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Abstract. 
In order to classify a finite group using its elements orders, the order classes are defined. This partition determines the number of elements for each order. The aim of this paper is to find the order classes of 2-generator -groups of class 2. The results obtained here are supported by Groups, Algorithm and Programming (GAP).



1. Introduction
One of the major partitions for finite groups is the order classes. A basic concept in group theory is that the order of an element  denoted by  is the smallest positive integer , such that  is the identity. The relation “ is of the same order as ” is an equivalence relation, which induces a partition for the group , which is called the order classes. Order classes of symmetric and dihedral groups are completely configured in [1] and [2], respectively.
Clearly, all conjugate elements have the same order. Conjugacy classes are refinement partitions to order classes. Therefore, each order class contains at least one conjugacy class. Du and Shi [3] proved that if a finite group  has conjugacy classes number one greater than its same order classes number, then  is isomorphic to one of the following groups: , , , , , , , , , or .
In order to classify a finite group using its order classes, there is a new issue obtained by the size of the order classes. That is, a finite group  is said to be a perfect order subsets group (POS-group) if the cardinality of each order class divides . Das [4] studied some of the properties of arbitrary POS-groups and constructed a couple of new families of nonabelian POS-groups. He also proved that the alternating group ,  , is not a POS-group. Later, Jones and Toppin [5] proved that any nontrivial finite POS-group has even order.
The classification of all -groups is not completed yet. In 1993 the classification of finite 2-generator -groups of class 2 has been studied in [6]. Ahmad et al. [7] classified 2-generator -groups of class 2 and defined these groups as a central extension of cyclic -groups, that is, to obtain the exact number of conjugacy classes for these groups. In this study we will follow the same classification found in [7], to investigate the order classes of 2-generator -groups of nilpotency class 2.
The results obtained here were found using GAP. Fortunately, using our main theorem, we have developed a practical GAP algorithm to find the order classes of 2-generator -groups of class 2 ( odd prime).
2. Preliminaries and Definitions
Our notation is fairly standard. By  we denote the order of a finite group  and we denote the identity element of  by . The order of an element , denoted by , is the smallest positive integer  such that . The set of all possible orders for a finite group  will be denoted by . The class of all elements of  which have the same order of  is called the order class of . Equivalently, the class of all elements of  of order  is the order class of  and is denoted by . The order classes of a group  will be denoted by , which consists of all possible pairs of the form  for all . The derived subgroup and the center of a group  are denoted by  and , respectively.
Let  be a group. The commutator of  is given by . For any subgroups  and  of a group  the commutator subgroup is . Note that the lower central series of a group  iswhere  for .
Definition 1. A group  is called nilpotent if there exists  such that , and the smallest such  is the class of nilpotency.
All abelian groups are nilpotent of class 1. If  is prime, then the group in which every element has order a power of  is called a -group. If  is a finite -group, then the order of  is a power of . Such groups are nilpotent. A group  is nilpotent group of class 2 if ; equivalently .
In a finite -group  of order , the center  is a subgroup of . Using Lagrange’s theorem, it is implied that  for some integer .
Lemma 2 (see [8]).  Let  be a group of nilpotency classes 2. Let  and ; then (1),(2),(3),(4).
Lemma 3 (see [6]).  Let  be a group of nilpotency classes 2 and  with  and  being odd. Then (1),(2).
The following theorem is used to describe the structure of a 2-generator -group of nilpotency class 2 in terms of generators and relations.
Theorem 4 (see [7]).  Let  be a prime and  a positive integer. Every 2-generator -group of order  and class 2 corresponds to an ordered 5-tuple of integers, , such that (1),(2),(3) and , where  corresponds to the group presented byMoreover (1)if , then  is isomorphic to(a) when ;(b) when  or ;(c) when ;(2)if , or  and , then  is isomorphic to ;(3)if  and , then  is isomorphic to(a) when ;(b) when ;(c) when  and .The groups listed in 1(a)–3(c) are pairwise nonisomorphic.
If  is prime and  is a 2-generator -group of class 2, with , , then , where  [7]. Let  be a 2-generator -group of class 2. Then , , and  are the polycyclic series of . Hence,  and  are the polycyclic generators of . Therefore, if , then  can be written uniquely as , where , , and .
3. Order Classes of 2-Generator -Groups of Nilpotency Class 2
The previous classification for 2-generator -groups will be used to obtain the order classes of these groups. Let  be the set of all 2-generator -groups of nilpotency class 2 with  being an odd prime and , , . To find the order classes of a group , we need to answer some important issues related to , such as the description of the available orders ; the largest possible order , to achieve the set ; the count of elements of each order family to obtain . The following lemmas will justify these issues and concepts to establish the order classes in terms of .
Lemma 5.  Let  be the group generated by  and , with , . Then , where .
Proof. The proof follows directly using Lemma 3, since
Reasonably, for , the order 5-tuple of integers  in Theorem 4 was configured to construct the group . But the new order pair  obtained by the generators orders is a different pair; it is clear that  for all . So that  will never be used instead of , although they are occasionally similar.
Let . Then the order of any element in  should divides . Therefore, if , then  should be written as a power of . Thus,  where  (if , then  is cyclic group). The following lemma establishes the largest possible order  in terms of the generators orders .
Lemma 6.  If  is the group generated by  and , such that , , letting , then the exponent of , denoted by , is given by
Proof. Let  and . Theorem 4 gives that , where , , and . ThereforeThenNotice that . Hence
Using Lemma 6, it follows that the set of all possible orders is , where . Hence , where  is the number of elements of order  for .
According to the previous classifications our main results will be as follows.
Theorem 7.  Let  be the group generated by  and , with , , , and    for all . Let . Then,  has  elements of order , , wheresuch that (1)  (2)  (3)If . Then .(4)If . Then  for .(5).
Proof. The identity element  is the only element in  of order 1; therefore . Without loss of generality, let .
() Let ; then , where , , and .
Using (6), it is implied thatSince , hence ; thereforeThenCase 1. If , thenHence, there are  choices for ; they are originally for  and similarly there are  choices for . Therefore there are  choices for . Note that  for  and . ThenCase 2. If , thenTherefore, there are  choices for . The identity element is omitted. Thus() Using similar arguments as Case , thenIf , thenHence, there are  choices for  and  choices for . Hence, ; else, . ThenThere are  choices for  and  choices for , implying that .
() Similarly, if , thenThenHence, .
() If , for all , then the number of choices for  reduces in a ratio of  for each . Thus .
() When , thenHence, .
Corollary 8.  Let  be the group generated by  and , with , . Then  is not a POS-group.
Proof. It is enough to show that there exists  such that . For , wheresuppose, on the contrary, that . Then there exists  with  and . ThereforeThenso that . If , then , which implies that , a contradiction. If , then  and  have no solution for  as an integer which gives a contradiction as well. It follows that there is no integer  such that . Thus , which means that  is not a POS-group.
4. GAP
This study includes GAP’s algorithms. Algorithm 1 (see the appendix) is derived from Theorem 7 and is used to find the order classes of all 2-generator -groups of nilpotency class 2 (as a list), by determining the values of  and . Algorithm 2 (see the appendix) is being built using the ordinary GAP formulas and commands (already installed with GAP’s packages) to give the same results as Algorithm 1.
		p:=◯;;n:=◯;;order:=p    n;; # Input the values of p and n, where the order of G is p    n 
	G:=AllSmallGroups(Size,order);;
	D:=NumberSmallGroups(order);;
	for k in [1..D] do;
	       f:=G[k];;m:=Size(MinimalGeneratingSet(f));;WW:=[ ];;
	           if NilpotencyClassOfGroup(f)=2 and m=2 then;
	               Add(WW,[1,1]);
	               Print(k,") G=",StructureDescription(f), " |G|=",Size(f)," p=",p,"n=",n," N.class
	",NilpotencyClassOfGroup(f));
	                   gg:=MinimalGeneratingSet(f);;
	                   e:=Identity(f);;
	                   a:=gg[1];;b:=gg[2];;
	                   i:=Log(Order(a),p);;j:=Log(Order(b),p);;w:=Maximum(i,j);;
	                       if i+j=n then;
	                           m1:=1; m2:=p    n/p    w-1;Add(WW,[p,m1*p    2-1]);
	                           if w>=2 then;
	                               Add(WW,[p    2,m2*p    2]);
	                           fi;
	                       else;
	                           m1:=p;m2:=p    (n-w)-p;Add(WW,[p,m1*p    2-1]);
	                           if w>=2 then;
	                               Add(WW,[p    2,m2*p    2]);
	                           fi;
	                       fi;
	                       Yw:=p    (n-1)*(p-1);;
	                       for 1 in [0..(w-3)] do;
	                           Add(WW,[p    (w-l),Yw/(p    1)]);
	                       od;
	Print("∖n no. of gen.=",m,", o(a)=",p    i,", o(b)=",p    j,", w=",w,"∖n OC=",WW,"∖n∖n");
	fi;od;time;


	Algorithm 1: Theorem 7 in GAP’s algorithm.

		p:=◯;;n:=◯;;order:=p    n;; # Input the values of p and n, where the order of G is p    n 
	G:=AllSmallGroups(Size,order);;
	D:=NumberSmallGroups(order);;
	for k in [1..D] do;
	       f:=G[k];;x:=Elements(f);;YY:=Collected(List(x,i-[Order(i)]));;
	       m:=Size(MinimalGeneratingSet(f));;
	           if NilpotencyClassOfGroup(f)=2 and m=2 then;
	               Print(k,") |G|=",Size(f)," p=",p," n=",n," N.class ",NilpotencyClassOfGroup(f),
	                 gg:=MinimalGeneratingSet(f);;
	                 e:=Identity(f);;
	                 a:=gg[1];;b:=gg[2];;c:=Comm(a,b);;
	               i:=Log(Order(a),p);;j:=Log(Order(b),p);;w:=Maximum(i,j);;
	 Print("∖n no. of gen.=",m,", o(a)=",Order(a),", o(b)=",Order(b),",w=",w,"∖n 
	OC=",YY,"∖n∖n");
	fi;od;time;


	Algorithm 2: The ordinary GAP algorithm.

Example 9. When both Algorithms 1 and 2 are used to find the order classes for all 2-generator -groups of class 2, where  and , the results obtained are as follows: 

	                 Algorithm 1	                 Algorithm 2
	     	        
	G=(C43 x C43) : C43	G=(C43 x C43) : C43
	|G| =79507 p=43 n=3 N.class 2	|G| =79507 p=43 n=3 N.class 2
	no of gen.=2 o(a)=43 o(b)=43 w=1	  no of gen.=2 o(a)=43 o(b)=43 w=1
	WW=[ [ 1,1 ], [ 43, 79506 ] ]	  YY=[ [ 1, 1 ], [ 43, 79506] ]
	      	          
	G=C1849 : C43	G=C1849 : C43
	|G| =79507 p=43 n=3 N.class 2	|G| =79507 p=43 n=3 N.class 2
	 no of gen.=2 o(a)=1849 o(b)=43 w=2	 no of gen.=2 o(a)=1849 o(b)=43 w=2
	WW=[ [ 1, 1 ], [ 43, 1848 ],	YY=[ [ 1, 1 ], [ 43, 1848 ],
	 [ 1849, 77658 ] ]	 [ 1849, 77658 ] ]
	        	    
	time:14180	time:38064     


Similarly, for  and 

	                 Algorithm 1	                 Algorithm 2
	      	       
	 G=(C2209 x C47) : C47	 
	|G| =4879681 p=47 n=4 N.class 2	 
	  no of gen.=2 o(a)=2209 o(b)=47 w=2	 
	   WW=[ [ 1, 1 ], [ 47, 103822 ],	 
	  [ 2209, 4775858 ] ]	 
	     	     
	G=C2209 : C2209	 
	|G| =4879681 p=47 n=4 N.class 2	 
	 no of gen.=2 o(a)=103823 o(b)=47 w=3	           exceeded the permitted memory
	 WW=[ [ 1, 1 ], [ 47, 2208 ],	 
	[ 2209, 101614 ], [ 103823, 4775858 ] ]	       
	      	 
	G=C103823 : C47	      
	|G| =4879681 p=47 n=4 N.class 2	   
	 no of gen.=2 o(a)=103823 o(b)=47 w=3	 
	 WW=[ [ 1, 1 ], [ 47, 2208 ],	 
	[ 2209, 101614 ], [ 103823, 4775858 ] ]	          
	      	      
	time:100355	       
	    	 
	    	      



The time required for Algorithm 2 to find the order classes of 2-generator -groups of class 2, when  and , is 38064 milliseconds while Algorithm 1 needs 14180 milliseconds to find the same results. Next, for  and , Algorithm 2 could not complete the process, for the group size (4879681) exceeded the permitted memory size. Conversely, Algorithm 1 takes 100355 milliseconds. Distinctly, Algorithm 1 is much better than the ordinary GAP algorithm and it can be used instead.
5. Conclusion
In this paper, the classification of 2-generator -groups of nilpotency class 2 has been used to determine the order classes of this type of groups. This work contains an appreciable number of imperative results. We have used these results to create a GAP algorithm (Algorithm 1) to find the order classes of 2-generator -groups of nilpotency class 2,  odd prime. When Algorithm 1 is compared to Algorithm 2, which has been used for the same purpose, we have found that Algorithm 1 does not use all of the group elements and only depends on two elements (generators) to classify the order class of this group, while Algorithm 2 uses all of the group elements to give the same results. Therefore, it works very slow and interrupts large size groups, on the contrary to Algorithm 1.
Appendix
 See Algorithms 1 and 2.
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