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Time series analysis and prediction are major scientific challenges that find their applications in fields as diverse as finance, biology,
economics, meteorology, and so on. Obtaining the method with the least prediction error is one of the difficult problems of financial
market and investment analysts. State space modelling is an efficient and flexible method for statistical inference of a broad class of
time series and other data. The neural network is an important tool for analyzing time series especially when it is nonlinear and
nonstationary. Essential tools for the study of Box-Jenkins methodology, neural networks, and extended Kalman filter were put
together. We examine the use of the nonlinear autoregressive neural network method as a prediction technique for financial
time series and the application of the extended Kalman filter algorithm to improve the accuracy of the model. As application on
a real example, we are analyzing the time series of the daily price of steel over a 790-day period for establishing the superiority
of this method over other existing methods. The simulation results using MATLAB and R software show that the model is
capable of producing a reasonable accuracy.

1. Introduction

The prediction plays an important role in the management of
several areas, among them the economic domain. Forecasting
financial time series that are very noisy and nonstationary is a
major problem for financial operators to invest at their best
profit. The goal is to model relationships linking data to
predict short- or medium-term values. Several techniques
available for time series analysis assume the linearity of the
relationships between variables, among them the Box and
Jenkins [1, 2] methodology, one of the most popular methods
of time series modelling through five stages: (1) choosing a
class of models to represent the series, (2) the identification
of the type of model, (3) the estimation of the coefficients of
the identified models, (4) validation of the chosen model,
and (5) the forecast of the series over a given horizon.

In reality, the financial series present significant irregu-
larities so we resort to more complex techniques such as the
extended Kalman filter (EKF) [3, 4] which consists of a set

of mathematical equations to model nonlinear relations.
The Kalman filter has been applied in econometrics for the
case where a deterministic system is unknown and must be
estimated from the data, see for example Engle and Watson
(1987). The Kalman filter algorithm proved to be an addi-
tional tool to improve model output [3].

Among the most promising methods are neural networks
that have been introduced to solve complex classification
problems. They are characterized by their ability to learn
(supervised or not) from examples, then generalize to data
that have not been presented to them. Neural networks can
be seen as a black box that learns to map input models to
appropriate output models. Learning is accomplished by
changing the neuron connection weights to improve the
desired matching between the input and output patterns.

After the introduction of simplified neurons byMcCulloch
and Pitts in 1943 [5], as models of biological neurons, some
years later, exactly in 1957, Rosenblatt’s Perceptron was
endowed with the apprenticeship called “Perceptron Rule.”
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But the disadvantage of perceptron is that all the functions
that it realizes are linearly separable. It was in 1969 that
Minsky and Papert approached the disadvantage of the per-
ceptron in their book “Perceptrons” [6] which will lead to a
break of research in the next decade.

In the eighties, we saw the explosion of artificial intelli-
gence techniques, with the two articles of physicist Hopfield
[7]. In recent years, neural networks have found wide use in
time series modelling (Chakraborty et al., 1992, Weigend
Gershenfeld 1993, Gencay 1993, Hoptroff 1993).

Most neural networks used in economic forecasts are
organized in layers, so we speak of MLP (multilayered
perceptron) [8, 9]. In the field of finance, neural networks
give good results in prediction.

This article begins with a section that describes time
series analysis and gives an idea about the neural networks.

The second section presents a description of the extended
Kalman filter and the proposed combination between the
extended Kalman filter and the neural networks. The applica-
tion of different studied models and the proposed model to
the daily price of steel and the comparison between them is
presented in the third section. The results and their discus-
sion are discussed in the fourth section.

2. Time Series and Neural Network

2.1. Time Series. A time series is a parameter that changes
over time (price, cost, turnover, stocks, etc); it is the set of
observations of a quantity ordered according to their indices.
In the following, we will have a noted series:

Yt with t = 1,⋯, n, with n ∈ℕ∗: ð1Þ

The study of a time series makes it possible to analyze,
describe, and explain a phenomenon over time and to
draw consequences for decision-making. One of the main
objectives of the time series study is prediction which
consists of predicting the future values of the series from
its observed values.

The notion of stationarity is indispensable for the analy-
sis of time series. A stationary series Yt is a series whose
properties are unchanged by the change of time. We are led
to the following definition.

Definition 1. A stochastic process (Yt , t ∈ℤ) is (weakly)
stationary, if for any finite sequence of instants t1,⋯, tk, k ∈
ℕ∗, and for any integer t, the joint law of Yt1+t ,⋯, Ytk+t does
not depend on t.

Definition 2. A process (Yt , t ∈ℤ) is stationary, if:

(1) ∀t ∈ℤ, E½Yt� = μ (independent of t),

(2) ∀t ∈ℤ, EðY2
t Þ <∞ (independent of t),

(3) ∀t ∈ℤ, ∀k ∈ℤ, cov ðYt , Yt+kÞ = γðkÞ (independent
of t).

In sum, if the statistical characteristics of the stochastic
process studied vary during the measurement period, it is
said that the latter is nonstationary. Stationarity can be
summarized as temporal homogeneity.

2.2. Neural Networks. Network learning takes place as the
weights are adjusted along the layers, according to the rela-
tionship between the inputs and the desired outputs. One
of the most basic models is multilayer rerceptron (MLP)
network, which is widely used in the approximation of non-
linear functions that describe complex relationships between
independent and dependent variables in many applications.

Multilayer perceptron (MLP) was first introduced to
solve complex classification problems. But because of their
universal approximation property [9], they were quickly used
as nonlinear regression models and then for time series
modelling and forecasting.

However, the estimation and identification of these
models use sophisticated techniques and it is not easy to
determine the correct architecture. Indeed, these models are
by definition overparametrized, the error functions to be
minimized have many local minima, and the implementation
is often difficult.

The nonlinear autoregressive neural network (NAR) as
shown in Figure 1 can be trained to predict a time series from
that series past values Yðt − 1Þ, Yðt − 2Þ,⋯, Yðt − dÞ called
feedback delays, with d is the time delay parameter.

The network is created and trained in an open loop,
using the real target values as a response and making sure
of greater quality being very close to the true number in
training. After training, the network is converted into a
closed loop and the predicted values are used to supply
new response inputs to the network. A nonlinear autore-
gressive neural network applied to time series forecasting,
describe a discrete, nonlinear autoregressive model that
can be written in this form:

Yt = h Yt−1, Yt−2,⋯, Yt−dð Þ + εt: ð2Þ

The function hð:Þ is unknown in advance, and the
training of the neural network is aimed at approximating
the function by means of the optimization of the network
weights and neuron bias.

So a model (NAR) is defined precisely by an equation of
the type

Yt = α0 + 〠
k

j=1
αjϕ 〠

a

i=1
βijYt−i + β0j

 !
+ εt , ð3Þ

where a is the number of entries, k is the number of hidden
layers with activation function Φ, and βij is the parameter
corresponding to the weight of the connection between the
input unit i and the hidden unit j, αj is the weight of the con-
nection between the hidden unit j and the output unit, and
β0j and α0 are the constants that correspond, respectively,
to the hidden unit j and the output unit.

The optimization of the architecture is aimed at reducing
as much as possible the number of synapses (weights) and
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neurons in order to reduce the complexity of the network,
improve computing times, and maintain the generalization
capabilities. Concerning the optimization of the network
architecture, two main approaches have been proposed in
the literature:

• Selection approach: consists of starting with the con-
struction of a complex network that contains a large
number of neurons, then this approach is to try to
reduce the number of unnecessary neurons and remove
redundant connections during or at the end of learning

• Incremental approach: we start with the simplest possi-
ble network, then we add neurons or layers, until we
have an optimal architecture

An effective approach is to estimate the prediction error
using a set of data that was not used to construct the predic-
tor, i.e., not used for learning. This dataset is called a test set.

Divide the dataset into three kinds of target timesteps as
follows:

• Training: these datasets are presented to the network
during training and the network is adjusted according
to its error

• Validation: these datasets are used to measure network
generalization and to halt training when generalization
stops improving

• Testing: these datasets have no effect on training and so
provide an independent measure of network perfor-
mance during and after training.

3. Extended Kalman Filter

Kalman filtering (KF) is a technique that gives estimates of
unknown variables using a series of measurements contain-
ing statistical noise. It is a recursive way of doing things that
process new data as they arrive being suited for inline real-
time processing. The KF can only work with linear equations,
When the system under consideration is nonlinear, the
extended Kalman filter (EKF) is applied.

A short description of the EKF is given below. Consider a
nonlinear system described by the following 2 equations:

yt+1 = f ytð Þ + ut ,
zt = h ytð Þ + rt ,

ð4Þ

where yt is a vector that describes the system state, zt is the
observation vector (values obtained through a direct mea-
surement of the system), ut is the process noise vector, rt is
the measurement noise vector, f ð⋯Þ is a nonlinear function
that gives the state transition of the system, and hð⋯Þ is the
observation (nonlinear) function.

Kalman filter gives a method for the recursive estimation
of the unknown state y based on all observation values z up to
time t [10].

Kalman filter can be used for the improvement of neural
network forecasts. The evolution of the filter from time t − 1
to t is described by the following equations:

(1) Initialization:

yat = y0with P0 is the error covariance matrix

(2) The t-th predictor step:

ypt = f yat−1ð Þ ð5Þ

Pp
t = J f ðyat−1Þ:Pt−1:J

k
f ðyat−1Þ +Qt−1 where Qt = E½ut:ukt−1� is

the process noise covariance matrix.

(3) The t-th corrector step:

yat = ypt + Kt: zt − h ypt
� �� �

,

Kk = Pp
k:J

k
h: Jh ypt

� �
:Pp

t :J
k
h ypt
� �

+ Rt

� �−1
whereRt = E rt:r

k
t

h i
,

Pt = I − Kt:Jh ypt
� �� �

:Pp
t ,

ð6Þ

where a is the actual value of the variable, p for the predicted
value, J f is the Jacobian matrix of the f ð⋯Þ function, and Jh
is the Jacobian matrix of hð⋯Þ function and Kt is a matrix
called the Kalman gain that arranges how easily the filter
adjusts to possible new conditions or alternations of the type
of data.

3.1. Proposed Prediction Model. Financial time series are very
noisy and nonstationary, the presence of these two con-
straints pushed us to propose a model of prediction (NAR-
EKF) which is a combination between the extended Kalman
filter (EKF) and the multilayer perceptron (MLP) nonlinear
autoregressive neural network (NAR).

The main idea of forecasting time series using the
extended Kalman filter and neural networks (NAR-EKF) is
to use the data processed by the extended Kalman filter of
the Yt series as the input for the nonlinear autoregressive
neural network (described in Section 2.2), according to the
following steps:

• Step 1: a set of historical data is collected

y (t−2)

y (t−p)

y (t)

y (t−1)

Multilayer
network

Figure 1: Architecture of the nonlinear autoregressive neural
network.
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• Step 2: these data are evaluated using the extended
Kalman filter to create a version with good approxima-
tion properties

• Step 3: nonlinear autoregressive neural network models
are trained and validated

• Step 4: the created neural network model is used to
predict the data

3.2. Evaluation Criteria. Various performance indices can be
used to evaluate the model performances. In this study,
performance indicators such as mean absolute error
(MAE), root mean square error (RMSE), and coefficient of
determination ðR2Þ used to asses model results.

(i) MAE = 1/N∑N
i=1jðyi − byi Þj,

(ii) RMSE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/N∑N

i=1ðyi − yi∧Þ2,
q

(iii) R2 =∑N
i=1ðyi − yi∧Þ2/∑N

i=1ðyi − �yiÞ2,
(iv) With �yi = 1/N∑N

i=1yi:

4. Analysis of a Real World Time Series

4.1. Description of Data. The data used in this study represent
the daily price of steel between 2013 and 2016. This data was
collected from the https://www.investing.com/ website

Figure 2 shows the price of steel per day between January
2013 and March 2016. A nonstationary series is one which
generally increases (decreases) with time; the observation of
this figure shows that the curve decreases steadily over time,
thus revealing the presence of a long-term trend. The nonsta-
tionarity of this series (Figure 1) is confirmed by the Dickey-
Fuller test (p:value = 0:645 > 5%) and Phillips-Perron
(p:value = 0:649 > 5%) [11, 12].

To overcome this problem, the series of daily price of
steel is transformed into a daily series of logarithmic differ-
ence of the price of steel. The stationarity of the series of daily
returns of steel price (Figure 3) is confirmed by the Dickey-
Fuller test (p:value = 0, 01 < 5%).

4.2. Application of Box-Jenkins Analysis. In this section, we
will model the daily steel price. The data was centred and
reduced and then used to develop a descriptive model. In
order to find the most suitable model to best explain the data,
we used the Box-Jenkins methodology to estimate the param-
eters that characterize the series. Themost suitable models for
the daily price of steel are an ARMA (1,0) and an ARMA-
GARCH(1,1). The estimation of the parameters of ARMA
(1,0) can be carried out by several methods. In this study, they
were estimated using themaximum likelihoodmethod for the
dataset [13, 14].

4.3. Application of Neural Networks and EKF. We have cho-
sen to apply a nonlinear autoregressive neural network
model to our time series. The concept is forecasting by using
the data which is preprocessed through the extended Kalman
filter as the input for the neural network. The financial time
series is high fluctuation and time varying, and the extended

Kalman filter has a good dynamic real-time tracking charac-
teristics. The advantage that the EKF provides is smoothing
and denoising the time series. After this, smoothed time
series might be predicted using the nonlinear autoregressive
neural networks.

• Training: 570 observations are used for training the
network

• Validation: 114 observations are used to measure
network generalization

• Testing: the last 76 observations are used for testing the
network

Some preliminary tests made it possible to define the
structure of the network. A hidden layer of 25 neurons
was used, and the activation function for the hidden layer
and the output neuron is the Sigmoid function ð f ðxÞ = 1/
½1 + exp ð−xÞ�Þ. We evaluated the effect of the time delay
parameter d on the performance of the training process,
evaluated using the mean-squared error (MSE) and the
coefficient of determination R, which is a goodness-of-fit
measure for linear regression between the target and the
predictions. We set d from 1 to 6. The NAR-EKF model
presents a very accurate fit and a small MSE independent
of the value of d over all 6 trials.

Training of the network use Levenberg-Marquardt back-
propagation. Training automatically stops when generaliza-
tion stops improving, as indicated by an increase in the
mean square error of the validation samples. Other specifica-
tions of the NAR-EKFmodel are mentioned in Table 1 below.

In order to enable a comparison between the classical
methods, extended Kalman filter, nonlinear autoregressive
neural network, and the combination between the extended
Kalman filter and the nonlinear autoregressive neural
network, we adopted the same evaluation criteria RMSE
and MAE.

The results from a real example (daily price of steel)
shown in Table 2, proof that the combination of nonlinear
autoregressive neural network model with the extended
Kalman filter allows to produce high precision of prediction
than that obtained by tested methods. This result is coherent
with the literature that state nonlinear autoregressive neural
network models are less sensitive to long-term time depen-
dencies and presenting better learning capabilities [12].

5. Conclusions

This paper proposes a combination of a nonlinear autore-
gressive neural network model with the extended Kalman
filter for predicting the financial time series. The results were
compared according to the calculation of the root mean-
squared error (RMSE) and the mean absolute error (MAE)
for the six proposed models.

The combination of the two methods (NAR and EKF) for
the prediction of the financial series (which are in step of
daily time) seems able to improve the forecasts of the series
studied by bringing the possibility of a continuous correction.
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