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Let G � (V, E) be a graph, and two players Alice and Bob alternate turns coloring the vertices of the graph G a proper coloring
where no two adjacent vertices are signed with the same color. Alice’s goal is to color the set of vertices using the minimum
number of colors, which is called game chromatic number and is denoted by χg(G), while Bob’s goal is to prevent Alice’s goal. In
this paper, we investigate the game chromatic number χg(G) of Generalized Petersen Graphs GP(n, k) for k≥ 3 and arbitrary n,
n-Crossed Prism Graph, and Jahangir Graph Jn,m.

1. Introduction

n 1981, Brams invented the game as a tool to provide a
theoretical proof of the Four Color theorem without
using computers [1]. But, it soon became apparent that
there were many planar graphs which had game chro-
matic numbers greater than 4. In 1991, Bodlaender
reinvented the game as a two-person game, Alice and Bob
[2]. Players take turns coloring the vertices of a given
finite graph G � (V, E) and a color set X � 1, 2, . . . , k{ }.
Alternately, players take turns over the elements of the set
V; Alice starts the game, and her goal is to color the
vertices with only k � |X| colors, while Bob’s goal is to
prevent her. Bob wins the game if at any stage there are
some vertices without available colors. %e game chro-
matic number of a graph G, denoted by χg(G), is defined
as the smallest integer k such that Alice has a winning
strategy on only k colors. In [3], Faigle et al. proved that
χg (T)≤ 4 for a tree graph. In [4], Guan and Zhu introduced
an upper bound to the game chromatic number of out-
erplanar graphs, which is χg(OP)≤ 7. In [5], Bartnicki et al.
studied the game chromatic number for the Cartesian product
of two graphs. In [6], Sia studied the game for some families of
Cartesian product graphs. Raspaud and Wu proved that
χg(C2mCn) � 5⟶ χg(C2m□Cn) � 5 [7].

In [8], Shaheen et al. investigated the game chromatic
number for some special circulant graphs and Generalized
Petersen Graphs when k � 1, 2, 3.

�e Coloring Number was defined in [9] as the following:
Let Π(G) be the set of linear orderings on the vertex set

of a graph G, and let L ∈ Π(G). For a vertex v ∈ V(G), the
back degree of v with respect to L is the number of its
neighbors that precede it in L, i.e., b(v)tn � q|hN+

L(v)|

⟶ b(v) � |N+
L(v)| where N+

L(v) � u ∈ N(v) and u< Lv .
%e back degree of L is the maximum back degree of the
vertices in L. %e coloring number of G denoted by col(G)

is 1+ b where b is the minimum back degree of a linear or-
dering L over all L ∈ Π(G), i.e., col(G) � 1 + minL∈Π(G)

maxv∈V(G)(b(v)). Clearly, χ(G)≤ col(G).
�e Game Coloring Number colg(G) is the competitive

version of the coloring number, which was introduced for
the first time by Zhu in [10] to give an improved upper
bound of the game chromatic number of planar graphs. %e
game coloring number is a two-person game, which is
played by Alice and Bob, who alternate turns and with Alice
starting first. After every move, a vertex is selected (among
the remaining vertices) and is added to the end of the linear
ordering which was formed by previous moves. After
selecting all the vertices, a linear ordering L of V(G) is
obtained, let b be its back degree and then colg(G) � 1 + b.
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Alice’s goal is to minimize the back degree b, while Bob’s
goal is to maximize it. Both players use their optimal
strategies to form L.

A combinatorial game is a finite two-player game with
perfect information and no chance. %e game coloring
number and the game chromatic number are combinatorial
games [11].

In 2009, Kierstead and Kostochka were the first to
present an application of coloring games to a nongame
problem, which was the graph packing problem [12].

Several studies were presented in 2019 and discussed the
game chromatic number of some specific graphs [11, 13, 14].
In [14], C. Chamberlin et al. investigated the game chromatic
number of G which is a graph produced by subdividing each
edge of GP(n, k) with n large enough and gcd(n, k) � 1.

%e uncolored vertex v is called critical vertex if there is
just one available color c and there are some uncolored
neighbors of v which can be signed with c. In any stage of the
game, if there are some critical vertices in Bob’s turn, then he
wins the game. Also, if there are critical vertices in Alice’s
turn, then she must defend them by her turn [7].

We denote the ith turn of Alice by Ai and denote the
process of assigning the vertex v with the color c by v⟵ c.

Tow vertices are adjacent if there is an edge joining them
together. For a vertex v in the graph G(V, E), the open
neighbor set is defined as N(v) � u ∈ V ; ∃uv ∈ E{ } and the
degree of v is ρ(v) � |N(v)|⟶ ρ(v) � |N(v)|. A graph G �

(V, E) is r-regular if ρ(v) � r for every v ∈ V.

Definition 1. Let the integer k, n satisfy k< n/2; Generalized
Petersen Graph GP(n, k) is the graph whose vertex set is
V∪U where V � v1, ..., vn  and U � u1, ..., un  and its edge
set is E � vivi+1, viui, uiui+k , where i � 1, 2, ..., n and sub-
scripts are reduced modulo n.

Definition 2. For a positive even number n≥ 4, n-crossed
prism graph G � (V, E) is a graph obtained by taking two
distinct cycles, outer cycle C1

n where V(C1
n) � u1, . . . , un ,

and the inner one C2
n where V(C2

n) � v1, . . . , vn  and adding
edges between them as uivi+1, ujvj−1 ; i ∈ 1, 3, . . . ,{

n − 1} , j ∈ 2, 4, . . . , n{ }.

Definition 3. Jahangir graph, Jn,m for m≥ 3, is a cycle Cnm

with adding one vertex v0 adjacent to m vertices of Cnm

which are at distance n from each other in Cnm.

Definition 4. %e n-sunlet graph Sn is a cycle Cn where
V(Cn) � u1, u2, . . . , un  with n additional vertex v1, v2, . . . ,

vn}, and viui ∈ E(Sn) for i � 1, ..., n.

Proposition 1 (see [10]). χg(G)≤ colg(G).

Proposition 2 (see [15]). �e game chromatic number of the
wheel graph Wn is χg(Wn) � 4.

Theorem 1 (see [8]). For n≥ 6 and k ∈ 1, 2, 3{ }, we have
χg(GPt(n, k)) � 4⟶ χg(GP(n, k)) � 4.

2. Main Results

In this section, we investigate the game chromatic number of
generalized Petersen graph, n-crossed prism graph, and
Jahangir graph.

Lemma 1. For n≥ 9 and k≥ 2, every Generalized Petersen
graphGP(n, k) has S8 as a subgraph like the graph in Figure 1.

%e proof comes clearly from the definition of the
Generalized Petersen graph.

Theorem 2. For n≥ 9 and k≥ 4, the game chromatic number
of the Generalized Petersen Graph GP(n, k) is
χg(GP(n, k)) � 4.

Proof. Generalized Petersen Graphs are 3-regular graphs;
therefore, χg(GP(n, k))≤Δ + 1 � 4. For k ∈ 1, 2, 3{ },
χg(GP(n, k)) � 4 is proven in %eorem 1.

Now, by contradiction, we will prove that Player A does
not have any winning strategy for any integer k≥ 4.

Suppose that we have a color set C � 1, 2, 3{ }; by using
Lemma 2.1, we notice that, in GP(n, k), there is the subgraph
as the graph in Figure 1.

Whatever the vertex is chosen by player A to start with,
we will get the same state, so without loss of generality
assume that player A starts the game with v1, i.e.,
A1: v1⟵ 1 then B1: uk+1⟵ 2; now, u1 is a critical vertex
so player A will defend it by coloring it with the third color
or coloring its unique uncolored neighbor with a legal color,
and whatever his choice for A2 is, then B2: vk⟵ 1 which
means that the vertex vk+1 will become a critical vertex and
also player A will have to defend it so whatever his choice is
for A3 then B3: un⟵ 2 and now there are two critical
vertices uk, vn  and player A cannot defend them together
so three colors are not enough for the first player to have a
winning strategy. %en, 3< χg(GP(n, k)) � 4. □

Theorem 3. For n≥ 6, let G be a n-crossed prism graph, and
the game chromatic number of G is χg(G) � 4.

Proof. χg(G)≤ 4 since Δ(G) � 3; therefore, we are going to
contradict that three colors are not sufficient. Let
X � 1, 2, 3{ } and A1: v1⟵ 1; then, B1: v3⟵ 2, and now,
v2 is a critical vertex so Alice is forced to defend it in only two
ways. We will discuss Alice’s second turn A2 as follows:

Case 1.A2: v2⟵ 3 then B2: u2 ⟶ u3, that gives two
critical vertices u2, v4 and Alice cannot defend them at
the same time
Case 2.A2: u1⟵ c where c ∈ 1, 2{ }

Subcase 2.1. c � 1 then B2: vn−1⟵ 2 then un, vn will
be critical vertices and Alice cannot defend them at
the same time
Subcase 2.2. c � 2 then u2 will become a critical vertex
during Bob’s turn who will color u3 with the color 3,
and Alice loses the game

%at means χg(G)> 3, so χg(G) � 4. □
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Theorem 4. For m≥ 3, let G � Jn,m be the Jahangir graph,
and the game chromatic number

χg(G) �
4, if n � 1 or (n � 2 and m≠ 3),

3, if (n � 2 and m � 3) or (n≥ 3 and m≥ 3).


(1)

Proof. First, because the Jahangir graph can be divided into
cycles, then it is easy to show that χg(Jn,m)> 2. Now, we will
discuss the following cases.

Case 1. n � 1 or (n � 2 and m≠ 3)

Subcase 1.1. n � 1 then G � Wm, and using Proposi-
tion 1, χg(G) � χg( Wm) � 4.
Subcase 1.2. n � 2 and m≠ 3 then three colors are not
sufficient because if we suppose the color set X �

1, 2, 3{ } and A1: v0⟵ 1 then B1: v2⟵ 2, then there
will be two critical vertices v1, v3, and Alice cannot
defend them together on her next turn, so she loses the
game.

Case 2. (n � 2 and m � 3) or( n≥ 3 and misarbitrary)

Subcase 2.1. When n � 2 andm � 3, as it is shown in
Figure 2.
If n � 2 and m � 3, Alice can defend any critical
vertices with three colors even with Bob’s strategy
which was mentioned in Subcase 1.2. We can explain
Alice’s winning strategy as follows: let the color set be
X � 1, 2, 3{ } and A1: v0⟵ 1 then B1: v2⟵ 2, so
there will be two critical vertices v1, v3, and then when
Alice chooses the next move to be A2: v5⟵ 3;
therefore, Bob cannot use the color 3 on the vertices
v4, v6 to win the game and Alice wins with only three
colors.
Subcase 2.2. When n≥ 3 andm≥ 3.

We will use the game coloring number as a tool to
investigate the upper bound of χg(Jn,m).

Let D2 � v ∈ V| ρ(v) � 2  and D3 � v ∈ V| ρ(v) � 3 .
%e chosen vertex set is C � v ∈ D3| v is a added to L .

At the beginning, Alice chooses the central vertex v0. Bob
chooses a vertex v ∉ L. Alice follows the next strategy to
respond.

(1) If v ∈ D2 and∃u ∈ N(v)∩  D3 and u ∉ L then Alice
adds u to L

(2) Else, if v ∈ D2 and ∃u ∈ D3C⟶∃u ∈ D3\C then
Alice chooses u and adds it to L

(3) Else, Alice chooses any unchosen vertex u

Using this strategy on Jn,m in case n≥ 3 produces an
optimal linear order L with back degree b �

maxv∈L|N+
L(v)| � 2. So, colg(Jn,m) � b + 1 � 3, and then,

χg(Jn,m)≤ 3 by using Proposition 1. %erefore, χg(Jn,m) � 3
since χg(Jn,m)> 2. □
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