exists a positive function  to guarantee that (8) has two different solutions, which means that we need more conditions to consider the uniqueness.
When considering cases , attention is paid to the generalized Christoffel-Minkowski problem. In the smooth category, we need to study the -Hessian equation (1).
For (1), Hu et al. [9] got the existence and uniqueness of solutions to (1) when  and  under appropriate conditions. However, the uniqueness of (1) when  has not been solved well. In this paper, we study the uniqueness of (1) for .
Our main result is the following.
Theorem 2.  Suppose  is a positive admissible solution of where , , , and  is a positive function defined on the unit sphere  and then the uniqueness holds. If , the uniqueness holds up to a dilation, which means that if  solves (9), then  are the whole solutions of (9).
Remark 3. Here, we rewrite (1) by (9), where .
The organization of this paper is as follows. In Section 2, we show some basic concepts and lemmas which have been obtained by Guan et al. in [10]. In Section 3, we prove two useful propositions according to the methods in [11]. In the last section, we prove the main theorem.
2. Preliminaries
Definition 4. Given two convex bodies  and  in  with respective support functions , , and  (), the Minkowski sum  is defined by the convex body whose support function is .
For , let  and  be two convex bodies containing the origin in  in their interiors, and  (). The convex body , whose support function is given by , is called Firey’s -sum of  and , where “” means the -summation and “” means Firey’s multiplication.
Definition 5. Let  be convex bodies in  and the volume of their Minkowski sum is an th degree homogeneous polynomial of the family . Specially, the volume of  is where the functions  are symmetric. Then  is called the Minkowski mixed volume of 
Definition 6. For , let  be the convex cone in  which is determined by A function  is called -convex if and  is called an admissible solution to (1) if  is -convex and satisfies (1).
Definition 7. Let  be symmetric real  matrices, ; the determinant of  is a homogeneous polynomial of degree  in . Namely, In fact, the coefficient  depends only on ; then they are uniquely determined.  is called the mixed discriminant of .
For later applications, we collect some results here which have been proved in [10].
Lemma 8.  Let  be the support function of convex bodies , respectively. Denoting Minkowski mixed volume  by  and thenwhere  is the mixed discriminant [see Definition 7] of .
Remark 9. For all , setting , then where  is the mixed discriminant of . Furthermore, if , denote  and ; then 
Lemma 10.   is a symmetric multilinear form on .
Lemma 11.  For any function , , , we have the Minkowski type integral formula, where  is the standard area element on .
The following is a form of Alexandrov-Fenchel inequality for positive -convex functions which comes from [10].
Lemma 12 (Alexandrov-Fenchel inequality).  If  are -convex,  is positive, and there exists  such that  on , then, for any , with equality if and only if  for some constants .
3. Two Important Propositions
Now we prove two important propositions. The methods we use are from [11].
Proposition 13.  Suppose  are -convex; then with equality if and only if  for some constants .
Proof. We only need to prove that is concave on . Setting , , we have By the symmetric multilinear property of , it is obvious that where the last inequality uses (20); thus  is a concave function on . The equality condition is checked easily.
Proposition 14 (general Brunn-Minkowski inequality).  Supposing  are -convex, thenwith equality if and only if  for some constants .
Proof. Settingthen . By (21), ; thus ; namely, ThenBy (19), and then
4. Proof of Theorem 2
Now we prove Theorem 2. The main methods are from [7, 12].
Proof. Assuming that (9) has two solutions  and , then we consider the equation in the following three cases. 
Case  1 (). Supposing  is the maximum value point of , then at , we have that is, Hence thereforethenSimilarly, we have . Thus . 
Case  2 (). We have thenwhere we have used Hölder inequality in the first inequality and used (26) in the second one. Hence , which forces both the equalities to hold. By the equality condition, there exists a constant  such that  By (9), we know . Therefore, 
Case  3 (). According to Case  2, when , we have then all the equalities hold. Thus there exists , such that . Therefore  are the whole solutions of (9).
Now we complete the proof of Theorem 2.
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