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The purpose of this paper is to prove some new fixed point theorem and common fixed point theorems of a commuting family of
order-preserving mappings defined on an ordered set, which unify and generalize some relevant fixed point theorems.

1. Introduction and Preliminaries

The fixed points theory has experienced a great development
in recent years, among enormous results which have
enriched this theory, Tarski’s theorem on ordered sets is
“any application which preserves order on a complete lattice
admits a fixed point and the set of its fixed points is a com-
plete lattice.”

In our previous work, we have introduced the concept of
complete T-lattice to show that a complete lattice is a special
case of a complete T-lattice. So, the reader may wonder if we
can get a generalization of Tarski’s theorem.

In one of our articles [1, 2], we proved that any applica-
tion that preserves the order on a complete T-lattice has a
fixed point. In this work, we give a structure of the set of these
fixed points and some other results.

So, we begin by describing the relevant notation and ter-
minology. Let ðE, ≤Þ be a partially ordered set and M ⊂ E a
nonempty subset. Recall that an upper (resp. lower) bound
for M is an element p ∈ E with m ≤ p (resp. p ≤m) for each
m ∈M; the least upper (resp. greatest-lower) bound ofM will
be denoted sup M (resp. inf M).

Next, let ðE, ≤Þ be a partially ordered set with the least
element 0 and greatest element 1 and T be a given operator
on ðE, ≤Þ reversing the order such that x ≤ Tx or Tx ≤ x
for all x ∈ E. We consider the following subsets Kr and Kl
of E, Kr = fx ∈ E, Tx ≤ xg and Kl = fx ∈ E, x ≤ Txg, so Kr
and Kl are not empty (since T1 ≤ 1 and T1 ≤ T21). In what

follows, let us say that the set ðE, ≤Þ a complete T-lattice if
every subset A of E admits the greatest lower (resp. least
upper) bound as soon as TA ≺ A (resp. A ≺ TA), where TA
designates the image of A under the map T for A ⊂ E, and
we denote by A ≺ B if for every a ∈ A, b ∈ B, we have a ≤ b
for A and B be two subsets of E.

2. Complete Sub-T-Lattice and Fixed
Point Theorems

2.1. Complete Sub-T-Lattice. Inspired by the success of the
complete lattice subset concept introduced by Birkhoff [3]
in 1940, we propose a similar concept in the partially
ordered sets. The aim of the concept is to structure the
set of fixed points of an increasing application on an
ordered set.

Let ðE, ≤Þ be a partially ordered set and T be a given oper-
ator on ðE, ≤Þ reversing the order such that x ≤ Tx orTx ≤ x
for all x ∈ E.

Let us denote by ≤A the restriction of the ordered relation
of E on A with A a subset of E.

Definition 1. We say that ðA, ≤AÞ is a complete sub-T-lattice
of E if ðA, ≤AÞ admits a least and a greatest element and every
party X of AinfAXðresp:supAXÞ exists as soon as TX ≺ X
(resp. X ≺ TX):
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(1) Every finite subset A of the setℕ ordered by the usual
order relation is a sub-T-lattice with TðaÞ = 0A for all
a ∈ A with 0A is the least element of A

(2) We consider Figure 1: We take E = fa0, a1, a2, a3, a4
, a5 ; b0, b1, b2, b3gand the following order relation ≤
defined by:a5 ≤ ai ≤ a0for alli ∈ f1, 2, 3, 4g,ai ≤ a1,
andai ≤ a2fori = 3, 4. Moreover, we have b3 ≤ b2 ≤ b1
≤ b0 and a3 ≤ b2 ≤ a1 ≤ b0 where TðaiÞ = a5 for i = 0
, 2; TðaiÞ = b2 for i = 1, 3; and TðaiÞ = a0 for i = 4, 5.
TðbiÞ = b2 for i = 0, 1, 2, Tðb3Þ = b0 Let A = fa0, a1,
a4, a5, a5g, so (A, ≤A) is a complete sub-T-lattice

Recall. Let us note that infBX (resp. supBX) is equal to the
greatest-lower (resp. least-upper) bound of X in B for every
party X of B.

Proposition 2. Let ðA, ≤AÞ be a complete sub-T-lattice with
0A the least element and 1A the greatest element. Then, for
every party X ⊂ Kr ∩ A (resp. X ⊂ Kl ∩ A) supAX (resp. inf A
X) exists in Kr(resp. in Kl).

Proof. Let X be a nonempty party of Kr ∩ A. Let us define the
setM = fy ∈ A : x ≤ y for all x ∈ Xg. We have M ≠∅,
since 1A ∈M because Kr ∩ A ≠∅ in this case 1A ∈ Kr , and
for every m0,m1 ∈M, we have Tm0 ≤ Tx ≤ x ≤m0; thus, T
m0 ≤ Tx ≤ x ≤m1 for all x ∈ X which shows that TM ≺M.
Consequently, mg = infAM exists since ðA, ≤AÞ is a complete
sub-T-lattice. As we have x ≤mg for all x ∈ X, therefore T
mg ≤ Tx ≤ x ≤mg which implies mg ∈ Kr . If X was a party
of Kl ∩ A, the proof of existence of infEX in Kl would be
symmetric.

By this proposition, we can easily prove that each chain
C = ðciÞ of a complete sub-T-lattice has the least upper bound
and the greatest lower bound; indeed, we assume that C = ðciÞ
is an increasing chain if C ∩ Kr ≠∅; then, the sup C ∩ Kr =
sup C exists in Kr by Proposition 2, but if C ∩ Kr =∅, we
have ci ≤ cj ≤ Tcj for all j ≥ i which shows that C ≺ TC and
since C = ðciÞ is a chain of a complete sub-T-lattice then
sup C exists. If C is a decreasing sequence, the proof of exis-
tence of inf C is symmetric.

Recall that a chain M of E is maximal if there is an ele-
ment a of E comparable to every element of M then a ∈M.

In the following, we define ð← ,m� = fx ∈ E, x ≤mg and
the ½m,→ Þ = fx ∈ E,m ≤ xg for any m ∈ E called intervals.

If ðE, ≤Þ is a complete T-lattice; then, ðE, ≤Þ is a complete
sub-T-lattice, and we can show that each interval of E is a
complete sub-T-lattice, indeed. We have for all x ∈ ½m,→ Þ,
m ≤ x ≤ 1E which implies that m is the least element and 1E
is the greatest element of ½m,→Þ.

Let B ⊂ ½m,→ Þ be a nonempty set such that B ≺ TB. Since
E is a complete lattice, so b0 = supEB exists in E. We will only
prove that supEB exists in ½m,→Þ. Then, we have for all b ∈ B,
m ≤ b ≤ b0 which gives b0 ∈ ½m,→ Þ. Consequently, supEB ∈
½m,→ Þ. The proof for the existence of the greatest-lower if
TB ≺ B follows identically.

In the same fashion, we can prove that ½a, b� = fx ∈ X
: a ≤ x ≤ bg is a complete sub-T-lattice.

Proposition 3. In a complete sub-T-lattice, any decreasing
family of nonempty intervals has a nonempty intersection
and it is an interval.

Proof. Let ðA, ≤AÞ be a complete sub-T-lattice and ð½ai, bi�Þi∈I
a decreasing family of nonempty intervals in E, so we have
ai ≤ ai+1 and bi+1 ≤ bi. Consequently, ðaiÞi∈I is an increasing
sequence, and ðbiÞi∈I is a decreasing sequence; furthermore,
we have ai ≤ bj for all i, j ∈ I; indeed, ai ≤ aj ≤ bj if j ≥ i and
ai ≤ bi ≤ bj if i ≥ j. Therefore, since A is a complete T-lattice
which shows that Supi∈Iai = a and inf i∈Ibi = b exist in A.

For all i, j ∈ I, we have ai ≤ a ≤ b ≤ bj. Con-
sequently,

T
i∈I ½ai, bi� = ½a, b�.

2.2. Fixed Point Theorems. The theory of fixed points is
concerned with the conditions which guarantee that a
mapF : E→ E of a set E into itself admits one or more fixed
points, that there are pointsx ∈ Efor whichFðxÞ = x.

Now, let ðE, ≤Þ be an ordered set and T be a given oper-
ator on ðE, ≤Þ reversing the order such that x ≤ Tx or Tx ≤ x
for all x ∈ E.

We take a part A of E and a monotone maps f : A→ A;
we note the set of fixed points of f by δð f Þ.

Theorem 4. If ðA, ≤AÞ is a complete sub-T-lattice with the
least element 0A and the greatest element 1A, then, δð f Þ is a
nonempty complete sub-T-lattice.

Indeed, we have 0A ≤ f ð0AÞ; this shows that Δ = fx ∈ A
: x ≤ f ðxÞg is a nonempty set. Furthermore, we also have
for any x ∈ Δ, f ðxÞ ∈ Δ and for any chain C of Δ, we put s =
supAC; for all x ∈ C, we have x ≤ s apply the mapping f , x ≤
f ðxÞ ≤ f ðsÞ that gives s ≤ f ðsÞ so s ∈ Δ. Therefore, Δ satisfies
the assumptions of Zorn’s lemma. Hence, for every x ∈ Δ,
there exists a maximal element xm ∈ Δ such that x ≤ xm. We
claim that if xm is a maximal element of Δ, then xm ≤ f ðxmÞ
which gives us f ðxmÞ ≤ f 2ðxmÞ which implies that f ðxmÞ ∈ Δ
. According to the maximality of xm, we have xm = f ðxmÞ
which proves that δð f Þ ≠∅.
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Figure 1: Example of a complete sub-T-lattice.
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To show that δð f Þ is a complete sub-T-lattice, let S = fx
∈ A : x ≤ f ðxÞ ≤ x∗ for all x∗ ∈ δð f Þg: It is clear that S ≠
∅ since 0A ∈ S. For any chain ðxnÞn of S, supAðxnÞn = c exists
in A, and we have xn ≤ x∗ for all x∗ ∈ δ which implies xn ≤ c
≤ x∗. We applyf and we obtainxn ≤ f ðxnÞ ≤ f ðcÞ ≤ f ðx∗Þ =
x∗; hence,c ≤ f ðcÞ ≤ x∗that provesc ∈ S. Consequently, we
have the existence of a maximal element of S according to
Zorn’s lemma. We claim that if xm is a maximal element of
S, then xm ≤ f ðxmÞ ≤ x∗ for all x∗ ∈ δ. In the same fashion,
we applyf that givesxm ≤ f ðxmÞ ≤ f 2ðxmÞ ≤ x∗for allx∗ ∈ δ
that impliesf ðxmÞ ∈ S. It is easy from here to see that in
fact we have xm = f ðxmÞ by the maximality of xm and xm
= f ðxmÞ ≤ x∗ for all x∗ ∈ δ that shows that xm is the least
element of δð f Þ. The proof of existence of the greatest ele-
ment of δð f Þ is symmetrical.

Now, let B ⊂ δð f Þ be a nonempty set such that TB ≺ B. We
want to find infδð f ÞB, the greatest-lower bound of B in δð f Þ. Let
us put e = infAB. For all b ∈ B, e ≤ b, as f ðeÞ ≤ b = f ðbÞ. Thus
f ðeÞ ≤ e. Therefore, the decreasing sequence ð f nðeÞÞn tends to
a fixed point of f which will be the greatest lower bounds (or
the greatest-lower bound) of B in δð f Þ. The construction of
supδð f ÞB is the least upper bound of B in δð f Þ if B ≺ TB is sym-
metric. Thereafter, ðδð f Þ, ≤Þ is a complete sub-T-lattice.

3. Common Fixed Points for Commuting
Family of Order-Preserving Mappings

3.1. Main Results. In this section, we give a generalization of
Tarski’s theorem [4] that implies that any finite commuting
family of order-preserving mappings has a common fixed
point.

The existence of a common fixed point for a finite family
of order-preserving applications is related to the intersection
of a finite decreasing sequence of complete sub-T-lattices.

Theorem 5. Let ðE, ≤Þ be a complete T-lattice. Then, any finite
commuting family of order-preserving mappings (monotone
mappings) ðTiÞi∈I , Ti : E→ E, has a common fixed point.
Moreover, if we denote by FixððTiÞÞ the set of the common
fixed points, then FixððTiÞÞ is a complete sub-T-lattice of E.

Proof. We take I = f0, 2::, ng, where n ∈ℕ. Let ðE, ≤Þ be a
complete T-lattice so the set δ0 = δðT0Þ of fixed points of T0
is a complete sub-T-lattice by Theorem 4. As T1 ∘ T0 = T0 ∘
T1, we haveT0ðT1ðxÞÞ = T1ðT0ðxÞÞ = T1ðT0ðxÞÞ = T1ðxÞ that
implies T1ðxÞ ∈ δðT0Þ for all x ∈ δðT0Þ. Therefore we can
restrict the maps T1 to δ0, and since δ0 is a complete sub-T-
lattice, the set δ1 = FixðT1/δ0Þ = fx ∈ δðT0Þ, T1ðxÞ = xg of
fixed points of T1 in δ0 = δðT0Þ is a complete sub-T-lattice.
It is easy to see that the family ðδiÞi∈I such that
δi = FixðTi/δi−1Þ = fx ∈ δi−1, TiðxÞ = xg for all i ∈ I with δ0 =
δðT0Þ is a decreasing sequence.

Now, we consider the map

F : δ0 × δ1 ×⋯ × δn → δ0 × δ1 ×⋯ × δn,
x0, x1, ::, xnð Þ→ x1, x2, ::, xn, xnð Þ:

ð1Þ

As the map F is monotone and the set δ0 × δ1 ×⋯ × δn is
a complete T-lattice, then there exists ðx0, x1, ::, xnÞ ∈ δ0 ×
δ1 ×⋯ × δn such that Fðx0, x1, ::, xnÞ = ðx0, x1, ::, xnÞ that
means that ðx0, x1, ::, xnÞ = ðx1, x2, ::, xn, xnÞ that gives
x0 = x1 =⋯ = xn and x0 ∈ FixððTiÞÞ. Consequently,
FixððTiÞÞ ≠∅.

It remains therefore to show that FixððTiÞÞ is a complete
sub-T-lattice. For this, it is easy to see that FixððTiÞÞ = δn
which shows that FixððTiÞÞ is a complete T-lattice.

3.2. Common Fixed Points. In the following, we investigate
the existence of a common fixed point of a commuting family
of order-preserving mappings defined on a complete sub-T-
lattice. The proof of our result follows the ideas of Baillon
[5] developed in hyperconvex metric spaces and Abu-Sbeih
and Khamsi [6] on the partially ordered sets. It is astonishing
that we will develop their ideas in the case of the complete
sub-T-trellis despite the difficulty of the demonstration
which comes from the fact that in complete sub-T-trellis,
we do not always have the existence of sup and inf of its parts.

We have the following result in partially ordered sets.
Let ðE, ≤Þ be a partially ordered set and T be a given oper-

ator on ðE, ≤Þ reversing the order such that x ≤ Tx or T
x ≤ x for all x ∈ E. Then,

Theorem 6. For any decreasing family of nonempty complete
sub-T-lattice subsets ðXβÞβ∈Γ of E, where Γ is a directed index

set, we have
T

β∈Γ Xβ is not empty and it is a complete sub-T-

lattice.

Proof. Consider the family

P = Aβ

� �
β∈Γ

;Aβ is a nonempty interval inXβ and
n

� Aβ

� �
β∈Γ

is a sequence decreasing
o
:

ð2Þ

The set P is not empty since ðXβÞβ∈Γ ∈P . If we order P

by the inclusion relation, every chain of P has a lower bound
since in a complete sub-T-lattice, any decreasing family of
nonempty intervals has a nonempty intersection and it is
an interval by Proposition 3. Therefore, P satisfies the
assumptions of Zorn’s lemma. Hence, for every D ∈P , there
exists a minimal element A ∈P such that A ⊂D. We claim
that if ðAβÞβ∈Γ is minimal, then each Aβ is a singleton.

Indeed, let us fix β0 ∈ Γ. We know that Aβ0
= ½mβ0

,Mβ0
�.

We consider the new family

Bβ =
Aβ if β ≥ β0 orβ not comparable toβ0,

x ∈ Xβ,mβ0
≤ x ≤Mβ0

n o
ifβ0 ≥ β

:

8<
:

ð3Þ

Our assumptions on ðXβÞ and ðAβÞ imply that ðBβÞ ∈P .
Moreover, we have Bβ ⊂ Aβ for any β ∈ Γ. Since ðAβÞβ∈Γ is

minimal, we get Bβ = Aβ for any β ∈ Γ. In particular, we have
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Aβ = x ∈ Xβ ;mβ0
≤ x ≤Mβ0

n o
for β ≤ β0: ð4Þ

If Aβ = ½mβ,Mβ�, then we must have mβ =mβ0
and Mβ

=Mβ0
. Therefore, we proved the existence of m,M ∈ E such

that Aβ = fx ∈ Xβ ;m ≤ x ≤Mg for any β ∈ Γ:

It is easy from here to show that in fact we havem =M by
the minimality of ðAβÞβ∈Γ, which proves our claim. Clearly,

we have m ∈ Aβ for any β ∈ Γ which implies ϖ =T
β∈Γ Xβ is

not empty.
We will prove that ϖ is a complete sub-T-lattice. First, we

start by proving the existence of the least and the greatest ele-
ment of ϖ for that we consider the set:

K = Aβ

� �
β∈Γ

; ϖ ⊂ Aβ is a interval inXβ and Aβ

� �
is decreasing

n o
:

ð5Þ

For the same reason above, we have:

(1) K is not empty since ðXβÞβ∈Γ ∈K

(2) K satisfies the assumptions of Zorn’s lemma. Hence,
for every D ∈K , there exists a minimal element A
∈K such that A ⊂D

(3) If ðAβÞβ∈Γ is a minimal element of K , then Aβ = Aβ′

for all β, β′ according to the minimality of ðAβÞβ∈Γ
which gives us Aβ = ½m0,M0� = ϖ for all β. Hence
the result we are searching

Secondly, let A ⊂ ϖ be nonempty such that A ≺ TA. We
will only prove that the sup A exists in ϖ. The proof for the
existence of the infimum follows identically if TA ≺ A. For
any β ∈ Γ, we have A ⊂ Xβ. Since Xβ is a complete sub-T-lat-
tice, then aβ = supXβ

A exists in Xβ and the family ðaβÞβ∈Γ is

an increasing chain.
Now, we consider the set X∗

β = ½aβ,→ Þ ∩ Xβ for β ∈ Γ.
Then, X∗

β is a nonempty complete sub-T-lattice of Xβ. It is
easy to see that the family ðX∗

βÞβ is a decreasing chain of com-

plete sub-T-lattice. Hence,
T

β∈Γ X
å
β = I is a not empty inter-

val and I ⊂ ϖ. Obviously, we have supϖA = inf I which
completes the proof of Theorem 6.

As a consequence of this theorem, we obtain the follow-
ing common fixed point result.

Theorem 7. If ðE, ≤Þ is a complete T-lattice, then any com-
muting family of order-preserving mappings ðTiÞi∈I , Ti : E
→ E, has a common fixed point. Moreover, if we noted by
FixððTiÞÞ the set of the common point fixed points, then
FixððTiÞÞ is a complete sub-T-lattice of E.

Proof. First, note that the fixed point theorem (Theorem2)
implies that any finite commuting family of order-preserving
mappingsT1, T2, ::, Tn, Ti : E→ E, has a common fixed point.

Moreover, if we denote byFixððTiÞÞthe set of the common
fixed points, i.e., FixððTiÞÞ = fx ∈M ; TiðxÞ = x i = 1, ::, ng,
it is a complete sub-T-lattice. Let Γ = fβ ; β is a finite
nonempty subset of Ig. Clearly, Γ is downward directed
(where the order on Γ is the set inclusion). For any β ∈ Γ,
the set Fβ of common fixed point set of the mappings Ti, i ∈
β, is a nonempty complete sub-T-lattice. Clearly, the family
ðFβÞβ∈Γ is decreasing. The theorem above implies that

T
β∈Γ

Fβ is nonempty and it is a complete sub-T-lattice.

The commutativity assumption may be relaxed using a
new concept discovered in [6] (see also [7, 8]). Of course, this
new concept was initially defined in the metric setting; there-
fore, we will extend it to the case of partially ordered sets in
the next work where we will arrive at a result similar to De
Marr’s result [9] without compactness assumption of the
domain.

4. Conclusion

In this paper, we have extended some Tarski’s theorems of
the fixed point into ordered sets by new fixed point theorems.
The original proof of fixed point for complete T-lattice [2] is
beautiful and elegant but nonconstructive and somewhat
uninformative. In [3], we have given a constructive proof that
generalizes the Tarski’s version results. In this paper, we have
given a structure to the set of fixed points of an increasing
application on an ordered set and we have investigated the
existence of a common fixed point of a commuting family
of order-preserving mappings defined on a complete sub-T-
lattice. Our next work concerns the development of some
fixed point theorems in hyperconvex metric spaces.
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