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A mathematical model is proposed to study the dynamics of the transmission of rabies, incorporating predation of dogs
by humans. (e model is shown to have a unique disease-free equilibrium which is globally asymptotically stable
whenever R0 ≤ 1. Local sensitivity analysis suggests that the disease can be controlled through reducing contact with
infected dogs, increasing immunization of dogs, screening recruited dogs, culling of infected dogs, and use of dog meat as
a delicacy.

1. Introduction

Rabies is a zoonotic viral disease that is usually trans-
mitted by an infected animal (such as foxes, raccoons,
cats, coyotes, bats, skunks, and dogs) through bites or
scratch that introduces the virus into the blood of another
animal or a human [1, 2]. Once the virus enters the body,
it either migrates directly to the brain via the peripheral
nervous system to replicate there or stays in the muscles
to replicate before migrating to the brain via the neu-
romuscular junctions. (e infection becomes fatal upon
reaching the brain since it produces acute inflammations
of the brain, leading to coma and eventually death. (e
infection usually goes through five distinct phases of
incubation (3 to 12 weeks), prodome (2 to 10 days, with
worsening symptoms over time), acute neurologic pe-
riod, coma, and death. Early symptoms of rabies infection
are general body weakness, fever, and headache, which
are also peculiar with common flu and other viral diseases

[3]. Rabies is preventable and treatment is possible at
early stages of infection. Antirabies vaccination of all pets
and domestic animals and humans, screening of im-
ported animals, and awareness creation are some pre-
exposure prophylaxis strategies that governments can
embark on to prevent rabies. Individuals can also prevent
the disease by vaccinating their pets and keeping away
from possible infection sources. Postexposure prophy-
laxis strategies including washing the bitten area with
soapy water for some time and administering a series of
shots of rabies immune globulin at the early stages are
often effective.

All mammals are possible reservoirs of the rabies
virus, but small rodents such as rats and rabbits are less
likely to cause transfers. A survey conducted in Ghana by
Addy [4] revealed that, of 1,514 exposed domestic ani-
mals examined, dogs, cats, and cattle are responsible for
98.7%, 0.07%, and 0.70% infections, respectively. Rural
areas of Southeast Asia and Africa bear the brunt of rabies
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with tens of thousands contracting the disease annually.
Most of these infections are caused by dog bites due to the
fact that dogs are closest in contact with humans since
they are used as pets, as guards, for hunting purposes, and
even as delicacies.

(e impact of mathematics continues to increase over
the years as more evidence is found to support the fact that
mathematical modeling helps to increase our understanding
of the dynamics of infectious diseases. (is has led to in-
creased use of mathematics tomodel many infectious disease
(see [5–18], and references therein).

Zoonotic diseases have received their fair share of
attention by mathematicians. Specifically, Wang and Lou
[19] developed an ODE model to study the impact of
combinations of culling and vaccination on the control of
rabies transmission and observed that vaccination alone
was a better strategy whilst culling was worst in the
control of rabies transmission. (e work of Wang and Lou
[19] is however contradicted by that of Carroll et al. [20]
that suggested that culling is more effective than vacci-
nation, arguing that adding immunocontraceptives on
animal populations could help improve the effectiveness
of vaccination. To analyze the strategies for optimal
distribution of vaccine baits in order to minimize the
spread of the disease and the cost of carrying out the
control, Ding et al. [21] formulated a model to describe
rabies in raccoons with discrete time and spatial features.
Hou et al. [12] suggested that the control of rabies needs to
include awareness creation about rabies, increased do-
mestic dog vaccination, and reduction in the number of
stray dogs. Asamoah et al. [5] also suggested that vacci-
nation of pets and use of preexposure and postexposure
prophylaxis could help in the control of rabies spread. In
China and some parts of Africa (for example, the Upper
East and West regions of Ghana), dog meat is a delicacy. It
is noteworthy that while so much research has been
carried out on the transmission and control of rabies, the
impact of predation of dogs by humans has not been
studied in the transmission of rabies. (is current work
seeks to incorporate consumption of dog meat by humans
into a dog-human rabies model.

(e rest of the paper is organized as follows. In Section 2,
the mathematical model under consideration is derived,
while Section 3 discusses some basic qualitative properties of
themodel. In Section 4, numerical simulation of themodel is
carried out to study the impact of various factors on the

transmission of rabies. (e findings and conclusions are
presented in Section 5.

2. Model Formulation

We consider the transmission of rabies from a dog
population to a dog-predator human population. Each of
the dog and human populations is divided into three
compartments of Susceptibles (S), Exposed (E), and In-
fected (I). We use subscripts d and h to denote dogs and
humans, respectively, so that Susceptible, Exposed, and
Infected dogs are represented by Sd, Ed, and Id, respec-
tively, while Susceptible, Exposed, and Infected humans
are represented by Sh, Eh, and Ih, respectively. (e total
dog and human populations are therefore
given by Wd(t) � Sd(t) + Ed(t) + Id(t) and
Wh(t) � Sh(t) + Sh(t) + Ih(t). Human-to-human trans-
mission of the rabies virus is assumed to be nonexistent or
insignificant so that only direct dog-to-dog and dog-to-
human transmission is considered. We assume that all
recruitments of dogs and humans are made into the
susceptible classes Sd(t) and Sh(t), at constant rates Pd and
Ph, respectively. Dogs and humans contract the disease
through effective contact with infected dogs, with
transmission probabilities βd and βh, respectively. Rabies
transmission is assumed to be reduced through vacci-
nation of susceptible dogs and humans at rates δd and δh,
respectively. Upon effective contact with infected dogs,
dogs and humans are moved to the exposed classes before
being moved (if postexposure prophylaxis is ineffective)
to the infected classes at rates βD D and βH for dogs and
humans, respectively. A successful treatment at rate, θ, of
exposed and infected humans is assumed while successful
culling at rate Cd is applied to exposed and infected dogs.
Dogs and humans are assumed to suffer rabies-induced
death at rates σd and σh, respectively. Parameters μd and μh

are taken to be the natural death rates in dogs and
humans, respectively. We assume that dogs suffer pre-
dation from humans at rate c1. Since dogs in the infected
class are assumed to be culled, we exclude the infected dog
population from the predation.

With these assumptions, the mathematical model de-
scribing the dynamics of dog-human rabies transmission is
represented by the set of differential equations in equation
(1). Table 1 shows the descriptions of the parameters used in
the model.
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dSd

dt
� Pd − βdSd Ed + Id(  1 − δd(  − μd + c1 Sh + Eh( ( Sd,

dEd

dt
� βdSd Ed + Id(  1 − δd(  − μd + c1 Sh + Eh(  + Cd + βD D( Ed,

dId

dt
� βD DEd − μd + c1 Sh + Eh(  + σd + Cd( Id,

dSh

dt
� Ph + c Sh + Eh(  Sd + Ed + Id(  + θ Ih + Eh(  − βh Id + Ed(  1 − δh(  + μh Sh,

dEh

dt
� βhSh Id + Ed(  1 − δh(  − θ + μh + βH( Eh,

dIh

dt
� βHEh − μh + σh + θ( Ih,

with initial conditions Sd(0)≥ 0, Ed(0)≥ 0, Id(0)≥ 0,

Sh(0)≥ 0, Eh(0)≥ 0, Ih(0)≥ 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1)

For convenience, we make the following substitutions

ψ1 � βd 1 − δd( ,

ψ2 � βh 1 − δh( ,

ψ3 � μd + Cd + βD D

ψ4 � μd + σd + CCd,

ψ5 � θ + μh + βH,

ψ6 � μh + σh + θ.

(2)

In the next section, we discuss some basic properties of
the model.

3. Basic Properties of the Model

3.1. Positivity of Solutions. Model (1) is an epidemiological
model, and hence, it is necessary that the associated pop-
ulation sizes be positive. Model (1) should be considered in a
feasible region where such property (nonnegative) is pre-
served. (is is provided in (eorem 1.

Theorem 1. If positive conditions initial conditions are
provided for (1), then all its solutions remain positive for t> 0.

Table 1: Description of parameters of the model.

Parameter Description
Pd Recruitment into the susceptible dog population (birth and immigration)
Ph Recruitment into the susceptible human population (birth and immigration)
c1 Rate of human predation of dogs
c≪ c1 Rate at which consumed dogs are converted into susceptible humans
βd Rate of disease transmission within the dog population
βDD < σd Rate at which exposed dogs develop clinical rabies
βh Rate of dog-to-human disease transmission
βH < σh Rate at which exposed humans develop clinical rabies
μd < βDD Natural death rate of dogs
μh Natural death rate of humans
Cd Death rate of dogs due to culling
σd Disease induce death rate within the dog population
σh Disease-induced death rate within the human population
δd Rate of immunization of dogs
δh Rate of immunization of humans
θ Rate of treatment of infected human population
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Proof. From the first equation, if at some point t> 0, we have
Sd(t) � 0 and then, we have (dSd/dt) � Pd > 0. (is shows
that Sd(t)> 0.

Similar arguments can be used to show that the other
state variables have nonnegative solutions for all t> 0, hence
completing the proof. □

(eorem 1 indicates that the model is epidemiologically
meaningful and mathematically well posed.

3.2. Boundedness of Solution of the Model

Theorem 2 (Boundedness of the Model). All solutions of
system (1) starting in R6

+ are bounded.

Proof. Consider Wd(t) � Sd(t) + Ed(t) + Id(t) and
Wh(t) � Sh(t) + Eh(t) + Ih(t).

(en,

dWd

dt
� Pd − μd + c1 Sh + Eh( ( Sd

− μd + c1 Sh + Eh(  + Cd( Ed − μd + c1 Sh + Eh(  + σd( Id

� Pd − μd + c1 Sh + Eh( (  Sd + Ed + Id(  − CdEd − σdId,

dWh

dt
� Ph + c Sh + Eh(  Sd + Ed + Id(  − μhSh − μhEh − Ih μh + σh( 

� Ph + c Sh + Eh(  Sd + Ed + Id(  − Sh + Eh + Ih( μh − Ihσh.

(3)

From the above equations, we have

dWd

dt
≤Pd − c1 Sh + Eh(  Sd + Ed + Id(  − μdWd,

dWh

dt
≤Ph + c Sh + Eh(  Sd + Ed + Id(  − μhWh.

(4)

If we set W � Wh + Wd and P � Pd + Ph, then,

dW

dt
≤P − min μd, μh W, (5)

so that

W(t)≤W(0)e
− Pt

+
P

min μd, μh 
1 − e

− Pt
 . (6)

(e feasible region for the model is thus given by

Ω � Sd, Ed, Id, Sh, Eh, Ih(  ∈ R6
: 0≤W≤

P

min μd, μh 
 .

(7)

System (1) can therefore be conveniently studied inΩ. □

3.3. Equilibrium Points of the Model. (e model exhibits a
biologically reasonable disease-free equilibrium
ε0 � (Sd0, 0, 0, Sh0, 0, 0), where Sd0 � (Pd/(μd + c1Sh0)) and
Sh0 satisfy the following quadratic equation:

c1μhS
2
h0 − Pdc + Phc1 − μhμd( Sh0 − μdPh � 0. (8)

Hence,

Sh0 �
Pdc + Phc1 − μhμd(  +

����������������������������

Pdc + Phc1 − μhμd( 
2

+ 4c1μhμdPh



2c1μh

,

Sd0 �
2μhPd

Pdc + Phc1 + μhμd +

����������������������������

Pdc + Phc1 − μhμd( 
2

+ 4c1μhμdPh

 .

(9)

Remark 1. Model (1) has a unique realistic DFE.

Proof. Since the coefficient of S2h0 and the constant term in
(8) have different signs, Descartes’ rule of sign shows that
equation (8) has only one positive solution. (is concludes
the proof of the remark.

(e basic reproduction ratio,R0, is the average number
of secondary infections that are caused by one infectious
individual, which is introduced into an initially disease-free
population, during its infectious period. Using the next-
generation method of Diekmann et al. [22], we computeR0
as

R0 �
Sd0ψ1 c1Sh0 + βD D + ψ4( 

c1Sh0 + ψ4(  c1Sh0 + ψ3( 
. (10)

In the presence of Infectives, model (1) is said to be
exhibiting an endemic equilibrium point
ε∗ � (S∗d , E∗d , I∗d , S∗h , E∗h , I∗h ), where S∗d , E∗d , I∗d , and I∗h are
given by
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S∗d �
ψ3 + c1 S∗h + E∗h( (  ψ4 + c1 S ∗h + E∗h( ( 

ψ1 ψ4 + c1 S∗h + E∗h  + βD D 
,

E∗d �
ψ5E
∗
h ψ4 + c1 S∗h + E∗h( ( 

ψ2S
∗
h ψ4 + c1 S∗h + E∗h  + βD D 

,

I∗d �
βD Dψ5E

∗
h

ψ2S
∗
h ψ4 + c1 S∗h + E∗h  + βD D 

I∗h �
βHE∗h
ψ6

,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11)

and S∗h and E∗h satisfy the following set of equations (see
Appendix for derivation):

ShgE
T
h + bT

1E
T
h � 0,

ShHE
T
h + bT

2E
T
h � 0.

(12)

Here,

Sh � S
∗
h( 

4
, S
∗
h( 

3
, S
∗
h( 

2
, S
∗
h ,

Eh � E
∗
h( 

3
, E
∗
h( 

2
, E
∗
h , 1 ,

g �

g11 0 0 0

G21 3g11 0 0

g31 2g21 + c2
1ψ5ψ1 3g11 0

g41 g31 + c1 ψ3 + ψ4( ψ1ψ5 g21 + 2c21ψ5ψ1 G11

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

b1 �

0

ψ5ψ1ψ3ψ4

c1ψ1ψ5 ψ3 + ψ4( 

c2
1ψ5ψ1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

H �

H11 0 0 0

H21 3H11 0 0

H31 H21 + ε1 3H11 0

H41 H31 + ε3 H21 + 2ε1 + ε2 H11

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

b2 �

0

0

cψ6ψ5ψ1 ψ4 + βDD( 

cψ6ψ5ψ1c1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(13)

where

g11 � ψ2c
3
1,

g31 � ψ2c1 ψ3 + ψ4( μd − Pdψ1 + ψ3ψ4 ,

H11 � cψ6ψ2c
2
1,

H41 � Phψ1 ψ4 + βD D( ψ2ψ6,

H31 � ψ2ψ6 Phψ1c1 + cψ3ψ4(  − ψ1ψ2ψ6μh ψ4 + βD D( ,

ε1 � cψ6 ψ2ψ3 + ψ2ψ4 + ψ1ψ5(  + θψ1ψ2 ψ6 + βH( (

− ψ1ψ2ψ6ψ5c1,

ε3 � ψ1 ψ4 + βD D(  θψ2 ψ6 + βH(  + ψ6ψ5 c − ψ2( (

+ ψ2ψ6μh,

g21 � c
2
1ψ2 ψ3 + ψ4 + μd( ,

g41 � ψ2 ψ3ψ4μd − Pdψ1 ψ4 + βD D(  ,

H21 � ψ2ψ6c1 c ψ3 + ψ4(  − μhψ1( ,

(14)

where S∗h and E∗h can be found by solving equation (12).
Even though the solution can be done numerically, the
nature of the problem suggests that an algebraic solution
may be obtainable.(e problem falls in the category of Open
Problem 1. □

Open Problem 1
Let b � [b1, b2, . . . , bn], c � [c1, c2, . . . , cn],

x � [xn, xn− 1, . . . x],y � [yn− 1, xn− 2, . . . y, 1], and A and B

be n−dimensional lower triangular square matrices. Is there
an algebraic technique that be used to determine x and y
satisfying the following equations?

xAyT
+ byT

� 0,

xByT
+ cyT

� 0.

(15)

In the next section, the local stability of the disease-free
equilibrium is discussed.

3.4. Local Stability of the Disease-Free Equilibrium Point.
We use the Lyapunov indirect method to study the local
stability of the disease-free equilibrium point of the model.
An equilibrium point is said to be locally asymptotically
stable if all eigenvalues of the Jacobian model evaluated at
the given equilibrium point have negative real parts.

Journal of Applied Mathematics 5



(e Jacobian matrix of the model evaluated at ε0 is given
by

J ε0(  �

−μd − c1Sh0 −ψ1Sd0 −ψ1Sd0 −c1Sd0 −c1Sd0 0

0 ψ1Sd0 − ψ3 − c1Sh0 ψ1Sd0 0 0 0

0 βD D −ψ4 − c1Sh0 0 0 0

cSh0 c − ψ2( Sh0 c − ψ2( Sh0 cSd0 − μh cSd0 + θ θ

0 ψ2Sh0 ψ2Sh0 0 −ψ5 0

0 0 0 0 βH −ψ6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (16)

Two of the eigenvalues (−ψ5 and −ψ6) of J(ε0) are clearly
negative and the remaining eigenvalues are the zeros of
P1(λ)P2(λ) � 0, where

P1(λ) � λ2 + 2c1Sh0 + ψ3 + ψ4 − ψ1Sd0( λ
+ ψ4 + c1Sh0(  ψ3 + c1Sh0(  1 − R0(  � 0,

P2(λ) � λ2 + μh − cSd0 + c1Sh0 + μd( λ
+ μhc1Sh0 + μhμd − cSd0μd � 0.

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(17)

(e second equation of (8) has both zeros being negative
if (remembering that Sd0 � (Pd/(μd + c1Sh0)))

μh c1Sh0 + μd(  −
cPdμd

μd + c1Sh0
> 0,

c1Sh0 + μd + μh −
Pdc

μd + c1Sh0
> 0.

(18)

(ese conditions are easy to establish using (8).
Also, the first equation in (17) has zeros with negative

real parts if

ψ4 + c1Sh0(  ψ3 + c1Sh0(  1 − R0( > 0,

2c1Sh0 + ψ3 + ψ4 − ψ1Sd0 > 0.
(19)

(e first condition is true whenever R0 < 1 whilst the
second condition can be written as ((ψ4 + ψ3 + 2c1Sh0)

(ψ4 + c1Sh0 + βDD))/((ψ4 + c1Sh0)(ψ3 + c1Sh0)) − R0 > 0,
which holds if R0 < 1. (e following result is therefore
established.

Theorem 3. :e disease-free equilibrium state, ε0, of model
(1) is locally asymptotically stable whenever R0 < 1 and
unstable otherwise.

3.5. Local Stability Analysis of Endemic Equilibrium. (e
stability of the endemic equilibriums of the model is sim-
ilarly established by finding the eigenvalues of the Jacobian
matrix of the model evaluated at the positive solutions of
(12).(e Jacobianmodel evaluated at ε∗ if it exists is given by

J ε∗(  �

J11 −S∗d ψ1 −S∗d ψ1 −c1S
∗
d −c1S

∗
d 0

ψ1EId J22 S∗d ψ1 −c1E
∗
d −c1E

∗
d 0

0 βDD J33 −c1I
∗
d −c1I

∗
d 0

cSEh cSEh − ψ2S
∗
h cSEh − ψ2S

∗
h J44 cSEId + θ θ

0 ψ2S
∗
h ψ2S

∗
h ψ2EId −ψ5 0

0 0 0 0 βH −ψ6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (20)

where

J11 � − ψ1EId + SEhc1 + μd( ,

J33 � − SEhc1 + ψ4( ,

EId � E
∗
d + I
∗
d ,

SEId � S
∗
d + E

∗
d + I
∗
d ,

J22 � Sdψ1 − SEhc1 − ψ3,

J44 � cSEId − ψ2EId − μh,

SEh � S
∗
h + E

∗
h .

(21)

(e Jacobian matrix J(ε∗) has a characteristic poly-
nomial given by



6

n�0
Λnλ

n
� 0, (22)

where
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Λ6 � 1,

Λ5 � ψ6 + ψ5 +
cEhSEId

Sh

+
Pd

Sd

+
θ Eh + Ih(  + Ph

Sh

+
Sdψ1Id

Ed

+
βDDEd

Id

,

Λ4 �
ψ6
Sd

+
Ph

ShSd

 Pd +
ψ6
Sh

+
ψ5
Sh

 Ph + ψ5 +
cSEIdEh

Sh

+
θ Eh + Ih( 

Sh

+
βDDEd

Id

+
Sdψ1Id

Ed

 
Pd

Sd

+ ψ6 

+
θIh

Sh

+
βD DEd

Id

+
Sdψ1Id

Ed

 ψ5 + cc1SEIdSEh + EIdψ
2
1Sd+

cSEIdEh

Sh

+
Ph

Sh

+
θ Eh + Ih( 

Sh

 
Sdψ1Id

Ed

+
βDDEd

Id

 ,

Λ3 � cSEhc1 +
EIdψ2

1Sd

Ed

 βD DEd + ψ5
Ph

Sh

+
βDDEd

Id

+
Sdψ1Id

Ed

+
Pd

Sd

  +
cSEIdEh

Sh

+
θEh

Sh

 
βDDEd

Id

+
Sdψ1Id

Ed

+
Pd

Sd

  

ψ6 + cc1SEIdSEh + EIdψ
2
1Sd +

Ph

Sh

+
θIh

Sh

 
βDDEd

Id

+
Sdψ1Id

Ed

+
Pd

Sd

  +
βD DEdPd

SdId

+
ψ1IdPd

Ed

  ψ6 + ψ5( 

+ Sdψ1SEhId +
SEhEIdPd

Sd

+
Ed + Sd( βD DEd

Id

+
Id + Sd( Sdψ1Id

Ed

 SEh cc1

+ Sdψ
2
1

cSEIdEh

Sh

+
Ph

Sh

+
θ Eh + Ih( 

Sh

  +
ψ2
1SdβDDEd

Id

 EId

+
βDDEdPd

SdId

+
ψ1IdPd

Ed

 
cSEIdEh

Sh

+
Ph

Sh

+
θ Eh + Ih( 

Sh

  + cEIdSEIdSEhc1ψ2.

(23)

Clearly, Λn > 0,∀n � 3, 4, 5, 6, and Λ0, Λ1, and Λ2 can
similarly be shown to be positive. By Descartes’ rule of signs,
the following result is thus established.

Theorem 4. :e endemic equilibrium ε∗ (whenever it exists)
is locally asymptotically stable.

3.6. Global Stability of Disease-Free Equilibrium Point. To
study the global stability of E0, we employ the technique of
Castillo-Chavez et al. [23] as follows:

If XG � (Sd, Sh) andZG � (Ed, Id, Eh, Ih), thenmodel (1)
can be written as

dXG

dt
� F XG, ZG( ,

dZG

dt
� G XG, ZG( , G XG, 0(  � 0.

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(24)

By the theorem of Castillo-Chavez et al. [23], ε0 is
globally asymptotically stable if the following conditions are
satisfied:

GS1: ε0 is locally asymptotically stable

GS2: X∗G is globally stable for (dXG/dt) � G(X, 0)

GS3: G(XG,ZG) � AGZG − G(XG,ZG), G(XG,ZG)≥0,
where AG � DZG

(X∗G,0) is an M-Matrix

(e first condition GS1 has been established for R0 < 1
in (eorem 3.

For the second condition, we note that

F(XG, 0) �
Pd − μdSd − c1ShSd

Ph + cShSd − μhSh

  is a limiting function of

(dXG/dt) � F(XG, ZG). (erefore, the second condition is
satisfied.

As for the third condition, we observe that AG is given by

AG �

Sd0ψ1 − ψ3 − c1Sh0 Sd0ψ1 0 0

βD D − ψ4 + c1Sh0(  0 0

Sh0ψ2 Sh0ψ2 −ψ5 0

0 0 βH −ψ6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(25)

which is an M−matrix (i.e., all nondiagonal entries are
nonnegative).

Furthermore, the matrix G(XG, ZG) is given by
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G XG, ZG(  �

ψ1 Sd0 − Sd(  Ed + Id(  + Edc1 Sh + Eh − Sh0( 

Idc1 Sh + Eh − Sh0( 

ψ2 Sh0 − Sh(  Ed + Id( 

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(26)

From (dSd/dt), we have

Sd(t) �
ϑ t0( Sd t0(  + Pdt

ϑ(t)
, (27)

where

ϑ(t) � exp  μd + c1 Sh + Eh(  + Ed + Id( ψ1( dt . (28)

Hence, Sd0 ≥ Sd(t). Similarly, Sh(t)≥ Sh0 and hence,
G≥ 0, satisfies condition GS3. Now, since all three condi-
tions are satisfied, the following result is established.

Theorem 5. :e disease-free equilibrium point, ε0, is globally
asymptotically stable whenever R0 ≤ 1.

For simulation purposes, we use the following parameter
values:

Pd � 0.45,

Ph � 0.1,

βd � 0.062,

δd � 0.5
βD D � 0.6,

σd � 0.8,

βh � 0.0229,

δh � 0.005,

βH � 0.0001,

σh � 0.0001,

c1 � 0.01,

c � 0.0001,

μd � 0.06,

Cd � 0.05,

θ � 0.9,

μh � 0.04.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(29)

3.7. Sensitivity Analysis. To determine the impact of model
parameters on the spread of rabies, we employed global
sensitivity analysis technique of Marino et al. [24] to cal-
culate the partial rank correlation coefficients of the model
parameters on which the basic reproduction number de-
pends.(e result of sensitivity analysis informs which model
parameters are most important in determining the output
variable (in this case, R0) and hence should be given much
attention in terms of measurement for accuracy. (e PRCC
of results are shown in Figure 1.

Local sensitivity analysis discusses the impact of small
changes in parameter values on the spread of the disease. To
study the sensitivity of the disease spread to parameter

changes, the basic reproduction numberR0 is used, since it
determines the persistence or possible eradication of the
disease. (e normalized forward sensitivity index is used to
perform the analysis. It is defined as follows.

Let R0 be a differentiable function xi. (en, the nor-
malized forward sensitivity index of R0 relative to xi is given
by

ηxi

R0
�

zR0

zxi

×
xi

R0
. (30)

Local sensitivity indexes are presented in Table 2. (is
index measures the relative percentage change in R0 due to
a percentage change in xi. (e sensitivity indexes of the
parameters determining R0 are calculated and presented in
Table 2. A positive sensitivity index of a parameter implies
that an increase (decrease) in the value of the parameter will
result in an increase (decrease) in R0. On the other hand, a
negative sensitivity index implies that an increase (decrease)
in the value of the parameter will result in a decrease (an
increase) in R0.

3.8. Bifurcation Analysis. To study the stability of endemic
equilibrium points, the center manifold theory as described
in (eorem 4.1 of [25] is used as an alternative to the
Lyapunov indirect method.

Choosing βd � β∗d � ((ψ3 + c1Sh0)(ψ4 + c1Sh0))/((1− δd)

Sd0(c1Sh0 + σd +ψ3)) as a bifurcation parameter leads the
Jacobian model to have a zero simple eigenvalue. (e right
and left eigenvectors associated with this zero eigenvalue are
given by w � w2[η1,1,η3,η4,η5,η6]

T and v � [0, v2, ζ3v2,
0,0,0] with (η3ζ3 + 1)w2v2 � 1, where

η1 �
Sd0 φ1c1 − φ2c(  + μhφ2

Sd0μd − μh μd + c1Sh0( 
,

η3 �
βD D

ψ4 + c1Sh0
,

η4 �
φ2cSh0 − φ1 μd + c1Sh0( 

Sd0μd − μh μd + c1Sh0( 
,

η5 �
ψ2Sh0 c1Sh0 + ψ4 + βD D( 

ψ4 + c1Sh0( ψ5
,

η6 �
βHψ2Sh0 c1Sh0 + ψ4 + βD D( 

ψ4 + c1Sh0( ψ5ψ6
,

ζ3 �
c1Sh0 + ψ3( 

c1Sh0 + ψ4 + βD D

,

φ1 � Sd0 ψ1 1 + η3(  + c1η5( ,

φ2 � Sh0 1 + η3(  c − ψ2(  + cSd0 + θ( η5 + θη6.

(31)

(e bifurcation coefficients are thus given by
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a � 2w2 p
∗

− 1( ,

b �
Sd0 1 − δd(  1 + η3( 

1 + η3ζ3
,

(32)

where p∗ � (β∗dη1(1−δd)(1+η3))/(c1(η4 +η5) (1+η3ζ3)).
Clearly, b is always positive and the sign of a is de-

pendent on p∗. (e following result therefore easily follows
[25].

Theorem 6. Model (1) undergoes a backward bifurcation at
R0 � 1when p∗ > 1 and a forward bifurcation when p∗ < 1 in
which case the endemic equilibrium will be locally asymp-
totically stable.

We note that since E0 is GAS whenever R0 ≤ 1, then
backward bifurcation may only occur whenever R ap-
proaches unity from above.

4. Numerical Simulation

We performed numerical simulation in this section to study
the impact of various parameters on the spread of the rabies
infection. To perform these experiments, the following initial
values are used: Sd(0) � 2.0, Ed(0) � 1.5, Id(0) � 1.0,
Sh(0) � 2.5, Ed(0) � 0.5, and Ih(0) � 0.5 and the baseline
parameter values are taken from equation (29).

To illustrate the local stability of the disease-free equi-
librium, model (1) is solved for various initial values of the
state variables and the results are plotted on the same graph.
(is procedure is done for the case when R0 < 1 and when
R0 > 1. (e fact that the DFE is LAS whenever R0 < 1 as in
(eorem 3 is demonstrated in Figure 2.

To illustrate the result in(eorem 1, we solved model (1)
for two different scenarios: (a) when initial conditions are
less than (Ph + Pd)/min μh, μd  and (b) when initial

conditions are greater than (Ph + Pd)/min μh, μd . Figure 3
shows that the feasible region Ω is an invariant attractor of
system (1).

We also solved the model for different values of the
most influential model parameters in order to simulate the
effect of those variables. (e results are shown in
Figures 4–8.

From Figure 4, it is observed that increasing the dog-dog
rabies transmission rate, βd leads to a decline (an increase) in
the Susceptible dog population (Exposed and Infected dog
populations) and a similar (but slight) effect is observed for
the Susceptible human population (Exposed and Infected
human populations). (e smaller impact on human pop-
ulation could be attributable to the fact that infected dogs
will often be culled, leading to reduced infection among
humans.

From Figure 5, it is observed that increasing the rate of
immunization of dogs, δd, leads to an increase (a decrease) in
the Susceptible dog population (Exposed and Infected dog
populations) and a similar effect is observed for the Sus-
ceptible human population (Exposed and Infected human
populations). It is however observed that for higher rates of
immunization, the Susceptible dog populations first peak
before declining. (is could be attributable to the fact that
immunization may not confer permanent reduction in
transmissibility of rabies from dogs. We also observe that
irrespective of the rates of immunization, a steady state is
reached, confirming the global stability of the disease-free
equilibrium.

5. Findings

(e following are the findings of the study:

(i) (e rabies-free equilibrium point is globally as-
ymptotically stable whenever the basic reproduction
number R0 is less than unity.
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Figure 1: Plot of PRCC of R0 with respect to model parameters.

Table 2: Sensitivity indexes of R0 with respect to model parameters.

Cd Pd Ph βD D βd δd μd μh σd c c1

−0.009 −2.010 −0.0143 −0.012 1.000 −1.000 1.056 3.024 −0.011 −3.967 0.943

Journal of Applied Mathematics 9



(ii) While the spread of disease is positively correlated
with the dog-to-dog transmission rate βd, re-
cruitment rate of dogs Pd, rate at which exposed
dogs develop clinical rabiesβD D, and disease-in-
duced death rate among σd, and natural death rate
of humans μh, it is negatively correlated with the
natural death rate of dogs μd, immunization of
dogs δd, culling rate Cd, rate of consumption of
dogs c1, as indicated in the sensitivity indexes
of R0.

(iii) Efforts at controlling the spread of rabies should
focus more on dog population than on humans.

(iv) Under certain conditions, the model may exhibit
either forward or backward bifurcation near
R0 � 1. (e possibility of forward bifurcation
suggests the existence of locally asymptotically
stable endemic equilibrium when R0 > 1.

6. Discussion and Conclusion

In this paper, a nonlinear mathematical model has been
proposed to study the dynamics of rabies infection among
dogs and in a human population that is exposed to dog bites.
It is observed that the model has a unique disease-free
equilibrium point which is locally asymptotically stable
whenever the basic reproduction number is less than unity.
(e disease-free equilibrium point, E0, is also globally as-
ymptotically stable wheneverR0 ≤ 1. It is also observed that
the most influential factors on the spread of the disease are
probability of infection upon contact among dogs βd, rate of
immunization of dogs δd, rate of recruitment of dogs Pd, rate
at which exposed dogs develop clinical rabies βD D, disease-
induced death rate within the dog population σd, and natural
mortality rate of dogs, μd. If the rate of immunization in the
dog population is increased, it will have an increasing effect
on the susceptible human population as shown in Figure 5. If
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Figure 2: Simulation of model (1) showing the local asymptotic stability of the E0 (a) for R0 < 1 and instability (b) for R0 > 1.
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Figure 3: Simulation of the model illustrating the boundedness of solutions of model (1) ((eorem 1).
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Figure 4: Solution curves of model (1) showing the effect of βd.
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Figure 5: Solution curves of model (1) showing the effect of δd.

12 Journal of Applied Mathematics



σd = 1.6
σd = 2.4

σd = 0.8

10 20 30 40 50 600
Time

0

5

10

15

20

25
Su

sc
ep

tib
le

 d
og

 p
op

ul
at

io
n

(a)

σd = 1.6
σd = 2.4

σd = 0.8

10 20 30 40 50 600
Time

0
2
4
6
8

10
12
14
16
18
20

Su
sc

ep
tib

le
 h

um
an

 p
op

ul
at

io
n

(b)

σd = 1.6
σd = 2.4

σd = 0.8

10 20 30 40 50 600
Time

0

2

4

6

8

10

12

Ex
po

se
d 

do
g 

po
pu

la
tio

n

(c)

σd = 1.6
σd = 2.4

σd = 0.8

10 20 30 40 50 600
Time

0

1

2

3

4

5
Ex

po
se

d 
hu

m
an

 p
op

ul
at

io
n

(d)

σd = 1.6
σd = 2.4

σd = 0.8

10 20 30 40 50 600
Time

0

1

2

3

4

5

6

7

8

In
fe

ct
ed

 d
og

 p
op

ul
at

io
n

(e)

σd = 1.6
σd = 2.4

σd = 0.8

10 20 30 40 50 600
Time

0

0.5

1

1.5

2

2.5

3

3.5

4

In
fe

ct
ed

 h
um

an
 p

op
ul

at
io

n

(f )

Figure 6: Solution curves of model (1) showing the effect of σd.
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Figure 7: Solution curves of model (1) showing the effect of βD D.
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Figure 8: Solution curves of model (1) showing the effect of Pd.
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the recruitment rate within the dog population, disease-
induced death rate of dogs, rate of contact among dogs, and
the rate at which exposed dogs develop clinical rabies each is
reduced, with all other factors remaining constant, there will
be a positive effect on the susceptible human population as
shown in Figures 4 and 6–8. (ese actions will lead to a
reduction in the reproduction number. However, even
though it has been accepted that the eradication of infectious
diseases in a community should target the reduction of R0
to less than unity, this may not be the only case for this
system. It has also been observed that under certain con-
ditions, backward bifurcation may occur around R0 � 1.
From the analysis, we noted that since ε0 is GAS whenever
R0 ≤ 1, then backward bifurcationmay only occur whenever
R0 approaches unity from above. (is has a major impli-
cation for the spread of the disease once the basis of reducing
R0 below the threshold point, R0 � 1, may not just be
enough for effectively controlling the spread of the disease
because wheneverR0 approaches unity from above, there is
the likelihood of coexistence of endemic equilibrium which
may result in reinfection of the rabies virus.(e conclusions,
however, of Asamoah et al. [5]; Hou et al. [12]; and Wang
and Lou [19] are that vaccination, which may lead to im-
munity, as a better control method of rabies infection in dogs
will still be relevant in the presence of backward bifurcation.

Appendix

Derivation of Equation (12)

(e equilibrium points of the model are found by equating
the right-hand sides to zero to obtain

Pd − Sd Ed + Id( ψ1 − μd + c1 Sh + Eh( ( Sd � 0, (A.1)

Sd Ed + Id( ψ1 − ψ3 + c1 Sh + Eh( ( Ed � 0, (A.2)

βD DEd − ψ4 + c1 Sh + Eh( ( Id � 0, (A.3)

Ph + c Sh + Eh(  Nd(  + θ Eh + Ih(  − Ed + Id( ψ2 + μh( Sh � 0,

(A.4)

Sh Ed + Id( ψ2 − ψ5Eh � 0, (A.5)

βHEh − ψ6Ih � 0. (A.6)

Let the endemic equilibrium be ε∗ � (S∗d , E∗d , I∗d , S∗h , E∗h ,

I∗h ).
From equation (A.1), we have I∗h � (βHE∗h )/ψ6.
Also from (A.3) and (A.5), we get I∗d � (βD DE∗d )/(ψ4 +

c1(S∗h + E∗h )) and E∗d + I∗d � ((ψ5E
∗
h )/(S∗h ψ2)) respectively,

which can be used to show that E∗d � (ψ5E
∗
h (ψ4 + c1(S∗h +

E∗h )))/(S ∗h ψ2(ψ4 + c1(S∗h + E∗h ) + βD D)) and
I∗d � (βD Dψ5E

∗
h )/S∗h ψ2(ψ4 + c1(S∗h + E∗h ) + βD D).

From (A.2), we get Sd � ((ψ3 + c1(S∗h
+E∗h ))Ed)/(ψ1(Ed + Id)) and upon substituting the ex-
pression for E∗d , we obtain Sd � (ψ3 + c1(S∗h + E∗h ))

(ψ4 + c1(S∗h + Eh))/(ψ1(ψ4 + c1(S∗h + E∗h ) + βD D)).
(us, S∗d , E∗d , I∗d , and I∗h have been expressed in terms of

S∗h and E∗h .
Equations (A.1) and (A.2) can then be used to find S∗h

and E∗h .
Substituting S∗d , E∗d , I∗d , and I∗h into (A.1) and (A.2)

(after some long algebraic simplification) gives the following
equations:

ψ2c
3
1S
∗4
h + 3ψ2c

3
1E
∗
h + c

2
1ψ2 ψ3 + ψ4 + μd(  S

∗3
h

+ 3ψ2c
3
1E
∗2
h + 2c

2
1 ψ3 + ψ4( ψ2 + c

2
1 ψ1ψ5 + 2ψ2μd(  E

∗
h − ψ2c1 Pdψ1 − ψ3ψ4(  + c1 ψ3 + ψ4( ψ2μd S

∗2
h

+ ψ2c
3
1E
∗3
h + c

2
1 ψ3 + ψ4( ψ2 + c

2
1 2ψ1ψ5 + ψ2μd(  E

∗2
h + c1ψ1ψ5 + c1ψ2μd(  ψ3 + ψ4(  − ψ2c1 Pdψ1 − ψ3ψ4(  E

∗
h

− Pdψ2 ψ4 + βD D( ψ1 + ψ3ψ4ψ2μd

S
∗
h + c

2
1ψ5ψ1E

∗3
h + c1 ψ3 + ψ4( ψ1ψ5E

∗2
h + ψ5E

∗
h ψ1ψ3ψ4 � 0,

(A.7)

cψ6ψ2c
2
1S
∗4
h + cψ6ψ2c1ψ4 + cψ6ψ2ψ3c1 − ψ1ψ2ψ6μhc1 + 3cψ6ψ2c

2
1Eh S

∗3
h

+ 3cψ6ψ2c
2
1E
∗2
h + 2cψ6ψ2ψ3c1 + θψ1ψ2β

∗
h c1 + 2cψ6ψ2c1ψ4 − ψ1ψ2ψ6μ

∗
h c1 + θψ1ψ2ψ6c1 + cψ6ψ5ψ1c1 − ψ1ψ2ψ6ψ5c1 E

∗
h

− ψ1ψ2ψ6μ
∗
h ψ4 − ψ1ψ2ψ6μ

∗
h βD D + P

∗
h ψ1ψ2ψ6c1 + cψ6ψ2ψ3ψ4S

∗2
h

+ cψ6ψ2c
2
1E
∗3
h + cψ6ψ2ψ3c1 + cψ6ψ2c1ψ4 + 2cψ6ψ5ψ1c1 + θψ1ψ2ψ6c1 + θψ1ψ2βHc1 − ψ1ψ2ψ6ψ5c1 E

∗2
h

+ ψ6cψ1ψ5ψ4 + ψ6cψ1ψ5βD D + cψ6ψ2ψ3ψ4 − ψ1ψ2ψ6ψ5ψ4 − ψ1ψ2ψ6ψ5βD D + θψ1ψ2ψ6ψ4 + θψ1ψ2ψ6βD D + θψ1ψ2β
∗
h ψ4

+ θψ1ψ2β
∗
h βD D + P

∗
h ψ1ψ2ψ6c1E

∗
h + P

∗
h ψ1ψ2ψ6βD D + P

∗
h ψ1ψ2ψ6ψ4

S
∗
h + cψ6ψ5ψ1c1E

∗3
h + ψ6cψ1ψ5βD D + ψ6cψ1ψ5ψ4( E

∗2
h � 0.

(A.8)
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Equations (A.7) and (A.8) can then be rewritten as in
equation (12).
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