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Lassa fever is an animal-borne acute viral illness caused by Lassa virus. It poses a serious health challenge around the world today,
especially in West African countries like Ghana, Benin, Guinea, Liberia, Mali, Sierra Leone, and Nigeria. In this work, we formulate
a multiple-patch Lassa fever model, where each patch denotes a socioeconomic class (SEC). Some of the important epidemiological
features such as basic reproduction number of the model were determined and analysed accordingly. We further investigated how
varying SECs affect the transmission dynamics of Lassa fever. We analysed the required state at which each SEC is responsible in
driving the Lassa fever disease outbreak. Sensitivity analyses were carried out to determine the importance of model parameters to
the disease transmission and prevalence. We carried out numerical simulation to support our analytical results. Finally, we extend
some of the results of the 2-patch model to the general n-patch model.

1. Introduction

Lassa fever is an acute virus (arenavirus) caused by Lassa
virus. It is hosted by a rodent called the multimammate rat
(Mastomys natalensis). Lassa fever is known to be a zoonotic
disease that is primarily transmitted to humans from direct
contact with infected animals. It can also be transmitted
through food or household items that are exposed to the
urine or faeces of infected animals. There can also be cases
of secondary infection through inhalation or ingestion. Lassa
fever can also be transmitted from one individual to another,
when such individuals share medical equipments that are
contaminated. Skin breaks in humans can be a medium
through which humans can get infected with Lassa fever,
and also, from dust particles through the mucous membranes
referred to as aerosol transmission [1, 2].

Lassa fever poses a serious health challenge around the
world today, especially in West African countries: Ghana,
Benin, Guinea, Liberia, Mali, Sierra Leone, and Nigeria [2, 3].

There has been emergence of cases in Nigeria in recent times,
and this stands as a threat to humanity and good health.
According to data from the World Health Organization
(WHO), between January and February 2020, Nigeria has
about 172 laboratory-confirmed cases with 72 deaths in 26
out of 36 states of the country including the Federal Capital
Territory. The fatality rate of Lassa fever stands at about
14.8% [4]. There is also a report from WHO that “Lassa fever
is endemic in Nigeria and has its peak period during the dry
seasons (i.e., between December and April of every year).”This
is because the Mastomys rat is been reproduced more in the
wet season (i.e., May–June) [4].

Direct and indirect exposure to Mastomys rats has been
found to be the main vector of infection of Lassa fever. This
direct or indirect transmission stands at a scary rate of 90
−95% in Nigeria [4]. Indirect here is contact with food or
household equipments that has been exposed to the urine
or faeces of the Mastomys rat. In a more general view, the sta-
tistics of Lassa fever according to the Center for Disease
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Control and Prevention (CDC) and WHO is about 100,000
to 300,000 cases, and an approximate death records of about
5,000 annually in West Africa [3].

The human population are grouped into different social
strata or category. The state of each individual depends on
different factors, which range from their occupation, educa-
tion, and income. This position or social strata is referred
to as socioeconomic status (SES) [5]. This implies that
humans can be classified into different socioeconomic classes
(e.g., low SEC and high SEC). Low SEC are often charac-
terised by lack of provisions of basic amenities, low standard
of living, malnutrition, unclean environment, inadequate
health facilities, low income, lack of good personal hygiene,
and even lack of portable drinking water. On the other hand,
high SEC is characterised by good living condition, sufficient
income, quality education, secure environment, good-paying
jobs, affordability of necessary health care, and relative peace.
It can be seen that low socioeconomic status is synonymous
to underdeveloped countries, refugee camps, war-
devastated areas, and where there are cases of natural disas-
ter. Notwithstanding that all humans are susceptible to Lassa
fever, the humans in low SEC are most likely to be infected
with the disease considering their environment [6]. Based
on this, the transmission dynamics of Lassa fever will vary
across SECs, since each society is made up of different socio-
economic classes. The different SECs and how they are
infected by Lassa fever will be discussed in this study. This
will be achieved by formulating and analysing an appropriate
mathematical epidemiological model of Lassa fever disease
dynamics that incorporates different SECs. A mathematical
epidemiological model for Lassa fever incorporating socio-
economic classes is geared towards improving the under-
standing of the transmission dynamics of the disease. With
appropriate formulation of mathematical epidemiological
Lassa fever model with SECs, one will have a better under-
standing of the effective control/intervention strategies to
combat the disease with.

A number of mathematical models such as [7–14] have
explored the dynamics of Lassa fever. Lassa fever has been
at the center of infectious disease. Many researches are
recently carried out works to expose further its transmission
dynamics and presenting different approaches to its control.
We present some of these new studies and their methodol-
ogies and results. Musa et al. [15] carried out a detailed
study of Lassa fever epidemics in Nigeria, between 2016
and 2019. They employed the use of mathematical model
in carrying out this study. Mariem et al. [16] also carried
out a study on Lassa fever. Their interest was in the control
of rodents as a way of eradicating Lassa fever. They also
considered experimental field data. Akhmetzhanov et al.
[17] studied the seasonal drivers of transmission for Lassa
fever in Nigeria. By developing a mathematical model
together with the data sets of human infection, they analyse
the population dynamics of rodents and investigate the
impact of climate variations in Lassa fever transmission.
Zhao et al. [18] in their study of Lassa fever used different
mathematical models such as the Richards, three-
parameter logistic, Gompertz, and Weibull growth models
to analyse the epidemiological features of Lassa fever epi-

demics in Nigerian. In particular, they investigate how these
epidemiological features differ across the regions of Nigeria
at different time periods by relating the basic reproduction
number with rainfall across the regions. Iacono et al. [13]
use innovative modelling together with published data to
estimate person-to-person contribution in Lassa fever trans-
mission. They discovered that almost 20% of secondary
cases of Lassa fever come from person-to-person transmis-
sion. Detailed analysis of Nigeria’s Lassa fever incidence
case was carried out by Ilori et al. [19]. They documented
both the epidemiological and clinical report of Lassa fever
in Nigeria and used their model to analyse Lassa fever dis-
ease dynamics in Nigeria. There are other researches carried
out on Lassa fever outbreak in Nigeria. One of such is the
one carried out by Roberts [20]. Also, Ajayi et al. [21] did
an interesting work by carrying out expository research
work on Lassa fever in Nigeria. They also used clinical epi-
demiological and laboratory data in analysing the impact of
this disease in Nigeria.

Currently, there is no vaccine for Lassa fever and even
the treatment is not 100% sure. This led Warner et al.
[22] to conduct a research that looked at the vaccines that
had worked in animals and its possible trials in humans.
Some research work geared towards finding a vaccine for
Lassa fever are reported in [23–25]. From the reviewed
works above, it is evident that there is no vaccine yet and
even the cure is not very effective and efficient. Therefore,
other control measures should be employed in eradicating
or reducing the prevalence of this disease especially in the
countries where the disease is endemic. These control mea-
sures could be adequate environmental cleanliness, healthy
living practices, effective and efficient rodent control,
improved health system, and maintaining a good lifestyle
in general [1, 2].

These works reviewed above have been of immense
importance to understanding the dynamics of and control
measures for Lassa fever disease. From the reviewed literature
and to the best of our knowledge, none of these works consid-
ered socioeconomic classes (SECs) on the transmission
dynamics of Lassa fever disease.

The aim of this work is to formulate a more general
mathematical epidemiological model that incorporates
different socioeconomic classes. The analyses of this model
will contribute to existing knowledge of Lassa fever transmis-
sion dynamics so as to pave way for improved prevention
mechanism for this disease.

2. Formulation of Model Equation

Let N be the total human population susceptible to Lassa
fever disease infections. This total human population (N) is
divided into n subpopulations denoted by Nj such that each
subpopulations represent a socioeconomic class (SEC). Each
SEC is subdivided into susceptible (Sj), infected (I j), and
recovered individuals (Rj). The rodent population is made
up of the susceptible rodents (P) and the infected rodents
(Q). We took into consideration that the transmission can
be from one individual to another or from the rodent to an
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individual when they come into contact. This is because
research has proven that Lassa fever from the Mastomys rat
is the most prevalent, not forgetting the fact that there is also
human to human transmission [12, 18]. Susceptible humans
Sj become infected through contact with infected humans I j
at a rate βj and also through contact with infected rodents
Q at a rate αj. Infected humans I j recover at a rate ρj. Suscep-
tible rodents P become infected with Lassa virus as a result of
contact with another infected rodent Q at a rate φ. Next, we
assume that natural birth/death occurs in SEC j at a rate μj.
Also, natural birth/death occurs in rodents at a rate ξ. The
assumption of equal birth and death rates (i.e., constant pop-
ulation) for each SEC and rats population is considered here,
because we are studying the dynamics of the system for a
short period of time. In the future, we will improve on this
assumption so that we can study the dynamics of the disease
over a long period of time.

The characteristics of both lower and higher SECs have
been earlier highlighted, and this will form a basis for our
choice of parameter values. The humans in the higher social
strata are exposed to better sanitation, better health care
practices, better living environment, and even healthier agri-
cultural practices than humans in the lower social strata. In
our model, we assume that individuals move from the lower
SECs to the next higher SECs and vice versa. Therefore, the
contact rates will also decrease accordingly, that is, contact
rate at lower class will be higher than that of higher class.
Similarly, the recovery rate of the lower class will be lower
than that of the higher class. The order of arrangement of
these classes is that SEC 1 is the least class and SEC n is the
topmost class, so SEC 2 is of a higher class than SEC 1 and
SEC 3 is of a higher class than SEC 2 in that order. Based
on these, we can write the inequalities connecting these clas-
ses as β1 > β2 >⋯ > βn, α1 > α2 >⋯ > αn and ρ1 < ρ2 <⋯ <
ρn. Note that individuals can migrate from lower to higher
SEC as they gain more level of education, get better educa-
tion, or get jobs that pay higher than their former. Also,
humans in a higher SEC can suffer loss of jobs or fall into
severe economic hardship, thereby leaving them with less
income. This situation can make people move from a higher
SEC to a lower SEC. As a result of these, we assume that SjðtÞ
moves to SkðtÞ at a rate δjk. Specifically, we assume that SjðtÞ
can only move to the next lower SEC Sj−1ðtÞ or to the next
higher SEC Sj+1ðtÞ. We excluded jumping in the system to
ensure smooth migration and reduce ambiguity. Further-
more, infected individuals can move from lower social strata
to higher SEC as they get better health facilities or are better
taken care of. On the other hand, some infected humans who
have lost their source of income may move down to the lower
SEC. As a result of these also, we say that I jðtÞ move to IkðtÞ
at a rate l jk and take it that I jðtÞ can move to the next lower
SEC I j−1 or to the next higher SEC I j+1.

We do not consider movements between the recovered
classes in our model, because it is assumed that the recovered
class does not have a significant influence on the transmis-
sion of Lassa fever disease in the population. Given these fac-
tors, we developed the model below:

_S1 = μ1N1 tð Þ − β1S1 tð ÞI1 tð Þ − α1S1 tð ÞQ tð Þ − μ1S1 tð Þ
− δ12S1 tð Þ + δ21S2 tð Þ,

_I1 = β1S1 tð ÞI1 tð Þ + α1S1 tð ÞQ tð Þ − μ1 + ρ1ð ÞI1 tð Þ
− l12I1 tð Þ + l21I2 tð Þ,

_R1 = ρ1I1 tð Þ − μ1R1 tð Þ,

_S2 = μ2N2 tð Þ − β2S2 tð ÞI2 tð Þ − α2S2 tð ÞQ tð Þ − μ2S2 tð Þ
− δ21S2 tð Þ + δ12S1 tð Þ,

_I2 = β2S2 tð ÞI2 tð Þ + α2S2 tð ÞQ tð Þ − μ2 + ρ2ð ÞI2 tð Þ
− l21I2 tð Þ + l12I1 tð Þ,

_R2 = ρ2I2 tð Þ − μ2R2 tð Þ,

⋮ =⋮,

_Sn = μ2Nn tð Þ − βnSn tð ÞIn tð Þ − αnSn tð ÞQ tð Þ − μnSn tð Þ

− 〠
n

j=n−1
δnjSn tð Þ + 〠

n

j=n−1
δnjSj tð Þ,

_In = βnSn tð ÞIn tð Þ + αnSn tð ÞQ tð Þ − μn + ρnð ÞIn tð Þ

� − 〠
n

j=n−1
lnjIn tð Þ + 〠

n

j=n−1
lnjIn tð Þ,

_Rn = ρnIn tð Þ − μnRn tð Þ,

_P = ξZ tð Þ − ϕP tð ÞQ tð Þ − ξP tð Þ,

_Q = ϕP tð ÞQ tð Þ − ξQ tð Þ, ð1Þ

where j = 1, 2,⋯, n and δjj = δkk = 0 and also l jj = lkk = 0∀j, k.
The variables of the model and their meaning are presented
in Table 1. All the parameters of the model are assumed to
be positive as outlined in Table 2.

The initial conditions are assumed as follows:

Sj 0ð Þ > 0, I j 0ð Þ ≥ 0, Rj 0ð Þ ≥ 0, P 0ð Þ > 0,Q 0ð Þ ≥ 0: ð2Þ

From our earlier inequalities where β1 > β2 >⋯ > βn, α1
> α2 >⋯>αn and ρ1 < ρ2 <⋯ < ρn, we can infer that move-
ment from jth SEC to a higher (j + 1)th SEC decreases con-
tact rate βj and αj by factors m < 1 and σ < 1, respectively,
and also increases the recovery rate ρj by a factor a > 1. Thus,
we can write βj, αj, and ρj as follows:

βj =mj−1β1, αj = σj−1α1, ρj = aj−1ρ1, ð3Þ

where 0 <m, σ < 1, and a > 1.
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3. Model with Two Socioeconomic Classes

In this section, we consider a situation where the population
is made up of two SECs (i.e., lower SEC and higher SEC). The
analysis of the model with just two socioeconomic classes will
give better insight of the dynamics of the general n-SECs
model (1). Setting n = 2 in model (1), we obtain

_S1 = μ1N1 tð Þ − β1S1 tð ÞI1 tð Þ − α1S1 tð ÞQ tð Þ − μ1S1 tð Þ
− δ12S1 tð Þ + δ21S2 tð Þ,

_I1 = β1S1 tð ÞI1 tð Þ + α1S1 tð ÞQ tð Þ − μ1 + ρ1ð ÞI1 tð Þ
− l12I1 tð Þ + l21I2 tð Þ,

_R1 = ρ1I1 tð Þ − μ1R1 tð Þ,

_S2 = μ2N2 tð Þ − β2S2 tð ÞI2 tð Þ − α2S2 tð ÞQ tð Þ − μ2S2 tð Þ
− δ21S2 tð Þ + δ12S1 tð Þ,

_I2 = β2S2 tð ÞI2 tð Þ + α2S2 tð ÞQ tð Þ − μ2 + ρ2ð ÞI2 tð Þ
− l21I2 tð Þ + l12I1 tð Þ,

_R2 = ρ2I2 tð Þ − μ2R2 tð Þ,

_P = ξZ tð Þ − ϕP tð ÞQ tð Þ − ξP tð Þ,

_Q = ϕP tð ÞQ tð Þ − ξQ tð Þ: ð4Þ

The subscript 1 in model (4) above represents the lower
SEC (i.e., SEC 1), while the subscript 2 stands for the higher
SEC (i.e., SEC 2).

3.1. The Basic Reproduction Number. Model (19) has a
disease-free equilibrium (DFE) given as

S01, I01, S02, I02, P0,Q0� �
= δ21N

δ21 + δ12
, 0, δ12N

δ21 + δ12
, 0, Z, 0

� �
:

ð5Þ

The DFE (5) was obtained using the fact that S1 + S2 =N
and at DFE, S01 =N1, S

0
2 =N2 and solving model (4) simulta-

neously under these conditions. The population of suscepti-
ble in each SEC at DFE depends on the movement rates
from one SEC to another. For instance, when there is equal
movement rate across the SECs (i.e., δ21 = δ12), then the
two SECs have equal susceptible population at DFE (i.e., S01
= S02). Similarly, if more individuals moves into SEC 1 (i.e.,
δ21 > δ12), then SEC 1 dominates at DFE (i.e., S01 > S02). On
the other hand, if more people moves into SEC 2 (i.e., δ21 <
δ12), then SEC 2 dominates at DFE (i.e., S01 < S02). The above
results demonstrates the importance of migration rates at
DFE. In the subsequent sections, we will explore the signifi-
cance of migration rates in the dynamics of Lassa fever dis-
ease on a multiple socioeconomic population.

The basic reproduction number can be understood as the
average number of new infections of Lassa fever that will be
seen if an infected human is brought into contact with a given
population that is susceptible to Lassa fever. The basic repro-
duction number of model (4) is computed using the next gen-
eration matrix approach of Van Driessche and Watmough
[26]. The associated next generation matrices of model (4) is

FV−1 =
a11 a12 a13

a21 a22 a23

0 0 a33

0
BB@

1
CCA, ð6Þ

where

F =
β1S

0
1 0 α1S

0
1

0 β2S
0
2 α1S

0
2

0 0 ξP0

0
BB@

1
CCA,

V =
μ1 + ρ1ð Þ + l12 −l21 0

−l12 μ2 + ρ2ð Þ + l21 0
0 0 ξ

0
BB@

1
CCA,

ð7Þ

a11 = β1S
0
1b2/k1k2 + k1l21 + k2l12, a12 = β1S

0
1l21/k1k2 + k1

l21 + k2l12, a13 = α1S
0
1/ξ, a21 = β2S

0
2l12/k1k2 + k1l21 + k2l12, a22

= β2S
0
2b1/k1k2 + k1l21 + k2l12, a23 = α2S

0
2/ξ, a33 = ϕP0/ξ, b1 =

k1 + l12, b2 = k2 + l21, k1 = μ1 + ρ1, k2 = μ2 + ρ2: The two

Table 1: Definition of variables in model (1).

Nj tð Þ Total human population in the jth SEC

Sj tð Þ Susceptible humans in the jth SEC

I j tð Þ Infected humans in the jth SEC

Rj tð Þ Recovered humans in the jth SEC

Z tð Þ Total rodent population

P tð Þ Susceptible rodents

Q tð Þ Infected rodents

Table 2: Definition of parameters used in model (1).

βj The rate of contact between Sj tð Þ and I j tð Þ
αj Contact rate between Sj tð Þ and Q tð Þ
δjk Rate at which humans migrate from Sj tð Þ and Sk tð Þ
ljk Rate at which humans migrate from I j tð Þ and Ik tð Þ
ρj Recovery rate of I j tð Þ
φ Contact rate between P tð Þ and Q tð Þ
μj Natural birth/death rate of humans in the jth SEC

ξ Natural birth/death rate of rodents

4 Journal of Applied Mathematics



possible dominant positive real eigenvalues of the matrix
FV−1 are

λ =Rh, λ =Rr , ð8Þ

where Rh = ðða11 + a22Þ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða11 + a22Þ2 + 4ða12a21 − a11a22Þ

q
Þ

/2 and Rr = ϕZ/ξ. Clearly, Rr > 0. To show that Rh > 0, we
need to show that ða11 + a22Þ2 + 4ða12a21 − a11a22Þ ≥ 0; other-
wise, we obtain a complex eigenvalue. Unfortunately, to show
analytically that the inequality ðða11 + a22Þ2 + 4ða12a21 − a11
a22Þ ≥ 0Þ holds in general is difficult due to many different
parameter combinations in the equation. However, we dis-
covered that for various parameter values or assumptions,
the inequality holds. For instance, if l12 = l21 = 0, the inequal-
ity reduces to ða11 − a22Þ2 which is positive. Thus, the basic
reproduction numberR0 is the dominant positive real eigen-
value of the matrix FV−1 and is given by

R0 = max Rh,Rrf g, ð9Þ

provided ða11 + a22Þ2 + 4ða12a21 − a11a22Þ ≥ 0. Epidemiologi-
cally, Rh is the basic reproduction number attributed to
humans, while Rr is the basic reproduction number related
to rodents.

Next, we analyse the basic reproduction number for
human population only. If we consider only the human
population, its basic reproduction number according to
equation (8) is

Rh =
a11 + a22ð Þ +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a11 + a22ð Þ2 + 4 a12a21 − a11a22ð Þ

q

2 :

ð10Þ

Note that l12 = l21 = 0⇔ a12 = a21 = 0. This implies that
there is no movement of infected humans from one SEC to
another. This also means that humans in one socioeconomic
class will not contribute to infections in the other SEC. When
this happens, Rh reduces to [27]

Rh =max a11, a22f g, ð11Þ

where a11 and a22 simplifies to a11 = β1S
0
1/k1 and a22 = β2S

0
2/

k2 when ðl12 = l21 = 0Þ. Note that a11 is the basic reproduction
number associated with SEC 1, while a22 is the basic repro-
duction number associated with SEC 2. Consequently, equa-
tion (29) shows that when there is no movement of infected
individuals across the SEC ðl12 = l21 = 0Þ, the basic reproduc-
tion number associated with humans depends on either of
the SEC that dominates. So, Rh = a11 if SEC 1 dominates,
while Rh = a22 if SEC 2 dominates. Also, from (29), we can
see that for Rh to be less than unity, we must have a11 < 1
and a22 < 1. In a situation where either a11 or a22 is greater
than unity, then Rh will also be greater than 1. Therefore,
in order to prevent an outbreak of Lassa fever disease in the
human population, we must ensure that a11 < 1 and a22 < 1.

3.2. Type Reproduction Number. In this study, we are consid-
ering a heterogeneous human population where there are
multiple host types. It is of importance to investigate the type
reproduction number which is vital in determining the num-
ber of secondary infection that is expected in each distinct
subpopulation [28, 29]. The type reproduction number can
be computed using the formula below:

T = e1K I − I − Pð ÞKð Þ−1e, ð12Þ

where I is the identity matrix, e is the first unit vector and P is
the projection matrix on type 1 (i.e., p11 = 1, and pij = 0 for all
other entries) [28, 29]. The type reproduction number in
relation with SEC 1 is

T1 = a11 +
a12a21
1 − a22

: ð13Þ

Similarly, the type reproduction number associated with
SEC 2 is

T2 = a22 +
a12a21
1 − a11

: ð14Þ

From the equations (13) and (14), we observe that if
there is no movement of infected individuals across the
SECs ðl12 = l21 = 0Þ, then T1 = a11 and T2 = a22. This agrees
with our earlier results on the analysis of basic reproduc-
tion numbers above. Epidemiologically, to eliminate the
disease from SEC 1, we must keep T1 below unity. Simi-
larly, to eliminate the disease from SEC 2, we must keep
T2 below unity.

3.3. The Dominant SEC of the 2-SEC Model. Lassa fever dis-
ease has short incubation period of about 6–21 days [30].
In this sense, it seems that an infected human I jðtÞ will con-
sider getting well first before considering improving his or
her social standard like getting new jobs, education, or other
sources of income. In a case where infected individuals do
not move from one SEC to another SEC, (i.e., l12 = l21 = 0),
from equation (11), we have that the basic reproduction
number for the entire human population comprising of the
two SECs can be written as

Rh =max Rh1,Rh2f g, ð15Þ

where Rh1 = β1δ21N/ðμ1 + ρ1Þðδ21 + δ12Þ, and Rh2 = β2δ12N/
ðμ2 + ρ2Þðδ21 + δ12Þ =mβ1δ12N/ðμ2 + aρ1Þðδ21 + δ12Þ. Bio-
logically, Rh1 and Rh2 are the basic reproduction numbers
associated with SEC 1 and SEC 2, respectively [28, 29, 31].
Since Rh =max fRh1,Rh2g, it tells us that either SEC 1
or SEC 2 drives Lassa fever disease outbreak in the human
population. Therefore, investigating which of the SEC is
driving the Lassa fever disease outbreak is crucial. This will
enable us to make efficient plans in controlling the outbreak
from the entire population. To investigate this, we identi-
fied the relationship that exists between Rh1 and Rh2 con-
sidering the following cases:
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(i) δ21 = δ12

(ii) δ21 < δ12

(iii) δ21 > δ12

We assume that μ1 = μ2 = μ in all cases. This assumption
is understandable, since μ1 and μ2 are natural birth/death
rate in SEC 1 and SEC 2, respectively.

Case 1. This is a situation where susceptible humans move
across SECs at an equal rate (i.e., δ12 = δ21).

In this case, the DFE becomes

S∗1 , I∗1 , S∗2 , I∗2 , P∗,Q∗ð Þ = N
2 , 0, N2 , 0, Z, 0

� �
, ð16Þ

and Rh1 and Rh2 becomes

Rh1 =
β1N

2 μ1 + ρ1ð Þ , Rh2 =
mβ1N

2 μ2 + aρ1ð Þ : ð17Þ

Since m < 1 and a > 1 then Rh2 <Rh1. This means that
Rh =Rh1, since Rh is the greatest eigenvalue with the
assumption that there is uniform migration or movement
rates. We can infer from this that the outbreak of the disease
will be driven by the lower SEC. Therefore, the control inter-
vention strategy should be targeted more at the lower SEC for
effective reduction of the spread of Lassa fever disease.

Case 2. The case considered here, is when there is more
movement of susceptible humans from the higher SEC to
the lower SEC (i.e., δ12 < δ21). Hence, Rh1 and Rh2 can be
written as Rh1 = β1δ21N/ðμ1 + ρ1Þðδ21 + δ12Þ, and Rh2 =m
β2δ12N/ðμ2 + aρ2Þðδ21 + δ12Þ. And since m < 1, a > 1 and
also δ12 < δ21, it is easy to see again that Rh2 < Rh1. This result
is seen to be in agreement with the result derived from the
first case, where there is equal movement from one SEC to
the other. This implies that uniform movement between
SECs will give the same result as when more individuals
move from higher SEC to lower SEC.

Case 3. This is the case where there is more movement of sus-
ceptible humans from the lower SEC to the higher SEC. To
determine the dominant SEC, we take two extreme cases:
when the difference between SEC 1 and SEC 2 is considerably
small (i.e., m→ 1, a→ 1) and when the difference between
one SEC and the other is large (i.e., m→ 0, a→∞). By
taking the limits of the basic reproduction numbers
(Rh2,Rh1) and comparing the values obtained from the
limits, we obtained

Rh1 <Rh2 as m→ 1, a→ 1,
Rh2 <Rh1 as m→ 0, a→∞:

ð18Þ

From the result above, we can infer that if the movement
rate is greater into the SEC 2, then this SEC 2 (higher SEC)
will drive the Lassa fever outbreak, provided there is a consid-

erable small difference between the two socioeconomic
classes.

3.4. Outbreak Growth Rate of the 2-SEC Model. If R0 > 1, it
will make the DFE (5) to be unstable thereby leading to
outbreak of Lassa fever disease. It is necessary to find out
the rate of growth of Lassa fever outbreak in the population.
So, we will consider the outbreak growth rate when the basic
reproduction number is greater than unity to have a good
understanding of the dynamics of the disease at this stage
and as well inform the public health for proper management
of the outbreak. The outbreak growth rate is determined as
the positive (dominant) eigenvalue of the Jacobian evaluated
at the DFE [32]. The eigenvalues of the Jacobian of model (4)
evaluated at the DFE (5) are

λ1 = − μ1 + δ12ð Þ,
λ2 = − μ2 + δ21ð Þ,

λ3 =
b22 + b44ð Þ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b22 + b44ð Þ2 + 4 l21l12 − b22b44ð Þ

q

2 ,

λ4 =
b22 + b44ð Þ +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b22 + b44ð Þ2 + 4 l21l12 − b22b44ð Þ

q

2 ,

λ5 = −ξ,
λ6 = ξ Rr − 1ð Þ,

ð19Þ

where b22 = ðμ1 + ρ1 + l12ÞðR11 − 1Þ, b44 = ðμ2 + ρ2 + l21Þð
R22 − 1Þ, R11 = ðβ1S

0
1Þ/ðμ1 + ρ1 + l12Þ, R22 = ðβ2S

0
2Þ/ðμ2 +

ρ2 + l21Þ. The two possible dominant positive eigenvalue
(which the maximum one is the outbreak growth rate) are
λ4 and λ6. Clearly, λ6 > 0 if Rr > 1. To show that λ4 > 0,
observe that λ4 will be positive if R11 ≥ 1, R22 ≥ 1 and
ðb22 + b44Þ2 + 4ðl21l12 − b22b44Þ ≥ 0. To verify this, we con-
sider the following cases. If R11 = 1 and R22 = 1, then λ4 =ffiffiffiffiffiffiffiffiffiffi

l12l21
p

which is positive. Also, if l12 = 0 or l21 = 0, then λ4
= b22 or b44 which are both positive, provided R11 > 1 and
R22 > 1. For various parameter range considered, we obtain
λ4 > 0. Thus, the outbreak growth rate of the homogeneous
model (4) is

λ+ = max λ4, λ6f g, ð20Þ

provided Rr > 1, R11 ≥ 1, R22 ≥ 1 and ðb22 + b44Þ2 + 4ðl21
l12 − b22b44Þ ≥ 0. This shows that at the endemic stage of the
outbreak when the basic reproduction number is greater than
unity, the rate at which the outbreak grows depends
completely on either rats or humans factors.

Furthermore, from equation (20), we can see that if Rr
< 1,R11 < 1, andR22 < 1, all the eigenvalues will have a neg-
ative real part. This confirms that the DFE is locally stable
when Rr < 1, R11 < 1, and R22 < 1. Epidemiologically, this
implies that Lassa fever can be eliminated from the human
population if the size of the initial population of the infected
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human and rats lies in the neighbourhood of the DFE, pro-
vided the basic reproduction number is less than unity.

3.5. Model Simulations. In this section, we present numerical
simulations of our model to support our analytical results. In
particular, we investigate numerically the effects of migration
of humans across SECs on the dynamics of the disease. In our
analytical results in the previous sections, we assumed that
l12 = l21 = 0. However, in the numerical simulation here, we
will drop this assumption and consider realistic parameter
values for l12 and l21. The parameter values used for the
numerical simulation are presented in Table 3. Based on
these parameter values, we present the following numerical
simulations.

Figure 1 illustrates the case where there are no move-
ments across SECs. We discovered from the figure that
SEC 1 drives the outbreak in this case. This agrees with
our analytical result of Case 1. We also notice from the
figure that there is a huge difference on the dynamics of
infected population for the two SECs. Thus, whenever
Lassa fever outbreak occurs in a society where there is
no movement across the socioeconomic classes in the pop-
ulation, the lower socioeconomic class should be the target
of control measures for maximum reduction on the spread
of the disease.

From Figure 2, we discovered that when there is an equal
rate of movement across SECs, the SEC 1 dominates and
drive the outbreak over SEC 2. This also agrees with our ana-
lytic result in Case 1. For this case, we notice from the figure a
small difference on the infected population dynamics for the
two socioeconomic classes. Therefore, whenever Lassa fever
outbreak occurs in a society where there is equal movement
across the socioeconomic classes, the two socioeconomic
classes should be the target of control measures in other to
reduce the spread of the disease.

From Figure 3, we discovered also that when there is
less movement from the lower SEC to the higher SEC, the
lower SEC still drives the outbreak. This also agrees with
our analytic result in Case 2. Based on these results, we rec-
ommend that whenever Lassa fever outbreak occurs in a
society where movement rate into the lower socioeconomic
class is greater, the lower socioeconomic class should be the
target of control measures for effective reduction in the
spread of the disease.

From Figure 4, we discovered that when there is more
movement from lower SEC to higher SEC, the higher SEC
drives the outbreak. The infection growth rate in SEC 1 is still
high but not compared to when the movement from SEC 2 to
SEC 1 is higher. Based on these results, we recommend that
whenever Lassa fever outbreak occurs in a society where
movement rate into the higher socioeconomic class is greater,
the higher socioeconomic class should be the target of control
measures for effective reduction of the spread of the disease.
Note that all these agree with our earlier analytical results.
Since consideration of SEC gives a more realistic view of
the dynamics of Lassa fever disease in a multiple socioeco-
nomic society, the results of our study can be used in advising
the policy makers for effective management and control of
Lassa fever.

3.6. Sensitivity Analysis. To understand the importance of
different model parameters responsible for disease transmis-
sion as well as its prevalence, it is important to carry out a
sensitivity analysis of the basic reproduction number.
According to [31], the initial disease transmission has a direct
relation with the basic reproduction number. We compute
the sensitivity indices of the basic reproduction numbers
(Rh1, Rh2) of equation (4) with respect to the movement rates
δ12 and δ21. The indices calculated will give insight into the
relevance of each parameter to the prevalence of the disease.
The parameter with greater index (in magnitude) should be
taken into consideration (with higher priority) while defining
control strategy. The normalized forward sensitivity index of
a variable, u, that depends differentiable on a parameter, %, is
defined as follows:

Yu
ρ =

∂u
∂ρ

× ρ

u
: ð21Þ

When Yu
ρ > 0, we say that % increases the value of u as its

value increases, while if Yu
ρ < 0, we say that % decreases the

value of u as its value increases.
From (21) above, it is obvious that we have an explicit

formula for calculating the sensitivity indices of the basic
reproduction numbers ðRh1,Rh2Þ. Therefore, we proceed
to determine the sensitivity indices of these reproduction
numbers ðRh1,Rh2Þ with respect to δ12 and δ21. By taking
the values of the movement rate as δ12 = 0:35 and δ21 =
0:25, we obtain the following:

Table 3: Parameter values used for the numerical simulations.

Symbol of the parameters Parameter values Source

μj 0.0000548 [9]

β 0.00002 [10]

β1 1.5β Estimated

β2 0.5β Estimated

α 0.00001 [10]

α1 1.5α Estimated

α 0.5α Estimated

ρ 0.0476 [9]

ρ1 0.5ρ Estimated

ρ2 1.5ρ Estimated

ξ 0.2 [9]

φ 0.002 [11]

δ12 0.2–0.4 [27]

δ21 0.2–0.4 [27]

l12 δ12 [27]

l21 δ21 [27]

Note: β, α, and ρ represent human to human contact rate, human to rats
contact rate, and recovery rate of human, respectively, in a homogeneous
population (i.e., population where SECs are not considered). We
considered the above data for a homogeneous population due to limited
access to data on SECs.
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Figure 1: Figure illustrating the possible dynamics of SEC 1 and SEC 2 using model (19) for δ12 = δ21 = 0.
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Figure 2: Figure illustrating the possible dynamics of SEC 1 and SEC 2 using model (19) for δ12 = δ21 = 0:2.
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Figure 3: Figure illustrating the possible dynamics of SEC 1 and SEC 2 using model (19) for δ12 = 0:2 and δ21 = 0:4.
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Figure 4: Figure illustrating the possible dynamics of SEC 1 and SEC 2 using model (19) for δ12 = 0:4 and δ21 = 0:2.
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YRh1
δ12

= −0:5833, YRh1
δ21

= 0:5833, YRh2
δ12

= 0:4167, YRh2
δ21

= −0:4167:
ð22Þ

From the above results, it is very clear that movement
rates δ12 and δ21 have a significant impact on the basic repro-
duction number and consequently the disease dynamics.
Thus, they are among the parameters that should be taken
into consideration while defining control strategy. Also, we
can see that the sensitivity index of Rh1 with respect to δ12
and δ21 has equal magnitude but opposite signs. Thus, δ12
and δ21 has equal but opposite effects on the reproduction
numberRh1. Epidemiologically, this implies that an increase
in δ12 decreases Rh1 while an increase in δ21 increases Rh1.
Similarly, the sensitivity index of δ12 with respect to δ12 and
δ21 has equal magnitude but opposite effects. Thus, the rate
at which individuals migrate from SEC 1 decreases Rh1,
while the rate at which humans migrate into SEC 1 increases
Rh1. Similarly, the rate at which individuals migrate from SEC
2 decreases Rh2, while the rate at which humans move into
SEC 2 increases Rh2.

4. The n-Socioeconomic Class Model

In this section, we extend some of the results we have in the
2-SEC model (4) to the general n-socioeconomic class model
(1).

4.1. Disease Free Equilibrium for the n−SEC Model. The
unique DFE of the n−SEC model (1) is given by

E0 = S01, I01, S02, I02,⋯, S0n, I0n, P0,Q0� �
, ð23Þ

where S01 =N/ð1 + ðδ12/δ21Þ + ðδ12/δ21Þðδ23/δ32Þ + ðδ12/δ21Þ
ðδ23/δ32Þðδ34/δ43Þ+⋯+ðδ12/δ21Þðδ23/δ32Þðδ34/δ43Þ+⋯+ðδ
ðn−1Þn/δnðn−1ÞÞÞ, S02 = ðδ12/δ21ÞS01, S03 = ðδ12/δ21Þðδ23/δ32ÞS01,
S04 = ðδ12/δ21Þðδ23/δ32Þðδ34/δ43ÞS01,⋯S0n = ðδ12/δ21Þðδ23/δ32Þ
ðδ34/δ43Þ⋯ ðδn−1n/δnn−1ÞS01 · ðI01, I02,⋯, I0nÞ = ð0, 0,⋯, 0Þ,
and ðP0,Q0Þ = ðZ, 0Þ.
4.2. The Basic Reproduction Number for n−SEC Model. From
the expression for the DFE of the n−SEC model, if we take
into consideration a case similar to the 2-SEC model, assum-
ing no movement of infected humans from one SEC to
another, then the basic reproduction number of the model
is derived and given as

R∗ =max Rhj,Rr

� �
j = 1, 2, 3,⋯, n, ð24Þ

where

Rhj =
mj−1β1N

μj + aj−1ρ1
	 
 δ12

δ21

δ23
δ32

δ34
δ43

⋯
δj−1j
δjj−1

S01: ð25Þ

Note that the threshold Rhj is the basic reproduction
number of the human compartment of SECj of model (1).
To determine the SEC that is driving the outbreaks in the

human population of the general n−SEC model, we take into
consideration the same cases as in 2−SEC as follows:

Case i. δjk = δkj · ∀j, k:

Considering this assumption, the DFE (23) becomes

S01, I01, S02, I02,⋯, S0n, I0n
� �

= N
n
, 0, N

n
, 0,⋯, N

n
, 0

� �
, ð26Þ

while the basic reproduction number (25) becomes

Rhj =
mj−1β1N

n μj + aj−1ρ1
	 
 : ð27Þ

We can show easily that

Rhj+1 <Rhj, j = 1, 2, 3,⋯, n: ð28Þ

The result of equation (28) shows that when there is equal
movement from one SEC to another, the lower SEC domi-
nates and hence will drive the outbreak. This notwithstand-
ing, control strategies should be targeted at all SECs with
Rhj > 1 but with more emphasis on the lower SEC.

Case ii. δjk < δkj for j < k, this is a case where more humans
migrate from higher to lower SECs. This case gives the same
result as in (28).

Case iii. δjk > δkj for j < k. This is a case where more individ-
uals migrate from lower to higher SECs.

For this case, the inequalityRhj <Rhj+1, asm→ 1,a→ 1
holds.

These results show that there is a possibility of any of the
SECs driving the outbreak if there are more movements of
humans into that SEC, and the population size gets too big.
The movement rates that will necessitate this action changes
with respect to other model parameters. When movement
into SECs that are higher becomes predominant, then control
strategies should be channelled to these higher SECs, since
they will eventually drive the outbreak of the disease.

5. Discussion

Socioeconomic status of humans in a given population is
known to affect the transmission dynamics of any infectious
disease in a community. In this study, we formulated an n
−patch Lassa fever disease model to enable us determine
the impact of socioeconomic status in the transmission
dynamics of Lassa fever disease in a population. Initial
insight into the model is gained by considering particular
case of two socioeconomic classes.

In analysing the model, we took a special case of two
socioeconomic classes in a community and determined and
analysed some basic mathematical and epidemiological fea-
tures of the model. Some of the epidemiological features of
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the model determined include the basic reproduction num-
ber, the type reproduction number, and outbreak growth
rate. Dynamical system analysis of these epidemiological fea-
tures reveals some transmission dynamics of Lassa fever in a
two socioeconomic population. For instance, we discovered
from our analyses that complete eradication of Lassa fever
is possible when SEC is considered, as long as the value of
the basic reproduction number is kept at a value less than
unity. On the other hand, there will be an outbreak if the
reproduction number is greater than unity.

Next, we investigated the differences in the dynamics of
the two socioeconomic classes based on the rates across the
socioeconomic classes. For these investigations, we consid-
ered three special cases. In the first case, we considered the
situation where there is equal migration rates. From our
analyses, we saw that the SEC 1 will have more number of
infections when compared with the SEC 2. This shows that
SEC 1 will be the dominant and consequently drive the
outbreak of Lassa fever in the population. Therefore, to effec-
tively control the outbreak of Lassa fever in a community, the
SEC 1 will be highly considered in providing effective disease
control measures.

The second case, we considered is a situation where more
humans migrate from SEC 2 to SEC 1. In this case, we discov-
ered that the number of infected individuals in SEC 1 will still
dominate that of SEC 2. For the third case, we considered
more migrations from SEC 1 to SEC 2 and obtained a differ-
ent result which is that the number of infections generated in
SEC 2 started dominating. This shows that any SEC can drive
the outbreak when it has more population of infected and
susceptible humans. So, we recommend that control inter-
vention measures should be concentrated more on any SEC
that has a greater migration rate coming into it, as it can be
seen that the migration rate plays a vital role in determining
the SEC that drives the outbreak of Lassa fever disease. Since,
considering SEC is more realistic, it implies that considering
socioeconomic classes should be encouraged for a better
understanding of the dynamics of Lassa fever and consequent
development of better control intervention strategies.

Sensitivity analysis of our model was carried out to deter-
mine the impact of movement rate across the socioeconomic
classes to initial disease transmission. The results of the anal-
ysis revealed that the movement rate have a significant
impact on initial disease transmission. Also, the sensitivity
analysis results also show that the rate of immigration and
emigration into any SEC has opposite impact on the initial
disease transmission and prevalence. This suggests that the
movement rate should be put into consideration in defining
control measures to reduce the prevalence of the disease in
the entire population.

In conclusion, we extended the facts established in the
results of the 2−SEC model to a general n−SEC model. We
discovered that the dynamical behaviour of our model agrees
with real-life expectation as far as Lassa fever disease is con-
cerned. Therefore, this model can be used in studying the
dynamics of Lassa fever, so as to predict the future Lassa fever
outbreak in communities where the disease is endemic. The
findings from our study have given us a reason to conclude
that the socioeconomic status of humans has a significant

impact on Lassa fever transmission dynamics. Thus, socio-
economic classes of humans should be put into consider-
ations in recommending effective control intervention
measures to be used for total eradication of Lassa fever in
communities where the disease is endemic.

Even though our model has been used successfully to
study the dynamics of Lassa fever, it is important to know
that this model has limitations. We assumed constant birth
rate and death rate for all socioeconomic classes resulting in
constant population. However, it is expected that the higher
SEC should have a higher life expectancy than the lower
SEC. Another limitation of this study is that our model has
not been validated using real data. This is due to limited
access to data. All these limitations will be taken into consid-
eration in our future study.

Data Availability

The data supporting this deterministic model are from previ-
ously published articles and they have been duly cited in this
paper.
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