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In this paper, a recent and reliable method, named the fractional reduced differential transform method (FRDTM) is employed to
solve one-dimensional time-fractional Beam equation subject to the appropriate initial conditions. This method provides the
solutions very accurately and efficiently in convergent series form with easily computable coefficients. The efficacy and accuracy
of this method are verified by means of three illustrative examples which indicate that the present method is very effective,
simple, and easy to implement. Finally, it is observed that the FRDTM is the prevailing and convergent method for the solutions
of linear and nonlinear fractional-order partial differential equations.

1. Introduction

In last few decades, fractional calculus has been attracted
much attention due to its enormous numbers of applications
in almost all disciplines of applied sciences and engineering.
The fractional calculus became an aspirant to find out the
solution of complex systems that exist in numerous fields of
sciences (for detail see [1–4]). This branch of mathematical
analysis, extensively investigated in the recent years, has
emerged as an effective and powerful tool for the mathemat-
ical modeling of several engineering and scientific phenom-
ena. One of the key factors for the popularity of the subject
is the nonlocal nature of fractional-order operators. In the
field of mathematical modeling, having partial derivatives
of fractional order naturally seems to be dealing with the gen-
erality of the current traditional models [5]. In the field of
modern science and engineering, the fourth-order parabolic
time-fractional beam equation plays an important role in
modern science and engineering. For example, airplane
wings and transverse vibrations of sustained tensile beams
can be modeled as plates with initial/different boundary sup

ports which are successfully governed by superdiffusion
fourth-order differential equations [6].

The fourth-order parabolic PDEs are of great impor-
tance. These PDEs describe various physical phenomena,
including deformation of beams, viscoelastic and inelastic
flows, transverse vibrations of a homogeneous beam, plate
deflection theory, engineering, and applied sciences [7–13].

In this work, we concentrate our discussion on the fol-
lowing classes of time-fractional nonlinear Beam equation
(fourth-order time-fractional nonlinear parabolic PDEs) of
the form [14].

∂2αu
∂t2α

+ A x, tð Þ ∂
4u
∂x4

= f x, t, u, ut , ux, uxx, uxxxð Þ, x, tð Þ ∈Ω,

ð1Þ

with initial conditions

u x, 0ð Þ = f xð Þ
ut x, 0ð Þ = g xð Þ, a ≤ x ≤ b,

ð2Þ
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finding the solution of this equation has been the subject of
many investigators in the recent years.

Before the nineteenth century, there was no scheme avail-
able for the analytical solutions of the fractional differential
equations. In the beginning of the twentieth century,
researchers started to pay attention to find the robust and
stable analytical approaches for the exact (approximate)
solution of the fractional differential equations [15]. Subse-
quently, several schemes such as the Adomian decomposi-
tion methods [16–18], differential transform method [19–
21], Homotopy perturbation method [22–25], Local frac-
tional variation iteration method [26], Variation iteration
method [27, 28], and Shifted Chebyshev polynomials based
method [29] have been developed for the analytical solutions
of fractional differential equations.

Most of these methods sometimes require complex and
huge calculation in order to obtain approximate solutions.
To overcome such difficulties and drawbacks, an alternative
method, the so-called fractional reduced differential trans-
form method (FRDTM), has been developed by Keskin and
Oturanc [30]. FRDTM plays a vital role among all the listed
methods because it takes small size computation, easy to
implement as compared to other techniques [31].

The basic motivation of this paper is to propose FRDTM
to find an approximate analytical solution of the time-
fractional Beam equation (the governing equation) given in
(1). Using this method, it is possible to find both exact and
approximate solutions in a rapidly convergent power series
form.

It is worth mentioning that the FRDTM is applied with-
out any linearization or discretization or restrictive assump-
tions. FRDTM is a very reliable, efficient, and effective
powerful computational technique for solving physical prob-
lems [32–37].

The rest of this paper is organized as follows: in Section 2,
we give some fundamental definitions and lemmas associated
with fractional calculus. In Section 3, some basic definitions
and properties related to one-dimensional fractional reduced
differential transformation in the Caputo sense are presented;
some lemmas are proved. In Section 4, we present the formu-
lation of the method. Section 6 is devoted to apply the
method to solve linear and nonlinear time-fractional beam
equation in one dimension and present graphs to show the
effectiveness, validity, and performance of the FRDTM for
some values of α. Finally, the conclusion is presented in Sec-
tion 6.

2. Fractional Calculus

In this section, some basic definitions and lemmas of
FRDTM associated with fractional calculus are presented.
Some of these definitions are due to Riemann Liouville and
Caputo sense; for details, see [34, 36, 37].

Definition 1. The Gamma function. The Gamma function Γ
ðzÞ is simply a generalization of the factorial real arguments.
The Gamma function can be defined as [3]

Γ zð Þ =
ð∞
0
e−t tz−1dt, z > 0: ð3Þ

Definition 2. Let μ ∈ℝ,m ∈ℕ. A function f : ℝ+ →ℝ
belongs to the space Cμ if there exists a real number k > μ

such that

f tð Þ = tpg tð Þ, t > 0, ð4Þ

where

g tð Þ ∈ C 0,∞½ Þ and f ∈ℂm
μ if f mð Þ ∈ Cμ: ð5Þ

Definition 3. Let Jαx be Riemann-Liouville fractional integral
operator of order α > 0 and let f ∈ℂμ, μ ≥ −1, then

Jt
α f tð Þ = 1

Γ αð Þ
ðt
0
t − τð Þα−1 f τð Þdτ,

Jt
0 f tð Þ = f tð Þ, t > 0:

ð6Þ

Definition 4. Ifm − 1 < α ≤m,m ∈ℕ, t > 0, then the Caputo’s
fractional derivative of f ∈ Cμ is defined as

Dx
α f xð Þ = Jx

m−αDx
mf xð Þ = 1

Γ m − αð Þ
ðx
0
x − tð Þm−α−1 f mð Þ tð Þdt:

ð7Þ

The fundamental properties of the Caputo fractional
derivative are given in the following lemma.

Lemma 5. If m − 1 < α ≤m,m ∈ℕ and f ðxÞ ∈ Cm
μ , μ ≥ −1,

then

ið ÞDα
t D

β
t f tð Þ =Dα+β

t f tð Þ =Dβ
t D

α
t f tð Þ

iið ÞDα
t J

α
t f tð Þ = f tð Þ, t > 0

iiið ÞJαt Dα
t f tð Þ = f tð Þ − 〠

m−1

k=0
f kð Þ 0+ð Þ t

k

k!
, t > 0:

ð8Þ

3. Fractional Reduced Differential Transform
Method (FRDTM)

Definition 6 (see [34, 36, 37]). If uðx, tÞ is analytic and contin-
uously differentiable with respect to space variable x and time
variable t in the domain of interest, then time-fractional
reduced differential transform (or the spectrum function) is

Uk xð Þ = 1
Γ kα + 1ð Þ

∂αk

∂tαk
u x, tð Þ

" #
t=t0

, ð9Þ

where α is a parameter which describes the order of time-
fractional derivative in the Caputo sense, and k is an integer
ðk ≥ 0Þ.
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Remark 7. In this study, the lowercase uðx, tÞ represents the
original function, while the uppercase UkðxÞ stands for the
transformed function.

Definition 8 (see [34, 36, 37]). The fractional reduced differ-
ential inverse transform of UkðxÞ is defined as

u x, tð Þ = 〠
∞

k=0
Uk xð Þ t − toð Þkα: ð10Þ

Substituting Eq. (9) into Eq. (10), we obtain

u x, tð Þ = 〠
∞

k=0

1
Γ kα + 1ð Þ

∂kα

∂tkα
u x, tð Þ

" #
t=to

t − toð Þkα, ð11Þ

which in practical application can be approximated by a
finite series

un x, tð Þ = 〠
n

k=0
Uk xð Þ t − toð Þkα, ð12Þ

where n is the order of this approximate solution. Therefore,
the exact solution can be obtained as

u x, tð Þ = lim
n→∞

un x, tð Þ = 〠
∞

k=0
Uk xð Þ t − toð Þkα: ð13Þ

If t0 = 0, then Eq. (13) reduces to the form

u x, tð Þ = lim
n→∞

un x, tð Þ = 〠
∞

k=0
Uk xð Þ tð Þkα: ð14Þ

Some of the basic properties of one-dimensional frac-
tional reduced differential transform function that are con-
structed based on Definitions 6 and 8 are given below.

Lemma 9. If f ðx, tÞ = xm sin ðηx + θtÞ , then the fractional
reduced differential transform of f is FkðxÞ = ðθk/k!Þxm sin
ðηx + ðπk/2ÞÞ , where η and θ are constants.

Proof. From Definition 6 and FRDTM properties, we have

Fk xð Þ = 1
Γ kα + 1ð Þ

∂kα

∂tkα
f x, tð Þ

" #
t=t0

Fk xð Þ = 1
Γ kα + 1ð Þ

∂kα

∂tkα
xm sin ηx + θtð Þ

" #
t=t0

Fk xð Þ = xm
1

Γ kα + 1ð Þ
∂kα

∂tkα
sin ηx + θtð Þ

" #
t=t0

Fk xð Þ = θk

k!
xm sin ηx +

πk
2

� �
, f ork = 0, 1, 2, 3,⋯

ð15Þ

Lemma 10. If f ðx, tÞ = xm cos ðηx + θtÞ , then the fractional
reduced differential transform of f is

FkðxÞ = xmðθk/k!Þ cos ðηx + ðπk/2ÞÞ , where η and θ are
constants.

Proof. From Definition 6 and FRDTM properties, we have.

Fk xð Þ = 1
Γ kα + 1ð Þ

∂kα

∂tkα
f x, tð Þ

" #
t=t0

Fk xð Þ = 1
Γ kα + 1ð Þ

∂kα

∂tkα
xm cos ηx + θtð Þ

" #
t=t0

Fk xð Þ = xm
1

Γ kα + 1ð Þ
∂kα

∂tkα
cos ηx + θtð Þ

" #
t=t0

Fk xð Þ = xm
θθk

k!
cos ηx +

πk
2

� �
, for k = 0, 1, 2, 3,⋯

ð16Þ

4. Solution of the Problem by FRDTM

Applying properties of FRDTM to Eq. (1), we obtain the
following recurrence relation:

Uk+2 xð Þ = Γ kα + 1ð Þ
Γ kα + 2α + 1ð Þ −〠

k

r=0
Ar xð Þ ∂4

∂x4
Uk−r xð Þ + F Uk xð Þð Þ

 !
,

ð17Þ

and using FRDTM to the initial conditions (2), we get

U0 xð Þ = f xð Þ, U1 xð Þ = g xð Þ: ð18Þ

Using Eqs. (17) and (18) and k = 0, 1, 2, 3, and by iterative
calculation, the following results are obtained:

U2 xð Þ = 1
Γ 2α + 1ð Þ −A0 xð Þ ∂4

∂x4
U0 xð Þ + F U0 xð Þð Þ

 !
,

U3 xð Þ = Γ α + 1ð Þ
Γ 3α + 1ð Þ − A0 xð Þ ∂4

∂x4
U1 xð Þ + A1 xð Þ ∂4

∂x4
U0 xð Þ

" #
+ F U1 xð Þð Þ

 !
,

U4 xð Þ = Γ 2α + 1ð Þ
Γ 4α + 1ð Þ −

A0 xð Þ ∂4

∂x4
U2 xð Þ + A1 xð Þ ∂4

∂x4
U1 xð Þ +

A2 xð Þ ∂4

∂x4
U0 xð Þ

2
6664

3
7775 + F U2 xð Þð Þ

2
6664

3
7775,

U5 xð Þ = Γ 3α + 1ð Þ
Γ 5α + 1ð Þ −

A0 xð Þ ∂4

∂x4
U3 xð Þ + A1 xð Þ ∂4

∂x4
U2 xð Þ +

A2 xð Þ ∂4

∂x4
U1 xð Þ + A3 xð Þ ∂4

∂x4
U0 xð Þ

2
6664

3
7775 + F U3 xð Þð Þ

0
BBB@

1
CCCA:

ð19Þ

Continuing in a similar fashion the remaining successive
terms of the FRDTM can be obtained.

3Journal of Applied Mathematics



Then, the fractional reduced differential inverse trans-
form of the set of values of ½UkðxÞ�∞k=0 giving the series solu-
tion of Eq. (1) as

u x, tð Þ = f xð Þ + g xð Þtα + 1
Γ 2α + 1ð Þ −A0 xð Þ ∂4

∂x4
U0 xð Þ + F U0 xð Þð Þ

 !
t2α+⋯:

ð20Þ

If α = 1, the FRDTM solution (20) gives the exact solution
of Eq. (1).

5. Illustrative examples

Example 11. Consider one-dimensional homogeneous time-
fractional beam equation:

∂2α

∂t2α
u x, tð Þ + ∂4

∂x4
u x, tð Þ = 0, x ∈ℝ, t > 0, 0 < α ≤ 1: ð21Þ

Subjected to the initial conditions:

u x, 0ð Þ = cos x, ut x, 0ð Þ = − sin x: ð22Þ

Applying properties of FRDTM to Eq. (21), we obtain the
following recurrence relation:

Uk+2 xð Þ = −
Γ kα + 1ð Þ

Γ kα + 2α + 1ð Þ
∂4

∂x4
Uk xð Þ: ð23Þ

and using FRDTM to the initial conditions (22), we get

U0 xð Þ = cos x,U1 xð Þ = − sin x: ð24Þ

2

0

u 
(x

, t
)

–2

0

5
x

t

10 0

1

2

3

(a)

1

0

u 
(x

, t
)

–1

0

5
x

t

10 0

1

2

3

(b)

1.0
0.5
0.0
–0.5u 

(x
, t

)

–1.0
0

5
x

t

10 0

1

2

3

(c)

1.0
0.5
0.0

–0.5u 
(x

, t
)

–1.0
0

5
x

t

10 0

1

2

3

(d)

Figure 1: The physical behavior of FRDTM solution of Eq. (21) for (a) α = 0:25, (b) α = 0:5, (c) α = 0:75, and (d) α = 1.
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When k = 0, 1, 2, 3,⋯, by iterative calculation we obtain

U2 xð Þ = −cos x
Γ 2α + 1ð Þ ,

U3 xð Þ = −Γ α + 1ð Þ
Γ 3α + 1ð Þ sin x,

U4 xð Þ = 1
Γ 4α + 1ð Þ cos x,

U5 xð Þ = −
Γ α + 1ð Þ
Γ 5α + 1ð Þ sin x:

ð25Þ

Continuing in this way, the remaining successive terms of
the FRDTM can be obtained. Then, the fractional reduced
differential inverse transform of the set of values of
½UkðxÞ�∞k=0 gives the following approximate analytic solution

u x, tð Þ = cos x −
sin x

Γ α + 1ð Þ t
α −

cos x
Γ 2α + 1ð Þ t

2α +
sin xΓ α + 1ð Þ
Γ 3α + 1ð Þ t3α

�

+
cos x

Γ 4α + 1ð Þ t
4α −

sin xΓ α + 1ð Þ
Γ 5α + 1ð Þ t5α+⋯

ð26Þ

Finally, for α = 1, Eq. (26) reduces to the form:

u x, tð Þ = cos x 1 −
1
2!
t2 +

1
4!
t4−⋯

� �
− sin x t −

1
3!
t3 +

1
5!
t5−⋯

� �
,

ð27Þ

and whose exact solution of the problem is uðx, tÞ = cos x
cos t − sin x sin t = cos ðx + tÞ [38].

The approximate numerical solutions corresponding to
Example 11 are given in Figures 1 and 2 and Table 1.

Example 12. Consider the following fourth-order parabolic
time-fractional beam equation with variable coefficient:

∂2α

∂t2α
u x, tð Þ = − x + 1ð Þ ∂4

∂x4
u x, tð Þ + x4 + x3 −

6
7!
x7

� �
cos t, 0

< x < 1, t > 0, 0 < α ≤ 1,

ð28Þ

subject to the initial conditions:

u x, 0ð Þ = 6
7!
x7 and ut x, 0ð Þ = 0, 0 < x < 1, t > 0: ð29Þ

Applying properties of FRDTM to Eq. (28), we obtain the
following recurrence relation:

Uk+2 xð Þ = Γ kα + 1ð Þ
Γ kα + 2α + 1ð Þ − x + 1ð Þ ∂4

∂x4
Uk xð Þ + x4 + x3 −

6
7!
x7

� �
1
k!

cos
πk
2

� � !
,

ð30Þ

and using FRDTM to the initial conditions (29), we get

U0 xð Þ = 6
7!
x7 andU1 xð Þ = 0, 0 < x < 1: ð31Þ

Iterative calculations for k = 0, 1, 2, 3,⋯ gives the follow-
ing successive values.

U2 xð Þ = 1
Γ 2α + 1ð Þ −

6
7!
x7

� �
,

U3 xð Þ = 0, ð32Þ

U4 xð Þ = x4 + x3

Γ 4α + 1ð Þ −
Γ 2α + 1ð Þ x4 + x3

� �
2!Γ 4α + 1ð Þ +

6x7Γ 2α + 1ð Þ
7!2!Γ 4α + 1ð Þ ,

U5 xð Þ = 0,

U6 xð Þ = −24 x + 1ð Þ
Γ 6α + 1ð Þ +

12 x + 1ð ÞΓ 2α + 1ð Þ
Γ 6α + 1ð Þ −

x4 + x3
� �

Γ 2α + 1ð Þ
2Γ 6α + 1ð Þ

�

+
x4 + x3
� �

Γ 4α + 1ð Þ
4Γ 6α + 1ð Þ −

6x7Γ 4α + 1ð Þ
7!4!Γ 6α + 1ð Þ ,

U7 xð Þ = 0, ð33Þ

U8 xð Þ = 12 x + 1ð ÞΓ 2α + 1ð Þ
Γ 8α + 1ð Þ −

x + 1ð ÞΓ 4α + 1ð Þ
Γ 8α + 1ð Þ

�

+
x4 + x3
� �

Γ 4α + 1ð Þ
4!Γ 8α + 1ð Þ −

x4 + x3
� �

Γ 6α + 1ð Þ
6!Γ 8α + 1ð Þ +

6x7Γ 6α + 1ð Þ
7!6!Γ 8α + 1ð Þ ,

ð34Þ
and so on. Continuing in this manner, the remaining iterative
values can be obtained. Then, the fractional reduced differen-
tial inverse transform of the set of values of ½UkðxÞ�∞k=0 gives
the following approximate analytic solution

u x, tð Þ = 6x7

7!
−

6x7

7!Γ 2α + 1ð Þ t
2α +

Γ 2α + 1ð Þ
Γ 4α + 1ð Þ

x4 + x3

Γ 2α + 1ð Þ −
x4 + x3 − 6/7!ð Þx7

2!

� �
t4α

�

−
Γ 4α + 1ð Þ
Γ 6α + 1ð Þ − x + 1ð ÞΓ 2α + 1ð Þ

Γ 4α + 1ð Þ
24

Γ 2α + 1ð Þ − 12 +
x3

2!

� �� �
+
x4 + x3

4!
+

6x7

7!4!

� �
t6α

+

12 x + 1ð ÞΓ 2α + 1ð Þ
Γ 8α + 1ð Þ −

x + 1ð ÞΓ 4α + 1ð Þ
Γ 8α + 1ð Þ +

x4 + x3
� �

Γ 4α + 1ð Þ
4!Γ 8α + 1ð Þ

−
x4 + x3
� �

Γ 6α + 1ð Þ
6!Γ 8α + 1ð Þ +

6x7Γ 6α + 1ð Þ
7!6!Γ 8α + 1ð Þ

0
BBBB@

1
CCCCAt8α+⋯:

ð35Þ
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If α = 1, then Eq. (35) gives

u x, tð Þ = 6x7

7!
−

6x7

7!2!
t2 + 6

7!4!
x7t4 −

6x7

7!6!
t6 + 6x7

7!8!
t8+⋯

=
6x7

7!
1 −

t2

2!
+
t4

4!
−
t6

6!
+
t8

8!
−⋯

� �
:

ð36Þ

The exact solution of the classical form of Eq. (28) is
uðx, tÞ = ð6x7/7!Þ cos t [14, 39–42].

The approximate numerical solutions corresponding to
Example 12 are given in Figures 3 and 4 and Table 2.

Example 13. Consider the following one-dimensional nonho-
mogeneous nonlinear Beam equation

∂2α

∂t2α
u x, tð Þ + xu2 x, tð Þ ∂4

∂x4
u x, tð Þ = 24x9t3, 0 < x < 1, t > 0, 0 < α ≤ 1:

ð37Þ

with initial conditions:

u x, 0ð Þ = 0 and ut x, 0ð Þ = x4: ð38Þ

Applying properties of FRDTM to (37), we obtain the
following recurrence relation

Uk+2 xð Þ = Γ kα + 1ð Þ
Γ kα + 2α + 1ð Þ −x〠

k

r=0
〠
r

i=0
Ui xð ÞUr−i xð Þ ∂4

∂x4
Uk−r xð Þ

 

+ 24x9δ kα − 3ð Þ
!
,

ð39Þ

and using FRDTM to the initial conditions (38), we get

U0 xð Þ = 0 andU1 xð Þ = x4: ð40Þ

By iterative calculations for k = 0, 1, 2, 3,⋯ equations
(39) and (40) give the following successive values

and so on. Then, the fractional reduced differential inverse
transform of the set of values of ½UkðxÞ�∞k=0 gives the fol-
lowing approximate analytic solution

u x, tð Þ = x4tα +
Γ α + 1ð Þ
Γ 3α + 1ð Þ 24x9δ α − 3ð Þ� �

t3α +
Γ 2α + 1ð Þ
Γ 4α + 1ð Þ

24x9δ 2α − 3ð Þ� �
t4α + Γ 3α + 1ð Þ

Γ 5α + 1ð Þ −24x9 + 24x9δ 3α − 3ð Þ� �� �
t5α+⋯:

ð42Þ

U2 xð Þ = 1
Γ 2α + 1ð Þ −xU0

2 xð Þ ∂4

∂x4
U0 xð Þ + δ −3ð Þ

 !
=

1
Γ 2α + 1ð Þ δ −3ð Þ,

U3 xð Þ = Γ α + 1ð Þ
Γ 3α + 1ð Þ −x U0

2 xð Þ ∂4

∂x4
U1 xð Þ + 2U0 xð ÞU1 xð Þ ∂4

∂x4
U0 xð Þ

 !
+ 24x9δ α − 3ð Þ

 !
,

U3 xð Þ = Γ α + 1ð Þ
Γ 3α + 1ð Þ 24x9δ α − 3ð Þ� �

,

U4 xð Þ = Γ 2α + 1ð Þ
Γ 4α + 1ð Þ −x

U0
2 xð Þ ∂4

∂x4
U2 xð Þ + 2U0 xð ÞU1 xð Þ ∂4

∂x4
U1 xð Þ +

2U0 xð ÞU2 xð Þ ∂4

∂x4
U0 xð Þ +U1

2 xð Þ ∂4

∂x4
U0 xð Þ

0
BBB@

1
CCCA + 24x9δ 2α − 3ð Þ

0
BBB@

1
CCCA,

U4 xð Þ = Γ 2α + 1ð Þ
Γ 4α + 1ð Þ 24x9δ 2α − 3ð Þ� �

,

U5 xð Þ = Γ 3α + 1ð Þ
Γ 5α + 1ð Þ −x

U0
2 xð Þ ∂4

∂x4
U3 xð Þ + 2U0 xð ÞU1 xð Þ ∂4

∂x4
U2 xð Þ +

2U0 xð ÞU2 xð Þ ∂4

∂x4
U1 xð Þ +U1

2 xð Þ ∂4

∂x4
U1 xð Þ +

2U0 xð ÞU3 xð Þ ∂4

∂x4
U0 xð Þ + 2U1 xð ÞU2 xð Þ ∂4

∂x4
U0 xð Þ

0
BBBBBBBB@

1
CCCCCCCCA

+ 24x9δ 3α − 3ð Þ

0
BBBBBBBB@

1
CCCCCCCCA
,

U5 xð Þ = Γ 3α + 1ð Þ
Γ 5α + 1ð Þ −24x9 + 24x9δ 3α − 3ð Þ� �

,

ð41Þ
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Using the definition δðkÞ given in Table 3, Eq. (42)
reduces to the form

u x, tð Þ = x4tα: ð43Þ

If α = 1, then Eq. (42) gives the exact solution uðx, tÞ
= x4t of the classical form of Eq. (37) see Ref. [42].

The approximate numerical solutions corresponding to
Example 13 are given in Figures 5 and 6 and Table 4.

Figures 1–6 exhibit the physical behavior of the FRDTM
solutions uðx, tÞ of Example 11, Example 12, and Exam-
ple 13 for different values of time-fractional order α and
time t. It is evident from the figures that, as the values
of time-fractional order α approaches to 1, the graph of
the FRDTM solutions uðx, tÞ of the illustrated examples
resembles to the graph of the exact solutions uðx, tÞ of their

corresponding classical (nonfractional) one-dimensional
beam equations. Furthermore, Figures 6(c) and 6(d) depict
the long time range physical behavior of the solution of
Eq. (37).

Table 1 shows the ninth-order approximate numerical
solutions uðx, tÞ of Eq. (21) for different values of α and
the absolute error of FRDTM solution for α = 1. Table 2
illustrates the eighth-order approximate numerical solution
uðx, tÞ of Eq. (28) for different values of α and the absolute
error of FRDTM solution for α = 0:8. Table 4 reveals the
first-order approximate numerical solution uðx, tÞ of Eq.
(37) for different values of α and the absolute error of
FRDTM solution for α = 0:9. Generally, from Tables 1–4, it
is distinguished that the approximate solutions obtained by
FRDTM are close to the exact solution of the classical form
of Examples 11–13 as the values of α are close to 1 for any
values of t.
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Figure 2: FRDTM solution profile of Eq. (21): (a) uðx, tÞ vs. x for different values α and t = 0:15 and (b) uðx, tÞ vs. time t for different values α
and x = 0:5.
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Figure 3: The physical behavior of FRDTM solution of Eq. (28) for (a) α = 0:25, (b) α = 0:5, (c) α = 0:75, and (d) α = 1.

Table 1: Ninth-order approximate numerical solution by FRDTM of Eq. (21) at different values of α and comparison of absolute error at α = 1
.

x t
uFRDTM uExact Absolute error (∣uexact − uα=1 ∣ )α = 0:6 α = 0:8 α = 1

4

1 0.209769 0.274293 0.283662 0.283662 0

2 0.312931 0.589007 0.960029 0.960170 1:410e − 04

3 0.117991 0.365617 0.747129 0.753902 6:773e − 03

6

1 0.515730 0.603985 0.753903 0.753902 1:000e − 06

2 0.241086 -0.030377 -0.145223 -0.145500 2:770e − 04

3 0.849243 -0.183085 -0.895349 -0.911130 1:578e − 03

8

1 -0.639008 -0.776986 -0.911130 -0.911130 0

2 -0.513585 -0.563724 -0.839161 -0.839072 8:900e − 05

3 -0.824811 -0.213237 -0.001936 0.004423 6:359e − 03

10

1 0.016113 0.042696 0.004425 0.004426 2:200e − 07

2 0.186367 0.499561 0.843651 0.843854 2:040e − 04

3 -0.162758 0.360561 0.896961 0.907447 1:048e − 02
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6. Conclusions

In this study, the FRDTM is effectively implemented to find
approximate analytics solutions of time-fractional Beam
equation subject to appropriate initial conditions. The frac-
tional derivative used in this article is in the sense of
Caputo. This method requires only initial conditions and
represents the solution in an infinite power series. The
main advantage of this scheme is that it can be used in a
direct way without applying techniques such as restricting
conditions, convincing suppositions, and perturbations.

This shows that the FRDTM is very simple to utilize and
needs brevity of calculation. To check the validity and effec-
tiveness of the method, three illustrative examples are car-
ried out. The infinite power series solutions of Examples
11–13 obtained by FRDTM for α = 1 are in excellent agree-
ment with the exact solutions as in [39–42]. The computed
results reveal that the FRDTM is accurate, swiftly conver-
gent, and efficient. Consequently, our goal in the further
is to apply the FRDTM to nonlinear PDEs which arises in
other areas of science, such as Physics, Biology, Medicine,
and Engineering.
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Figure 4: FRDTM solution profile of Eq. (28). (a) uðx, tÞ vs. x for different values α and t = 0:15. (b) uðx, tÞ vs. time t for different values α and
x = 0:5.

Table 2: Eighth-order approximate numerical solution by FRDTM of Eq. (28) at different values of α and comparison of absolute error
at α = 0:8.

x t
uFRDTM uExact Absolute error (∣uexact − uα=0:8 ∣ )α = 0:6 α = 0:8 α = 1

0.1

0.2 0.00276038 1:19048 × 10−10 1:16675 × 10−10 1:16675 × 10−10 2:37e − 12

0.4 0.03436160 1:19048 × 10−10 1:09650 × 10−10 1:09650 × 10−10 9:40e − 12

0.6 0.15224600 1:19048 × 10−10 9:82542 × 10−11 9:82542 × 10−11 2:08e − 11

0.4

0.2 0.00380271 1:95048 × 10−6 1:91160 × 10−6 1:91160 × 10−6 1:91e − 06

0.4 0.04531310 1:95048 × 10−6 1:79651 × 10−6 1:79651 × 10−6 1:95e − 06

0.6 0.19812500 1:95048 × 10−6 1:60980 × 10−6 1:60980 × 10−6 3:41e − 07

0.7

0.2 0.00624869 0.0000980408 0.0000960865 0.0000960865 1:95e − 06

0.4 0.06358160 0.0000980408 0.0000903016 0.0000903016 7:74e − 06

0.6 0.26405700 0.0000980408 0.0000809166 0.0000809166 1:71e − 05

1

0.2 0.01257680 0.0011904800 0.0011667500 0.0011667500 2:37e − 05

0.4 0.09909390 0.0011904800 0.0010965000 0.0010965000 9:40e − 05

0.6 0.37615100 0.0011904800 0.0009825420 0.0009825420 2:08e − 04
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Table 3: Basic operations of the fractional reduced differential transform method [3, 34, 36, 37].

Original function w x, tð Þ Transformed function Wk xð Þ
w x, tð Þ = α u x, tð Þ ± β v x, tð Þ Wk xð Þ = αUk xð Þ ± βVk xð Þ, where α and β are constants

w x, tð Þ = ∂r/∂trð Þu x, tð Þ Wk xð Þ = k + 1ð Þ k + 2ð Þ⋯ k + rð ÞUk+1 xð Þ = k + rð Þ!/k!ð ÞUk+r xð Þ
w x, tð Þ = ∂r/∂xrð Þu x, tð Þ Wk xð Þ = ∂r/∂xrð ÞUk xð Þ

w x, tð Þ = xmtnu x, tð Þ Wk xð Þ =
xmUkα−n xð Þ, if kα ≥ n

0 otherwise

(

w x, tð Þ = ∂Nα/∂tNα
� �

u x, tð Þ Wk xð Þ = Γ kα +Nα + 1ð Þ/Γ kα + 1ð Þð ÞUk+N xð Þ

w x, tð Þ = xmtn Wk xð Þ = xmδ kα − nð Þ, where δ kð Þ =
1, if k = 0

0, otherwise

(

w x, tð Þ = u x, tð Þv x, tð Þ Wk xð Þ =〠k

r=0Ur xð ÞVk−r xð Þ
w x, tð Þ = u x, tð Þv x, tð Þz x, tð Þ Wk xð Þ =〠k

r=0〠
r

i=0Ui xð ÞVr−i xð ÞZk−r xð Þ
w x, tð Þ = sin ηx + θtð Þ Wk xð Þ = θk/k!

� �
sin ηx + πk/2ð Þð Þ, where η and θ are constants.

w x, tð Þ = cos ηx + θtð Þ Wk xð Þ = θk/k!
� �

cos ηx + πk/2ð Þð Þ, where η and θ are constants.
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Figure 5: The physical behavior of FRDTM solution of Eq. (37) for (a) α = 0:25, (b) α = 0:5, (c) α = 0:75, and (d) α = 1.
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Figure 6: FRDTM solution profile of Eq. (37): (a) uðx, tÞ vs. x for different values α and t = 0:15, (b) uðx, tÞ vs. time t for different values α and
x = 0:5, (c) uðx, tÞ vs. time t for different values α and x = 0:5, and (d) uðx, tÞ vs. x for different values t and α = 0:5.

Table 4: First-order approximate numerical solution by FRDTM of Eq. (37) at different values of α and comparison of absolute error
at α = 0:9.

x t
uFRDTM uExact Absolute error (∣uexact − uα=0:9 ∣ )α = 0:8 α = 0:9 α = 1

0.1

0.1 0.0000158489 0.0000125893 0.00001 0.00001 2:589e − 06

0.3 0.0000381678 0.0000338383 0.00003 0.00003 3:838e − 06

0.5 0.0000574349 0.0000535887 0.00005 0.00005 3:589e − 06

0.4

0.1 0.00405733 0.00322285 0.00256 0.00256 6:285e − 04

0.3 0.00977095 0.00866262 0.00768 0.00768 9:826e − 04

0.5 0.01470330 0.01371870 0.01280 0.01280 9:187e − 04

0.7

0.1 0.03805330 0.0302268 0.02401 0.02401 6:217e − 03

0.3 0.09164090 0.0812459 0.07203 0.07203 9:216e − 03

0.5 0.13790100 0.1286660 0.12005 0.12005 8:616e − 03

1

0.1 0.15848900 0.1258930 0.10000 0.10000 2:589e − 02

0.3 0.38167800 0.3383830 0.30000 0.30000 3:838e − 02

0.5 0.57434900 0.5358870 0.50000 0.50000 3:589e − 02
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