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In this paper, we study the solvability of a class of nonlinear multiorder Caputo fractional differential equations with integral and
antiperiodic boundary conditions. By using some fixed point theorems including the Banach contraction mapping principle and
Schaefer’s fixed point theorem, we obtain new existence and uniqueness results for our given problem. Also, we give some
examples to illustrate our main results.

1. Introduction

Fractional calculus has a history of several hundred years, and
many valuable results that have contributed to the develop-
ment of mathematical theories and their application to prac-
tice have been created during its historical process (see [1]).
Also, fractional differential equations are one of the powerful
means to model and solve scientific and technological prob-
lems that have been arisen in physics, chemistry, biology,
mechanics, and many other fields, and it has developed more
and more in-depth (see [2]). In particular, boundary value
problems of fractional differential equations are often used as
mathematical models for many phenomena in a variety of
physical, biological, mechanical, and chemical studies such
as analysis of turbulent flow, simulation of chemical reaction,
and image processing technique (see [3–6]).

In recent years, antiperiodic boundary value problems
have been put forward in various practical phenomena and
have attracted the attention of a large number of researchers
because of the specific properties of their solutions (see [7]).
Based on many works about the solvability of antiperiodic
boundary value problems for integer-order differential equa-
tions (see [8–10]), a lot of attempts have been made to extend
the existence results for them to the case of fractional differ-
ential equations (see [11–20]). For instance, Agarwal and

Ahmad [11] established the existence of solutions of the fol-
lowing single-term Caputo fractional differential equations
with antiperiodic boundary conditions by using the nonlin-
ear alternative of Leray-Schauder type and Leray-Schauder
degree theory:

cDqx tð Þ = f t, x tð Þð Þ, t ∈ 0, T½ �, T > 0, 3 < q ≤ 4,

x 0ð Þ = −x Tð Þ, x′ 0ð Þ = −x′ Tð Þ, x″ 0ð Þ = −x″ Tð Þ, x‴ 0ð Þ = −x‴ Tð Þ:

(

ð1Þ

In [17], Choudhary and Daftardar-Gejji considered the
antiperiodic boundary value problem of the nonlinear multi-
order Caputo fractional differential equation

〠
n

i=0
λi

cDαiu tð Þ = f t, u tð Þð Þ, t ∈ 0, T½ �,

u 0ð Þ = −u Tð Þ,

8><
>: ð2Þ

where λi ∈ R, i = 0, 1,⋯, n, λn ≠ 0, 0 ≤ α0 < α1<⋯<αn < 1.
They proved the existence and uniqueness of solutions to
their problem in terms of the two-parametric functions of
Mittag-Leffler type. Their equation in problem (2) is a
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generalization of the classical relaxation equation and gov-
erns some fractional relaxation processes.

Analyzing the higher-order fractional differential
equations like that in problem (1), some new research
papers considered not only antiperiodic boundary condi-
tions but also mixed-type boundary conditions which are
composed of both integral and antiperiodic boundary condi-
tions (see [21–25]). Xu [24] obtained new existence and
uniqueness results for the following single-term fractional dif-
ferential equations with integral and antiperiodic boundary
conditions by means of the Krasnosel’skii fixed point theo-
rem, contraction mapping principle, and Leray-Schauder
degree theory:

cDqx tð Þ = f t, x tð Þð Þ, t ∈ 0, 1½ �, 1 < q < 2,

x 1ð Þ = μ
ð1
0
x sð Þds, x′ 0ð Þ + x′ 1ð Þ = 0:

8><
>: ð3Þ

Taking the previous results together, we can know that
very little has been done on the multiterm fractional differen-
tial equations with integral and antiperiodic boundary condi-
tions. In particular, as far as we know, the research on the
mixed-type boundary value problems of nonlinear multior-
der fractional differential equations like that in problem (2)
which is of great significance in practice has not been carried
out at all.

Motivated by above analysis, in this paper, we investigate
the existence and uniqueness of solutions for the following
mixed-type fractional boundary value problems of combin-
ing the nonlinear multiorder Caputo fractional differential
equations, which are similar to the equation in problem (2)
and have higher fractional orders, with the integral and anti-
periodic boundary conditions in problem (3):

cDα
0+u tð Þ + 〠

n

i=1
λi tð ÞcDαi

0+u tð Þ + 〠
m

i=1
μi tð ÞcDβi

0+u tð Þ

+ σ tð Þu tð Þ = f t, u tð Þð Þ, t ∈ 0, 1½ �,
ð4Þ

u 1ð Þ = μ
ð1
0
u sð Þds,

u′ 0ð Þ + u′ 1ð Þ = 0,
ð5Þ

where 1 < α1<⋯<αn < α ≤ 2, 0 < β1<⋯<βm < 1, 0 < μ < 1,
λi ∈ C½0, 1� ði = 1, 2,⋯,nÞ, μi ∈ C½0, 1� ði = 1, 2,⋯,mÞ, σ ∈ C½0
, 1�, f ∈ Cð½0, 1� × R, RÞ.

2. Derivation of the Integral Equation

The Riemann-Liouville fractional integral and the
Caputo fractional derivative of order α > 0 of a function
f : ð0,∞Þ⟶ R are given by

Iα0+ fð Þ tð Þ≔ 1
Γ αð Þ

ðt
0
t − sð Þα−1 f sð Þds,

cDα
0+ fð Þ tð Þ≔ 1

Γ n − αð Þ
ðt
0
t − sð Þn−α−1 f nð Þ sð Þds,

ð6Þ

where n = ½α� + 1, provided that the right-hand sides are
pointwise defined on ð0,∞Þ (see [1]).

Definition 1. A function u ∈ C½0, 1� with a Caputo fractional
derivative of order α that belongs to C½0, 1� (i.e., cDα

0+u ∈ C½
0, 1�) is said to be a solution of problem (4)–(5) if it satisfies
equation (4) and the boundary conditions (5).

Lemma 2. If a function u is a solution of problem (4)–(5), then
yðtÞ≔ cDα

0+uðtÞ is a solution of the integral equation

y tð Þ = f t,
ð1
0
G t, sð Þy sð Þds

� �
− 〠

n

i=1
λi tð ÞIα−αi0+ y tð Þ − 〠

m

i=1
μi tð ÞIα−βi0+ y tð Þ

+ 1
2
〠
m

i=1

μi tð Þ ⋅ t1−βi

Γ 2 − βið Þ Iα−10+ y tð Þ
�����
t=1

− σ tð Þ
ð1
0
G t, sð Þy sð Þds,

ð7Þ

in C½0, 1�, and conversely, if y ∈ C½0, 1� is a solution of the inte-
gral equation (7), then a function u which is given by

u tð Þ =
ð1
0
G t, sð Þy sð Þds, ð8Þ

is a solution of problem (4)–(5), where

G t, sð Þ =
t − sð Þα−1
Γ αð Þ + μ

4 1 − μð ÞΓ α + 1ð Þ 4 1 − sð Þα − 4α 1 − sð Þα−1 + α α − 1ð Þ 1 − sð Þα−2� �
+ 1
2Γ αð Þ 1 − tð Þ α − 1ð Þ 1 − sð Þα−2 − 2 1 − sð Þα−1� �

, 0 ≤ s ≤ t ≤ 1,

μ

4 1 − μð ÞΓ α + 1ð Þ 4 1 − sð Þα − 4α 1 − sð Þα−1 + α α − 1ð Þ 1 − sð Þα−2� �
+ 1
2Γ αð Þ 1 − tð Þ α − 1ð Þ 1 − sð Þα−2 − 2 1 − sð Þα−1� �

, 0 ≤ t ≤ s ≤ 1:

8>>><
>>>:

ð9Þ
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Proof. Let a function u be a solution of problem (4)–(5).
Applying Iα0+ on both sides of the expression yðtÞ = cDα

0+uðtÞ,
it is obvious that

u tð Þ =
ð1
0
G t, sð Þy sð Þds, ð10Þ

(see [24]).
We can rewrite (10) as

u tð Þ = μ

1 − μ
Iα+10+ y tð Þ

����
t=1

−
μ

1 − μ
Iα0+y tð Þ t=1 +

μ

4 1 − μð Þ I
α−1
0+ y tð Þ

����
����
t=1

+ Iα0+y tð Þ − Iα0+y tð Þ t=1 +
1
2 I

α−1
0+ y tð Þ

����
����
t=1

−
t
2 I

α−1
0+ y tð Þ t=1 = Iα0+y tð Þ + μ

1 − μ
Iα+10+ y tð Þ

����
����
t=1

−
1

1 − μ
Iα0+y tð Þ t=1 +

μ

4 1 − μð Þ +
1 − t
2

� �
Iα−10+ y tð Þ

����
����
t=1

:

ð11Þ

From (11), we have some equalities as follows:

cDαi
0+u tð Þ = Iα−αi0+ y tð Þ, i = 1,⋯, n,

cDβi
0+u tð Þ = Iα−βi

0+ y tð Þ − 1
2Γ 2 − βið Þ ⋅ t

1−βi Iα−10+ y tð Þjt=1, i = 1,⋯,m:

ð12Þ

Substituting the above cDαi
0+uðtÞ and cDβi

0+uðtÞ into (4), it
can be easily seen that

y tð Þ + 〠
n

i=1
λi tð ÞIα−αi0+ y tð Þ

+ 〠
m

i=1
μi tð Þ Iα−βi

0+ y tð Þ − 1
2Γ 2 − βið Þ ⋅ t

1−βi Iα−10+ y tð Þ
����
t=1

� �

+ σ tð Þ
ð1
0
G t, sð Þy sð Þds = f t,

ð1
0
G t, sð Þy sð Þds

� �
:

ð13Þ

This yields the integral equation (7).
Conversely, let a function y ∈ C½0, 1� be a solution of the

integral equation (7). Substituting the expression

u tð Þ =
ð1
0
G t, sð Þy sð Þds, ð14Þ

into (7), we can get that

y tð Þ + 〠
n

i=1
λi tð ÞIα−αi0+ y tð Þ

+ 〠
m

i=1
μi tð ÞIα−βi

0+ y tð Þ − 1
2〠

m

i=1

μi tð Þ ⋅ t1−βi

Γ 2 − βið Þ Iα−10+ y tð Þ
�����
t=1

+ σ tð Þu tð Þ = f t, u tð Þð Þ:
ð15Þ

On the other hand, using the expression of Green’s func-
tion Gðt, sÞ, we can see that

u tð Þ = Iα0+y tð Þ + μ

1 − μ
Iα+10+ y tð Þ

����
t=1

−
1

1 − μ
Iα0+y tð Þ t=1 +

μ

4 1 − μð Þ +
1 − t
2

� �
Iα−10+ y tð Þ

����
����
t=1

:

ð16Þ

So, we know that cDα
0+uðtÞ, cDαi

0+uðtÞ, and cDβi
0+uðtÞ exist

for any t ∈ ½0, 1� and cDα
0+u ∈ C½0, 1�.

Considering the relations

cDαi
0+u tð Þ = Iα−αi0+ y tð Þ, i = 1,⋯, n,

cDβi
0+u tð Þ = Iα−βi

0+ y tð Þ − 1
2Γ 2 − βið Þ ⋅ t1−βi Iα−10+ y tð Þjt=1, i = 1,⋯,m,

ð17Þ

we can rewrite (15) as

cDα
0+u tð Þ + 〠

n

i=1
λi tð ÞcDαi

0+u tð Þ + 〠
m

i=1
μi tð ÞcDβi

0+u tð Þ

+ σ tð Þu tð Þ = f t, u tð Þð Þ:
ð18Þ

That is, u satisfies equation (4).
Now, we prove that u satisfies the boundary conditions

(5). By simple calculation, we have

u 1ð Þ = μ

1 − μ
Iα+10+ y tð Þ t=1 −

μ

1 − μ
Iα0+y tð Þ

����
����
t=1

+ μ

4 1 − μð Þ I
α−1
0+ y tð Þ t=1 + Iα0+y tð Þj jt=1

− Iα0+y tð Þ t=1 +
1
2 I

α−1
0+ y tð Þ

����
����
t=1

−
1
2 I

α−1
0+ y tð Þ t=1 =

μ

1 − μ
Iα+10+ y tð Þ

����
����
t=1

−
μ

1 − μ
Iα0+y tð Þ t=1 +

μ

4 1 − μð Þ I
α−1
0+ y tð Þ

����
����
t=1

,

ð1
0
u sð Þds = μ

1 − μ
Iα+10+ y tð Þ t=1 −

μ

1 − μ
Iα0+y tð Þ

����
����
t=1

+ μ

4 1 − μð Þ I
α−1
0+ y tð Þ t=1 + Iα+10+ y tð Þ�� ��

t=1

− Iα0+y tð Þ t=1 +
1
2 I

α−1
0+ y tð Þ

����
����
t=1

−
1
4 I

α−1
0+ y tð Þ t=1 =

1
1 − μ

Iα+10+ y tð Þ
����

����
t=1

−
1

1 − μ
Iα0+y tð Þ t=1 +

1
4 1 − μð Þ I

α−1
0+ y tð Þ

����
����
t=1

:

ð19Þ
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This means that uð1Þ = μ
Ð 1
0uðsÞds. Also, since

u′ 0ð Þ = Iα−10+ y tð Þ��t=0 − 1
2 I

α−1
0+ y tð Þ t=1 = −

1
2 I

α−1
0+ y tð Þ

����
����
t=1

,

u′ 1ð Þ = Iα−10+ y tð Þ��t=1 − 1
2 I

α−1
0+ y tð Þ t=1 =

1
2 I

α−1
0+ y tð Þ

����
����
t=1

,

ð20Þ

we can see that u′ð0Þ + u′ð1Þ = 0. Therefore, it is proved that u
satisfies the boundary conditions (5). The proof is completed.

Remark 3. By Lemma 2, the existence of solutions for prob-
lem (4)–(5) refers to the solvability of the integral equation
(7) in C½0, 1�.

Remark 4. As we can see from the expression

ð1
0
G t, sð Þy sð Þds = Iα0+y tð Þ + μ

1 − μ
Iα+10+ y tð Þ

����
t=1

−
1

1 − μ
Iα0+y tð Þ t=1 +

μ

4 1 − μð Þ + 1 − t
2

� �
Iα−10+ y tð Þ

����
����
t=1

,

ð21Þ

the function
Ð 1
0Gðt, sÞyðsÞds is continuous in ½0, 1� for any y ∈

C½0, 1�. Also, for any y ∈ C½0, 1�, the following inequality holds:
ð1
0
G ⋅ ,sð Þy sð Þds

����
���� = max

t∈ 0,1½ �
Iα0+y tð Þ + μ

1 − μ
Iα+10+ y tð Þ

����
t=1

����
−

1
1 − μ

Iα0+y tð Þ t=1 +
μ

4 1 − μð Þ +
1 − t
2

� �
Iα−10+ y tð Þ

����
����
t=1

j

≤
1

Γ α + 1ð Þ + μ

1 − μ
⋅

1
Γ α + 2ð Þ + 1

1 − μ
⋅

1
Γ α + 1ð Þ

�

+ μ

4 1 − μð Þ + 1
2

� �
⋅

1
Γ αð Þ

�
yk k =wα,μ yk k,

ð22Þ

where wα,μ is denoted as

wα,μ ≔
1

1 − μð ÞΓ α + 1ð Þ
2 − μð Þ α + 4ð Þ

4 + μ

α + 1

� �
: ð23Þ

3. Main Results

Define the operators P and Q on C½0, 1� as follows:

Pyð Þ tð Þ≔ f t,
ð1
0
G t, sð Þy sð Þds

� �
,

Qyð Þ tð Þ≔ −〠
n

i=1
λi tð ÞIα−αi0+ y tð Þ − 〠

m

i=1
μi tð ÞIα−βi

0+ y tð Þ

+ 1
2〠

m

i=1

μi tð Þ ⋅ t1−βi

Γ 2 − βið Þ Iα−10+ y tð Þ
�����
t=1

− σ tð Þ
ð1
0
G t, sð Þy sð Þds:

ð24Þ

Then, the integral equation (7) can be regarded as the
operator equation

y tð Þ = Pyð Þ tð Þ + Qyð Þ tð Þ: ð25Þ

Lemma 5. The following hold:

(i) For any α ∈ R+, the fractional integral operator Iα0+
: C½0, 1�⟶ C½0, 1� is compact.

(ii) For any d ∈ C½0, 1�, the operator A : C½0, 1�⟶ C½0,
1� which is defined by

Axð Þ tð Þ≔ d tð Þ ⋅ x tð Þ, ð26Þ

is a bounded linear operator.

Proof.

(i) It is sufficient to prove that for any bounded set
Ω≔ fu ∈ C½0, 1�jkuk ≤ rg, Iα0+Ω is relatively com-
pact. Obviously, we can see

∀u ∈Ω,

Iα0+u tð Þj j ≤ 1
Γ α + 1ð Þ uk k: ð27Þ

So, we can know that Iα0+Ω is uniformly bounded. Also,
we have that for any t1, t2 ∈ ½0, 1� ðt1 < t2Þ,

Iα0+u t1ð Þ − Iα0+u t2ð Þj j = 1
Γ αð Þ

ðt1
0
t1 − sð Þα−1u sð Þds

����
−

1
Γ αð Þ

ðt2
0
t2 − sð Þα−1u sð Þds

����
≤

1
Γ αð Þ

ðt1
0
t1 − sð Þα−1u sð Þds −

ðt1
0
t2 − sð Þα−1u sð Þds

����
����

�

+
ðt2
t1

t2 − sð Þα−1u sð Þds
�����

�����
�

≤
1

Γ αð Þ
ðt1
0

t2 − sð Þα−1 − t1 − sð Þα−1� 	
⋅ u sð Þj jds

�

+
ðt2
t1

t2 − sð Þα−1 ⋅ u sð Þj jds
�
≤

uk k
Γ α + 1ð Þ 2 t2 − t1ð Þα + t1

α − t2
αj j:

ð28Þ

This yields that Iα0+Ω is equicontinuous. Therefore, using
the Ascoli-Arzelà theorem, it can be easily seen that Iα0+Ω is
relatively compact.

(ii) It is obvious that for any d ∈ C½0, 1�,

∀x ∈ C 0, 1½ �,
Axð Þ tð Þj j ≤ max

t∈ 0,1½ �
d tð Þj j ⋅ xk k: ð29Þ

This completes the proof of (ii).
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In this article, the following hypothesis will be used:

H1. There exist L, l ∈ ½0,+∞Þ and σ1, σ2 ∈ ð0, 1� such that for
any t1, t2 ∈ ½0, 1� and for any x1, x2 ∈ R,

f t1, x1ð Þ − f t2, x2ð Þj j ≤ l t1 − t2j jσ1 + L x1 − x2j jσ2 : ð30Þ

Lemma 6. Assume that hypothesis H1 holds. Then, the opera-
tor P : C½0, 1�⟶ C½0, 1� is compact.

Proof. As in the proof of Lemma 5, put Ω≔ fu ∈ C½0, 1�jku
k ≤ rg. Then, we have that for any u ∈Ω,

Puð Þ tð Þj j = f t,
ð1
0
G t, sð Þu sð Þds

� �����
���� ≤ f t,

ð1
0
G t, sð Þu sð Þds

� �����
− f t, 0ð Þj + f t, 0ð Þj j ≤ L

ð1
0
G t, sð Þu sð Þds

����
����
σ2

+ f t, 0ð Þj j ≤ Lrσ2 ⋅
ð1
0
G ⋅ ,sð Þds

����
����
σ2

+ f ⋅ ,0ð Þk k:

ð31Þ

This implies that PΩ is uniformly bounded.
On the other hand, we can get that for any t1, t2 ∈ ½0, 1�

ðt1 < t2Þ,

Puð Þ t1ð Þ − Puð Þ t2ð Þj j = f t1,
ð1
0
G t1, sð Þu sð Þds

� �����
− f t2,

ð1
0
G t2, sð Þu sð Þds

� �
j ≤ l t1 − t2j jσ1

+ L
ð1
0
G t1, sð Þu sð Þds −

ð1
0
G t2, sð Þu sð Þds

����
����
σ2

:

ð32Þ

Since

ð1
0
G t1, sð Þu sð Þds −

ð1
0
G t2, sð Þu sð Þds

����
���� = Iα0+u tð Þ t=t1

����
−
t1
2 Iα−10+ u tð Þ

����
t=1

− Iα0+u tð Þ t=t2 +
t2
2 Iα−10+ u tð Þ

����
����
t=1

j

≤ Iα0+u tð Þ t=t1 − Iα0+u tð Þ�� ��
t=t2

��� ���
+ Iα−10+ u tð Þ��t=1�� �� ⋅ t1 − t2j j

2 ≤
uk k

Γ α + 1ð Þ ⋅ 2 t2 − t1ð Þαj

+ t1
α − t2

αj + uk k
2Γ αð Þ ⋅ t1 − t2j j,

ð33Þ

the following inequality holds:

Puð Þ t1ð Þ − Puð Þ t2ð Þj j ≤ l t1 − t2j jσ1

+ Lrσ2

Γ αð Þσ2 ⋅
2 t2 − t1ð Þα + t1

α − t2
αj j

α
+ t1 − t2j j

2

� �σ2

:

ð34Þ

This yields that PΩ is equicontinuous. The conclusion
then follows from the Ascoli-Arzelà theorem.

Lemma 7. The operator Q : C½0, 1�⟶ C½0, 1� is compact.

Proof. From Lemma 5 and the fact that the composition of
the bounded linear operator and compact operator is also
compact, every term of the operator Q is compact. Since
the sum of two compact operators is also compact, the proof
is completed.

Lemma 8 (see [26]). Let X be a Banach space. Assume that Ω
is an open bounded subset of X with θ ∈Ω, and let
T : �Ω⟶ X be a compact operator such that

Tuk k ≤ uk k, ∀u ∈ ∂Ω: ð35Þ

Then, T has a fixed point in �Ω.

Denote ω∗ as follows:

ω∗ ≔ 〠
n

i=1

λik k
Γ α − αi + 1ð Þ + 〠

m

i=1

μik k
Γ α − βi + 1ð Þ

+ 1
2〠

m

i=1

μik k
Γ 2 − βið ÞΓ αð Þ + σk k ⋅wα,μ:

ð36Þ

Here, we list more hypotheses to be used throughout this
paper.

H2. ω∗ < 1.

Theorem 9. Assume that hypotheses H1 and H2 hold. If the
nonlinear function f satisfies that

lim
x→0

max
t∈ 0,1½ �

f t, xð Þ
x

= 0, ð37Þ

then problem (4)–(5) has at least one solution.

Proof. Since lim
kuk→0

kÐ 10Gðt, sÞuðsÞdsk = 0 and lim
x→0

max
t∈½0,1�

f ðt, xÞ/
x = 0, we obtain

∀d1 > 0,
∃r1 > 0,

∀u ∈ C 0, 1½ �  uk k ≤ r1ð Þ,

f ⋅ ,
ð1
0
G ⋅ ,sð Þu sð Þds

� �����
���� ≤ d1 ⋅ uk k:

ð38Þ
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Put d ≔ 1 − ω∗. Then, it holds that

∃r > 0,
∀u ∈ C 0, 1½ �  uk k ≤ rð Þ,

f ⋅ ,
ð1
0
G ⋅ ,sð Þu sð Þds

� �����
���� ≤ d ⋅ uk k:

ð39Þ

Now, consider the ball Br ≔ fu ∈ C½0, 1� ∣ kuk ≤ rg, and
for any u0 ∈ ∂Br , estimate the norm kðP +QÞu0k. Since ku0
k = r, we can see that

Pu0 +Qu0k k ≤ f ⋅ ,
ð1
0
G ⋅ ,sð Þu0 sð Þds

� �����
���� + 〠

n

i=1

λik k ⋅ u0k k
Γ α − αi + 1ð Þ

+ 〠
m

i=1

μik k ⋅ u0k k
Γ α − βi + 1ð Þ + 1

2〠
m

i=1

μik k ⋅ u0k k
Γ 2 − βið ÞΓ αð Þ

+ σk k ⋅
ð1
0
G ⋅ ,sð Þu0 sð Þds

����
���� ≤ f ⋅ ,

ð1
0
G ⋅ ,sð Þu0 sð Þds

� �����
����

+ 〠
n

i=1

λik k ⋅ u0k k
Γ α − αi + 1ð Þ + 〠

m

i=1

μi ∣k k ⋅ u0k k
Γ α − βi + 1ð Þ + 1

2〠
m

i=1

μi ∣k k ⋅ u0k k
Γ 2 − βið ÞΓ αð Þ

+ σk k ⋅wα,μ u0k k ≤ d + ω∗ð Þ ⋅ r = r = u0k k:
ð40Þ

Therefore, the operator P +Q has a fixed point in terms
of Lemma 8. This yields the conclusion.

Example 1. Consider the following fractional boundary value
problem:

cD1:8
0+ u tð Þ + 0:3t ⋅ cD1:2

0+ u tð Þ + 0:01t2 ⋅ cD0:6
0+ u tð Þ + 0:2 ⋅ u tð Þ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + u2 tð Þ

p
− 1,

u 1ð Þ = 0:1
ð1
0
u sð Þds, u′ 0ð Þ + u′ 1ð Þ = 0:

8><
>:

ð41Þ

Check that the conditions of Theorem 9 are satisfied. Put-
ting f ðt, xÞ = ffiffiffiffiffiffiffiffiffiffiffiffi

1 + x2
p

− 1, it can be easily seen that

f t1, x1ð Þ − f t2, x2ð Þj j =
ffiffiffiffiffiffiffiffiffiffiffiffi
1 + x21

q
−

ffiffiffiffiffiffiffiffiffiffiffiffi
1 + x22

q����
���� ≤ x1 − x2j j,

lim
x→0

max
t∈ 0, 1½ �

f t, xð Þ
x

= lim
x→0

ffiffiffiffiffiffiffiffiffiffiffiffi
1 + x2

p
− 1

x
= 0:

ð42Þ

By simple calculation, we also get ω∗ ≈ 0:72 < 1. So, prob-
lem (41) has at least one solution.

Lemma 10 (Schaefer’s fixed point theorem) (see [27]). Let X
be a Banach space and A : X ⟶ X a compact operator. Then,
either

(i) the equation x = λAx has a solution for λ = 1 or

(ii) the set of all such solutions x, for 0 < λ < 1, is
unbounded.

Theorem 11. Assume that hypotheses H1 and H2 hold. And
suppose that

(i) ∃a > 0, ∃ψ ∈ Cð½0, 1� × R, RÞ, and

lim
x→+∞

max
t∈ 0,1½ �

ψ t, xð Þ
x

= 0∧∀t ∈ 0, 1½ �, ∀x ∈ R, f t, xð Þj j ≤ a + ψ t, xð Þj j:

ð43Þ

(ii) ∀t ∈ ½0, 1�, x1 ≤ x2 ⟹ j f ðt, x1Þj ≤ j f ðt, x2Þj
Then, problem (4)–(5) has at least one solution.

Proof. From Lemmas 6 and 7 and hypothesis H1, the opera-
tor P +Q is compact. Using condition (i), we can get

∀d1 > 0,
∃r1 > 0,
∀x ≥ r1,

f t, xð Þj j ≤ a + d1 ⋅ x:

ð44Þ

Put d ≔ ð1 − ω∗Þ/2wα,μ. Then, it follows that

∃r > 0,
∀x ≥ r,

f ⋅ ,xð Þk k ≤ a + d ⋅ x:

ð45Þ

Now consider the set S≔ fu ∈ C½0, 1� ∣ u = λPu + λQu,
0 < λ < 1g. From Remark 4, it is obvious that for any u ∈ S,

ð1
0
G ⋅ ,sð Þu sð Þds ∈ C 0, 1½ �: ð46Þ

There are two cases kÐ 10Gð⋅ ,sÞuðsÞdsk ≤ r and kÐ 10Gð⋅ ,sÞu
ðsÞdsk > r.

If kÐ 10Gð⋅ ,sÞuðsÞdsk ≤ r, then because of condition (ii), we
have

f t,
ð1
0
G t, sð Þu sð Þds

� �����
���� ≤ f t,

ð1
0
G ⋅ ,sð Þu sð Þds

����
����

� �����
����

≤ f t, rð Þj j ≤ a + d ⋅ r:
ð47Þ

Thus, it follows that

Pu +Quk k ≤ a + d ⋅ r + 〠
n

i=1

λik k
Γ α − αi + 1ð Þ + 〠

m

i=1

μik k
Γ α − βi + 1ð Þ

 

+ 1
2〠

m

i=1

μik k
Γ 2 − βið ÞΓ αð Þ + σk k ⋅wα,μ

�
⋅ uk k = a + d ⋅ r + ω∗ uk k:

ð48Þ
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This yields that

uk k ≤ λ a + drð Þ
1 − λω∗

≤
a + dr
1 − ω∗

: ð49Þ

If kÐ 10Gð⋅ ,sÞuðsÞdsk > r, then as in the first case, using
condition (ii) and Remark 4, we can see that

f t,
ð1
0
G t, sð Þu sð Þds

� �����
���� ≤ f t,

ð1
0
G ⋅ ,sð Þu sð Þds

����
����

� �����
����

≤ a + d ⋅
ð1
0
G ⋅ ,sð Þu sð Þds

����
���� ≤ a + d ⋅wα,μ uk k:

ð50Þ

And we obtain

Pu +Quk k ≤ a + d ⋅wα,μ uk k

+ 〠
n

i=1

λik k
Γ α − αi + 1ð Þ + 〠

m

i=1

μik k
Γ α − βi + 1ð Þ

 

+ 1
2〠

m

i=1

μik k
Γ 2 − βið ÞΓ αð Þ + σk k ⋅wα,μÞ ⋅ uk k

= a + d ⋅wα,μ + ω∗
� 	

uk k:
ð51Þ

Therefore, it holds that

uk k ≤ λa

1 − λ d ⋅wα,μ + ω∗
� 	

≤
a

1 − d ⋅wα,μ − ω∗
= 2a
1 − ω∗

:

ð52Þ

These inequalities (49) and (52) imply the boundedness
of the set S. By using Lemma 10., the operator P +Q has a
fixed point. This completes the proof.

Example 2. Consider the boundary value problem

Problem (53) is equal to the following problem:

For problem (54), check that the conditions of Theorem 11
are satisfied. Putting f ðt, xÞ = sin t −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 + x2

p
+ 1 + x, we can

see that

f t1, x1ð Þ − f t2, x2ð Þj j ≤ t1 − t2j j + 2 x1 − x2j j,
a≔ 1,

ψ t, xð Þ≔ 1 + x −
ffiffiffiffiffiffiffiffiffiffiffiffi
1 + x2

p
,

lim
x→+∞

max
t∈ 0, 1½ �

ψ t, xð Þ
x

= 0,

∂f
∂x

t, xð Þ = 1 − xffiffiffiffiffiffiffiffiffiffiffiffi
1 + x2

p > 0:

ð55Þ

Also, since ω∗ ≈ 0:72 < 1, all the conditions of Theorem 11
are satisfied. So, problem (53) has at least one solution.

Theorem 12. Suppose that the following hold:

(i) There exists L ≥ 0 such that for any t ∈ ½0, 1� and for
any x1, x2 ∈ R,

f t, x1ð Þ − f t, x2ð Þj j ≤ L x1 − x2j j: ð56Þ

(ii) q≔ ðL + kσkÞ ⋅wα,μ +∑n
i=1kλik/Γðα − αi + 1Þ +∑m

i=1ð
ð1/Γðα − βi + 1ÞÞ + ð1/2Γð2 − βiÞΓðαÞÞÞkμik < 1

Then, problem (4)–(5) has a unique solution.

Proof. Define the operator T : C½0, 1�⟶ C½0, 1� as

Ty tð Þ≔ Pyð Þ tð Þ + Qyð Þ tð Þ: ð57Þ

cD1:8
0+ u tð Þ + 0:3t ⋅ cD1:2

0+ u tð Þ + 0:01t2 ⋅ cD0:6
0+ u tð Þ − 0:8u tð Þ = sin t −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + u2 tð Þ

p
+ 1,

u 1ð Þ = 0:1
ð1
0
u sð Þds, u′ 0ð Þ + u′ 1ð Þ = 0:

8><
>: ð53Þ

cD1:8
0+ u tð Þ + 0:3t ⋅ cD1:2

0+ u tð Þ + 0:01t2 ⋅ cD0:6
0+ u tð Þ + 0:2u tð Þ = sin t −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + u2 tð Þ

p
+ 1 + u tð Þ,

u 1ð Þ = 0:1
ð1
0
u sð Þds, u′ 0ð Þ + u′ 1ð Þ = 0:

8><
>: ð54Þ
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Obviously, we can obtain that for any y1, y2 ∈ C½0, 1� and
for any t ∈ ½0, 1�,

Ty1ð Þ tð Þ − Ty2ð Þ tð Þj j

≤ f t,
ð1
0
G t, sð Þy1 sð Þds

� �
− f t,

ð1
0
G t, sð Þy2 sð Þds

� �����
����

+ 〠
n

i=1
λi tð Þ Iα−αi0+

�� ��y1 tð Þ − y2 tð Þ�� ��
+ 〠

m

i=1
μi tð Þ Iα−βi

0+

��� ���y1 tð Þ − y2 tð Þ
��� ���

+ 1
2〠

m

i=1

μi tð Þj j
Γ 2 − βið Þ I

α−1
0+ y1 tð Þ − y2 tð Þj jjt=1

+ σ tð Þj j ⋅
ð1
0
G t, sð Þ ⋅ y1 sð Þ − y2 sð Þð Þds

����
����

≤ L + σk kð Þ ⋅wα,μ + 〠
n

i=1

λik k
Γ α − αi + 1ð Þ

 

+ 〠
m

i=1

1
Γ α − βi + 1ð Þ + 1

2Γ 2 − βið ÞΓ αð Þ
� �

μik k
�

⋅ y1 − y2k k = q y1 − y2k k:
ð58Þ

This means that T : C½0, 1�⟶ C½0, 1� is a contraction
operator. Therefore, the operator T has a unique fixed point
in terms of the Banach contraction mapping principle, and
problem (4)-(5) has a unique solution.

Example 3. Consider the following boundary value problem:

cD1:8
0+ u tð Þ + 0:3t ⋅ cD1:2

0+ u tð Þ + 0:01t2 ⋅ cD0:6
0+ u tð Þ + 0:2u tð Þ = sin t + 0:03

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + u2 tð Þ

p
− 1,

u 1ð Þ = 0:1
ð1
0
u sð Þds, u′ 0ð Þ + u′ 1ð Þ = 0:

8><
>:

ð59Þ

Putting f ðt, xÞ = sin t + 0:03
ffiffiffiffiffiffiffiffiffiffiffiffi
1 + x2

p
− 1, we can see easily

that

f t, x1ð Þ − f t, x2ð Þj j ≤ 0:03 x1 − x2j j: ð60Þ

This shows that condition (i) of Theorem 12 is satisfied.
On the other hand, we can get

q ≈ 0:78 < 1: ð61Þ

Thus, problem (59) has a unique solution.

4. Conclusion

In this paper, we consider the solvability of nonlinear multi-
order fractional differential equations with integral and anti-
periodic boundary conditions. At first, we derive an integral
equation, transforming our fractional boundary value prob-
lems. Then, using some fixed point theorems such as the
Banach contraction mapping principle and Schaefer’s fixed

point theorem, we prove the existence and uniqueness of
solutions. Since the problem considered in [24] is a special
case of our problem, the results of this work can be regarded
as generalizations of those results.
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