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Spectral techniques are used for the study of several network properties: community detection, bipartition, clustering, design of
highly synchronizable networks, and so forth. In this paper, we investigate which kinds of bicyclic networks are determined by
their per-spectra. We find that the permanental spectra cannot determine sandglass graphs in general. When we restrict our
consideration to connected graphs or quadrangle-free graphs, sandglass graphs are determined by their permanental spectra.
Furthermore, we construct countless pairs of per-cospectra bicyclic networks.

1. Introduction

It was recognized in about last decade that graph spectra have
several important applications in computer science. Graph
spectra appear in internet technologies, pattern recognition,
computer vision, datamining,multiprocessor systems, statis-
tical databases, and many other areas. For example, spectral
filtering is applied in the study of Internet structure [1]. This
method uses the eigenvectors of the adjacency and other
graph matrices and some clusters in data sets represented by
graphs. Formore information about the applications of graph
spectra in computer science see [2–6], among others.

The permanent of 𝑛×𝑛matrix𝑌 = (𝑦𝑖𝑗) (𝑖, 𝑗 = 1, 2, . . . , 𝑛)
is defined as

per (𝑌) = ∑
𝜎

𝑛∏
𝑖=1

𝑦𝑖𝜎(𝑖), (1)

where the sum is taken over all permutations𝜎 of {1, 2, . . . , 𝑛}.
Valiant [7] showed that computing the permanent is #P-
complete even when restricted to (0, 1)-matrices.

Let 𝐺 be a graph with 𝑛 vertices, and let 𝐴(𝐺) be (0,1)-
adjacency matrix of 𝐺. The permanental polynomial of 𝐺,
denoted by 𝜋(𝐺, 𝑥), is defined as 𝜋(𝐺, 𝑥) = per(𝑥𝐼 − 𝐴(𝐺)).
The permanental spectrum (per-spectrum for short) of graph𝐺, denoted by 𝑝𝑠(𝐺), is the set of all roots (together with their
multiplicities) of 𝜋(𝐺, 𝑥).

Two graphs are per-cospectral if they share the same per-
spectrum. A graph 𝐺 is said to be determined by its per-
spectrum (DPS for short) if there is no other nonisomorphic
graph with the same per-spectrum.

Which graphs are determined by their adjacency spectra
is an old problem in graph spectra theory. van Dam and
Haemers [8, 9] gave an excellent survey of answers to the
question of which graphs are determined by the spectra of
some graph polynomials. Merris et al. [10] first considered
the problem which graph is DPS. And they showed that
the five pairs adjacency cospectral graphs (see [11]) are DPS.
Based on the result, they formulated that the per-spectrum
seems a little better than the adjacency spectrum when it
comes to distinguishing graphs which are not trees. In fact,
characterizing what kinds of graphs are determined by the
per-spectra is generally a very hard problem. Up to now, only
a few types of graphs are proved to be DPS; see [12–17].

A bicyclic network is a simple connected graph in which
the number of edges equals the number of vertices plus
one [18]. The sandglass graph is a bicyclic network, denoted
by 𝑆(𝐶3, 𝑃ℎ, 𝐶3), obtained by appending a triangle to each
pendant vertex of the path 𝑃ℎ. Lu et al. [19] proved that
sandglass graphs are determined by their adjacency spectra.
Motivated by the statement ofMerris et al., a natural problem
is whether sandglass graphs are determined by their per-
spectra. In this paper, we give a solution of this question.
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Figure 1:∞-graph and 𝜃-graph.

In what follows, we begin with some definitions and
notions. Let𝐺∪𝐻 be the union of two graphs𝐺 and𝐻which
have no common vertices. For any positive integer 𝑙, let 𝑙𝐺
denote the union of 𝑙 disjoint copies of graph𝐺.The path and
cycle on 𝑛 vertices are denoted by 𝑃𝑛 and 𝐶𝑛, respectively. Let𝑐𝑖(𝐺) denote the number of 𝑖-cycles in 𝐺.

Let 𝐶𝑝 and 𝐶𝑞 be two vertex-disjoint cycles. Suppose that
V1 is a vertex of𝐶𝑝 and V𝑙 is a vertex of𝐶𝑞. Joining V1 and V𝑙 by
a path V1V2 ⋅ ⋅ ⋅ V𝑙 of length 𝑙 − 1, where 𝑙 ≥ 1 and 𝑙 = 1means
identifying V1 with V𝑙, the resulting graph (see Figure 1),
denoted by ∞(𝑝, 𝑙, 𝑞), is called ∞-graph. Let 𝑃𝑟+1, 𝑃𝑠+1, and𝑃𝑡+1 be three vertex-disjoint paths, where 𝑟, 𝑠, 𝑡 ≥ 1 and at
most one of them is 1. Identifying the three initial vertices and
terminal vertices of them, respectively, the resulting graph
(see Figure 1), denoted by 𝜃(𝑟, 𝑠, 𝑡), is called 𝜃-graph. Then
bicyclic networks can be partitioned into two classes: the class
of graphs which contain ∞-graph as its induced subgraph
and the class of graphs which contain 𝜃-graph as its induced
subgraph.

A subgraph𝐻 of𝐺 is a Sachs subgraph if each component
of 𝐻 is a single edge or a cycle. Merris et al. [10] gave a
modified Sachs formula to compute the coefficients of the
permanental polynomials of graphs.

Lemma 1 (see [10]). Let 𝐺 be a graph with 𝜋(𝐺, 𝑥) =∑𝑛𝑘=0 𝑏𝑘(𝐺)𝑥𝑛−𝑘. Then

𝑏𝑘 (𝐺) = (−1)𝑘∑
𝐻

2𝑐(𝐻), 1 ≤ 𝑘 ≤ 𝑛, (2)

where the sum is taken over all Sachs subgraphs 𝐻 of 𝐺 on 𝑘
vertices, and 𝑐(𝐻) is the number of cycles in𝐻.

Lemma 2 (see [13]). Let 𝐺 be a graph with 𝑛 vertices and 𝑚
edges, and let (𝑑1, 𝑑2, . . . , 𝑑𝑛) be the degree sequence of𝐺.Then

𝑏0 (𝐺) = 1,
𝑏1 (𝐺) = 0,
𝑏2 (𝐺) = 𝑚,
𝑏3 (𝐺) = −2𝑐3 (𝐺) ,
𝑏4 (𝐺) = (𝑚2) − 𝑛∑

𝑖=1

(𝑑𝑖2) + 2𝑐4 (𝐺) .

(3)

Figure 2: Graph 𝐺.

Lemma 3 (see [17]). Let 𝐺 be a graph with 𝑚 edges, and let𝑡𝑖(𝐺) denote the degree sum of the three vertices on 𝑖th triangle
in 𝐺. Then

𝑏5 (𝐺) = −2(𝑐3(𝐺)∑
𝑖=1

(𝑚 + 3 − 𝑡𝑖 (𝐺)) + 𝑐5 (𝐺)) . (4)

Lemma 4 (see [13]). The following can be deduced from the
permanental polynomial of a graph 𝐺:

(i) The number of vertices
(ii) The number of edges
(iii) The number of triangles
(iv) The length of the shortest odd cycle
(v) The number of the shortest odd cycles
(vi) Whether 𝐺 is bipartite

2. Sandglass Graphs Are DPS

In this section,wewill give the solutions of the problemwhich
sandglass graphs are DPS?

Checking graph 𝐺 depicted in Figure 2, direct computa-
tion yields 𝜋(𝐺, 𝑥) = 𝑥13 + 14𝑥11 − 4𝑥10 + 74𝑥9 − 40𝑥8 +186𝑥7 − 136𝑥6 + 230𝑥5 − 180𝑥4 + 130𝑥3 − 76𝑥2 + 25𝑥 − 4 =𝜋(𝑆(𝐶3, 𝑃9, 𝐶3), 𝑥). This implies that the permanental spectra
cannot determine sandglass graphs in general. Examining
graph 𝐺 again, we know that 𝐺 is not connected and con-
tains a quadrangle. It is natural to consider the problemwhich
sandglass graphs are DPS when we restrict our consideration
to connected graphs or quadrangle-free graphs, where the
quadrangle-free graph is one which contains no quadrangles
(i.e., cycles of length 4). We will answer these questions one
by one in the following.

First, we give some lemmas which will play an important
role in the proof of main theorems.

Lemma 5. Let 𝑆(𝐶3, 𝑃ℎ, 𝐶3) be a graph with 𝑛 vertices. Then𝑏5(𝑆(𝐶3, 𝑃ℎ, 𝐶3)) = −4𝑛 + 12.
Proof. By Lemma 3, the proof is trivial.

Lemma 6. Let 𝑆(𝐶3, 𝑃ℎ, 𝐶3) be a graph with 𝑛 vertices. Then𝑛-th coefficient of 𝜋(𝑆(𝐶3, 𝑃ℎ, 𝐶3), 𝑥) is
𝑏𝑛 (𝑆 (𝐶3, 𝑃ℎ, 𝐶3)) = {{{

−4, if 𝑛 is odd;
5, if 𝑛 is even. (5)
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Proof. Suppose that 𝑛 is odd. Then the Sachs subgraph of
order 𝑛 in 𝑆(𝐶3, 𝑃ℎ, 𝐶3) is only𝐶3∪((𝑛−3)/2)𝑃2. By Lemma 1,
we have 𝑏𝑛(𝐺) = −4. Otherwise, if 𝑛 is even, then the Sachs
subgraph of order 𝑛 in 𝑆(𝐶3, 𝑃ℎ, 𝐶3) is 𝐶3 ∪𝐶3 ∪ ((𝑛 − 6)/2)𝑃2
and (𝑛/2)𝑃2. By Lemma 1, we have 𝑏𝑛(𝐺) = 5.
Lemma 7. Let 𝐺 be a quadrangle-free graph with 𝑛 vertices. If𝜋(𝐺, 𝑥) = 𝜋(𝑆(𝐶3, 𝑃ℎ, 𝐶3), 𝑥), then the degree sequence of 𝐺 is

(2𝑛−2, 32), where 𝑎𝑘 means
𝑘⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞𝑎, 𝑎, . . . , 𝑎.

Proof. Suppose that the degree sequence𝐺 is (3+𝑡1, 3+𝑡2, 2+𝑡3, . . . , 2 + 𝑡𝑛), where 𝑡1, 𝑡2 > −3, and 𝑡𝑖 > −2 (𝑖 = 3, 4, . . . , 𝑛)
are integers. Since 𝐺 and 𝑆(𝐶3, 𝑃ℎ, 𝐶3) have the same number
of edges, then

𝑛∑
𝑖=1

𝑡𝑖 = 0. (6)

By Lemma 2, we have

𝑏4 (𝐺) = (𝑛 + 1
2 ) − (3 + 𝑡12 ) − (3 + 𝑡22 )

− 𝑛∑
𝑖=3

(2 + 𝑡𝑖2 ) .
(7)

Since 𝜋(𝐺, 𝑥) = 𝜋(𝑆(𝐶3, 𝑃ℎ, 𝐶3), 𝑥), we have 𝑏4(𝐺) =𝑏4(𝑆(𝐶3, 𝑃ℎ, 𝐶3)). By a simple calculation, we obtain
𝑛∑
𝑖=1

𝑡2𝑖 = −2 (𝑡1 + 𝑡2) . (8)

Checking (8), it is easy to see that if |𝑡1| ≥ 3 or |𝑡2| ≥ 3, then∑𝑛𝑖=3 𝑡2𝑖 < 0, a contradiction. Hence,
−2 ≤ 𝑡1, 𝑡2 ≤ 2. (9)

Furthermore, if 𝑡1 = −𝑡2 except 𝑡1 = 𝑡2 = 0, then ∑𝑛𝑖=3 𝑡2𝑖 < 0,
a contradiction. Thus

𝑡1 + 𝑡2 ̸= 0. (10)

Solving simultaneous equations (6)–(10), we have

𝑡1 = 𝑡2 = −2,
𝑡3 = ⋅ ⋅ ⋅ = 𝑡𝑛 = 0,
𝑡1 = −2,
𝑡2 = −1,
𝑡3 = ±1,
𝑡4 = ⋅ ⋅ ⋅ = 𝑡𝑛 = 0,
𝑡1 = −2,
𝑡2 = 0,
𝑡3 = ⋅ ⋅ ⋅ = 𝑡𝑛 = 0,
𝑡1 = 𝑡2 = −1,
𝑡3 = 𝑡4 = ±1,

𝑡5 = ⋅ ⋅ ⋅ = 𝑡𝑛 = 0,
𝑡1 = −1,
𝑡2 = 0,
𝑡3 = ±1,
𝑡4 = ⋅ ⋅ ⋅ = 𝑡𝑛 = 0,
𝑡1 = 0,
𝑡2 = −2,
𝑡3 = ⋅ ⋅ ⋅ = 𝑡𝑛 = 0,
𝑡1 = 0,
𝑡2 = −1,
𝑡3 = ±1,
𝑡4 = ⋅ ⋅ ⋅ = 𝑡𝑛 = 0,
𝑡1 = 𝑡2 = 0,
𝑡3 = ⋅ ⋅ ⋅ = 𝑡𝑛 = 0.

(11)

Thus the degree sequence of 𝐺 is possible (12, 2𝑛−2),(1, 2𝑛−2, 3), or (2𝑛−2, 32). It is not difficult to check that only(2𝑛−2, 32) satisfies the well-known hand-shaking theorem. So,
the degree sequence of 𝐺 is (2𝑛−2, 32).
Theorem 8. Restricting consideration on quadrangle-free
graphs, sandglass graphs are determined by their per-spectra.

Proof. Let 𝐺 be a quadrangle-free graph with 𝑛 vertices per-
cospectral with 𝑆(𝐶3, 𝑃ℎ, 𝐶3). By Lemma 7, we know that the
degree sequence of 𝐺 is (2𝑛−2, 32). Then 𝐺 is isomorphic to∞(𝑝, 𝑙, 𝑞)∪ (⋃𝑘𝑖=1 𝐶𝑘𝑖) or 𝜃(𝑟, 𝑠, 𝑡) ∪ (⋃𝑘𝑖=1 𝐶𝑘𝑖), where⋃𝑘𝑖=1 𝐶𝑘𝑖
denotes the union of 𝑘 ≥ 0 disjoint cycles 𝐶𝑘𝑖 of length 𝑘𝑖. By
the above, it implies that |𝑉(𝐺)| ≥ 5. It is not difficult to see
that if 𝑛 = 5, then𝐺 is isomorphic to 𝑆(𝐶3, 𝑃𝑙, 𝐶3). So, assume𝑛 > 5 and consider the following two cases.

Case 1. Assume that𝐺 is isomorphic to∞(𝑝, 𝑙, 𝑞)∪(⋃𝑘𝑖=1 𝐶𝑘𝑖).
We further discuss the following three subcases.

Subcase 1.1. Exact one of the two triangles belongs to the
bicyclic component. Then 𝐺 = ∞(𝑝, 𝑙, 𝑞) ∪ 𝐶3 ∪ ⋃𝑘−1𝑖=1 𝐶𝑘𝑖
for 𝑝 = 3, 𝑞 ≥ 4, and 𝑘 ≥ 1. By Lemma 3, we obtain
that 𝑏5(𝐺) = −4𝑛 + 10 − 2𝑐5(𝐺). By Lemma 5, we have𝑏5(𝑆(𝐶3, 𝑃𝑙, 𝐶3)) − 𝑏5(𝐺) = 2 + 2𝑐5(𝐺) > 0. This contradicts
the assumption that 𝐺 and 𝑆(𝐶3, 𝑃𝑙, 𝐶3) are per-cospectral.
Subcase 1.2. Both of the two triangles belong to the bicyclic
component. Then 𝐺 = ∞(3, 𝑙, 3) ∪ ⋃𝑘𝑖=1 𝐶𝑘𝑖 . If 𝑘 = 0, then 𝐺
is isomorphic to 𝑆(𝐶3, 𝑃𝑙, 𝐶3). Next we suppose that 𝑘 > 0. By
the structure of𝐺 and Lemma 1, we can obtain that 𝑏𝑛(𝐺) > 5
when 𝑛 is even, and 𝑏𝑛(𝐺) < −4 when 𝑛 is odd. By Lemma 6,
this is a contradiction.
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Subcase 1.3. Neither of the two triangles belongs to the
bicyclic component.Then𝐺 = ∞(𝑝, 𝑙, 𝑞)∪𝐶3∪𝐶3∪⋃𝑘−2𝑖=1 𝐶𝑘𝑖
for 𝑝, 𝑞 ≥ 4. By Lemma 3, we have 𝑏5(𝐺) = −4𝑛 + 8 − 2𝑐5(𝐺).
So, 𝑏5(𝑆(𝐶3, 𝑃𝑙, 𝐶3))−𝑏5(𝐺) = 4+2𝑐5(𝐺) > 0.This contradicts
the assumption that 𝐺 and 𝑆(𝐶3, 𝑃𝑙, 𝐶3) are per-cospectral.
Case 2. Assume that 𝐺 is isomorphic to 𝜃(𝑟, 𝑠, 𝑡) ∪ (⋃𝑘𝑖=1 𝐶𝑘𝑖).
We further consider the following three subcases.

Subcase 2.1. Exact one of the two triangles belongs to the
bicyclic component. Then 𝐺 = 𝜃(1, 2, 𝑡) ∪ 𝐶3 ∪ ⋃𝑘−1𝑖=1 𝐶𝑘𝑖 for𝑡 > 2 and 𝑘 ≥ 1. By the structure of 𝐺 and Lemma 1, we can
obtain that if 𝑛 is even, then 𝑏𝑛(𝐺) > 5; and if 𝑛 is odd, then𝑏𝑛(𝐺) < −4. By Lemma 6, this is a contradiction.

Subcase 2.2. Both of the two triangles belong to the bicyclic
component. Then 𝐺 = 𝐵2(1, 2, 2) ∪ (⋃𝑘𝑖=1 𝐶𝑘𝑖), which is a
contradiction to 𝐺 being a quadrual-free graph.

Subcase 2.3. Neither of the two triangles belongs to the
bicyclic component.Then𝐺 = 𝜃(𝑟, 𝑠, 𝑡)∪𝐶3 ∪𝐶3 ∪(⋃𝑘−2𝑖=1 𝐶𝑘𝑖)
for 𝑟 > 1, 𝑠, 𝑡 ≥ 2 or 𝑟 ≥ 1, 𝑠, 𝑡 > 2. By Lemma 3, we
have 𝑏5(𝐺) = −4𝑛 + 8 − 2𝑐5(𝐺). By Lemma 6, we have a
contradiction, and the theorem follows.

Theorem 9. Restricting consideration on connected graphs,
sandglass graphs are determined by their per-spectra.

Proof. Let 𝐺 be a connected graph, where |𝐺| = 𝑛 and 𝑛 ≥ 5,
and let𝐺 be per-cospectral with 𝑆(𝐶3, 𝑃ℎ, 𝐶3). By Lemma 4,𝐺
is a bicyclic graph with two triangles andmust be isomorphic
to a graph containing a sandglass graph 𝑆(𝐶3, 𝑃𝑙, 𝐶3) as its
induced subgraph or 𝐾4 − 𝑒 (isomorphic to 𝜃-graph when𝑟 = 1 and 𝑠 = 𝑡 = 2) as its induced subgraph.

Suppose that𝐺 is isomorphic to a graph which contains a
sandglass graph 𝑆(𝐶3, 𝑃𝑙, 𝐶3) as its induced subgraph.Then𝐺
contains no quadrangles. By Lemma 7,𝐺must be isomorphic
to the sandglass graph 𝑆(𝐶3, 𝑃ℎ, 𝐶3).

In the following, we will prove that 𝐺 is isomorphic to a
graph containing𝐾4 − 𝑒 as its induced subgraph.

Suppose that 𝑛 is even. By Lemma 6, we know that𝑏𝑛(𝑆(𝐶3, 𝑃ℎ, 𝐶3)) = 5. This implies, by Lemma 1, that 𝐺 must
have odd perfect matchings. Examining the structure of 𝐺,
we see that 𝐺 has at most two perfect matchings. So, 𝐺
only has uniquely one perfect matching. This implies that all
triangles or 4-cycle in 𝐺 are not a component of some Sachs
subgraph of order 𝑛. Thus, the perfect matching of 𝐺 is a
unique Sachs subgraph of order 𝑛. By Lemma 1, 𝑏𝑛(𝐺) = 1,
which contradicts the fact that 𝑏𝑛(𝑆(𝐶3, 𝑃ℎ, 𝐶3)) = 5.

Assume that 𝑛 is odd. By Lemma 1 and examining the
structure of 𝐺, we know that the Sachs subgraphs of order𝑛 in 𝐺 is only the union of a triangle and a perfect matching
of 𝐺 deleting all edges on the triangle. Then 𝑏𝑛(𝐺) = 2. This
contradicts 𝑏𝑛(𝑆(𝐶3, 𝑃ℎ, 𝐶3)) = 5.

This completes the proof.

For any bicyclic network, it is difficult to discuss which is
determined by its per-spectrum. We can construct countless
pairs per-cospectral bicyclic networks. Let𝐻 be an arbitrary

· · ·

Ca Ca
Pa−1

u 

Figure 3: The bicyclic network 𝐵.

graph with a fixed vertex 𝑤 and let 𝐺𝑢 ⋅ 𝐻 denote the
coalescence of 𝐺 and𝐻 with respect to 𝑢 and 𝑤, which is the
graph obtained from𝐺∪𝐻 by identifying 𝑢 and𝑤. Similarly,
we define 𝐺V ⋅ 𝐻. Borowiecki [20] showed that if both 𝐺 − 𝑢
and 𝐺 − V are per-cospectral, then both 𝐺𝑢 ⋅ 𝐻 and 𝐺V ⋅ 𝐻
are also per-cospectral. As an example, let 𝐵 = 𝐵 be the
bicyclic network depicted in Figure 3. As 𝐵 − 𝑢 and 𝐵 − V are
isomorphic, they are per-cospectral. By the above-mentioned
result of Borowiecki [20], for any graph 𝐻, both 𝐵𝑢 ⋅ 𝐻 and𝐵V ⋅ 𝐻 are per-cospectral.

3. Summary

Per-spectra is an important part of graph spectra. In this
paper, we discuss properties of permanental spectra of
bicyclic networks. We show that without some limitations
bicyclic networks are not DPS. Particularly, we find a pair
of per-cospectral graphs. Combining the result of Lu et al.
[19], our results (Theorems 8 and 9) are beyond Merris et al.’s
imagination. Finally, we pose the following conjecture.

Conjecture 10. Sandglass graphs with a perfect matching are
DPS.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The authors thank Dr. Shunyi Liu for providing Figure 2.The
authors are supported by NSF of Qinghai (2016-ZJ-947Q)
and High-level personnel of scientific research projects of
QHMU(2016XJG07).

References

[1] C. Gkantsidis, M. Mihail, and E. Zegura, “Spectral analysis of
internet topologies,” in Proceedings of Twenty-Second Annual
Joint Conference of the IEEE Computer and Communications
(INFOCOM ’03), vol. 1, pp. 364–374, San Francisco, Calif, USA,
2003.

[2] D. Cvetkovic’ and T. Davidovic’, “Multiprocessor interconnec-
tion networks,” inApplications of Graph Spectra, Zbornik radova
13(21), D. Cvetkovic’ and I. Gutman, Eds., vol. 13, pp. 33–63,
Mathematical Institute SANU, Belgrade, Serbia, 2009.

[3] D. Cvetkovic’, “Applications of Graph Spectra,” in An introduc-
tion to the literature, Applications of Graph Spectra, Zbornik



Journal of Applied Mathematics 5

radova 13(21), D. Cvetkovic’ and I. Gutman, Eds., pp. 7–31,
Mathematical Institute SANU, Belgrade, Serbia, 2009.

[4] F. Chung and L. Lu, Complex Graphs and Networks, American
Mathematical Society, Providence, Rhode Island, 2006.

[5] U. von Luxburg, “A tutorial on spectral clustering,” Statistics and
Computing, vol. 17, no. 4, pp. 395–416, 2007.

[6] P. V. Mieghem, “Graph spectra for complex networks,” Graph
Spectra for Complex Networks, pp. 1–346, 2010.

[7] L. G. Valiant, “The complexity of computing the permanent,”
Theoretical Computer Science, vol. 8, no. 2, pp. 189–201, 1979.

[8] E. R. van Dam and W. H. Haemers, “Which graphs are deter-
mined by their spectrum?” Linear Algebra and its Applications,
vol. 373, pp. 241–272, 2003.

[9] E. R. van Dam andW. H. Haemers, “Developments on spectral
characterizations of graphs,”Discrete Mathematics, vol. 309, no.
3, pp. 576–586, 2009.

[10] R. Merris, K. R. Rebman, and W. Watkins, “Permanental
polynomials of graphs,” Linear Algebra and its Applications, vol.
38, pp. 273–288, 1981.

[11] F. Harary, C. King, A.Mowshowitz, and R. C. Read, “Cospectral
graphs and digraphs,”The Bulletin of the London Mathematical
Society, vol. 3, pp. 321–328, 1971.

[12] W. Li, S. Liu, T. Wu, and H. Zhang, “On the permanental
polynomials of graphs,” in Graph Polynomials, Y. Shi and et al.,
Eds., CRC Press, 2016.

[13] S. Liu and H. Zhang, “On the characterizing properties of the
permanental polynomials of graphs,” Linear Algebra and its
Applications, vol. 438, no. 1, pp. 157–172, 2013.

[14] T. Wu and H. Zhang, “Per-spectral characterizations of graphs
with extremal per-nullity,” Linear Algebra and its Applications,
vol. 484, Article ID 13254, pp. 13–26, 2015.

[15] T. Wu and H. Zhang, “Per-spectral and adjacency spectral
characterizations of a complete graph removing six edges,”
Discrete Applied Mathematics. The Journal of Combinatorial
Algorithms, Informatics and Computational Sciences, vol. 203,
pp. 158–170, 2016.

[16] T. Wu and H. Zhang, “Per-spectral characterizations of some
bipartite graphs,” Discussiones Mathematicae Graph Theory,
2017.

[17] H. Zhang, T. Wu, and H.-J. Lai, “Per-spectral characterizations
of some edge-deleted subgraphs of a complete graph,” Linear
and Multilinear Algebra, vol. 63, no. 2, pp. 397–410, 2015.

[18] J. Ma, Y. Shi, Z. Wang, and J. Yue, “On Wiener polarity index
of bicyclic networks,” Scientific Reports, vol. 6, Article ID 19066,
2016.

[19] P. Lu, X. Liu, Z. Yuan, and X. Yong, “Spectral characterizations
of sandglass graphs,” Applied Mathematics Letters. An Interna-
tional Journal of Rapid Publication, vol. 22, no. 8, pp. 1225–1230,
2009.

[20] M. Borowiecki, “On spectrum and per-spectrum of graphs,”
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