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In this paper, a model for the transmission dynamics of cystic echinococcosis in the dog, sheep, and human populations is
developed and analyzed. We first model and analyze the predator-prey interaction model in these populations; then, we propose
a mathematical model of the transmission dynamics of cystic echinococcosis. We calculate the basic reproduction number R0
and prove that the disease-free equilibrium is globally asymptotically stable, and hence, the disease dies out if R0 < 1. We further
show that the endemic equilibrium is globally asymptotically stable, and hence, the disease persists if R0 > 1. Numerical
simulations are performed to illustrate our analytic results. We give sensitivity analysis of the key parameters and give strategies
that are helpful to control the transmission of cystic echinococcosis, from which the most sensitive parameter is the
transmission rate of Echinococcus’ eggs from the environment to sheep (βes). Thus, the effective controlling strategies are
associated with this parameter.

1. Introduction

Echinococcosis is a parasitic disease caused by ingesting the
eggs of the tapeworm genus Echinococcus through contami-
nated food and water in the environment. The parasite’s life
cycle is maintained by carnivores, which act as definitive
hosts (a dog, fox, canine, felid, or hyenid), and by intermedi-
ate hosts, which are usually herbivores (e.g., sheep, goats, cat-
tle, camels, and cervids) [1]. Different species of Echinococcus
cause different diseases in humans. Of the different forms of
echinococcosis occurring in humans, cystic echinococcosis
(CE) and alveolar echinococcosis (AE) are of special impor-
tance due to their wide geographic distribution and their
medical and economic impact [2, 3]. Echinococcus granulosus
(E. granulosus) causes cystic echinococcosis while E. multilo-
cularis causes a type of echinococcosis known as alveolar
echinococcosis [2–4].

Cystic echinococcosis (CE) is a parasitic disease, also
called “cystic hydatid disease” caused by the larval stage of
small tapeworms (dog tapeworms) known as Echinococcus
granulosus [2]. In its transmission dynamics, the domestic
dog is the principal definitive host. The parasite is transmit-

ted to dogs when they ingest the organs of infected animals
(such as sheep) that contain hydatid cysts. The cysts develop
into adult tapeworms in the dog. Infected dogs shed tape-
worm eggs in their feces which contaminate the environ-
ment. Sheep, cattle, goats, and pigs ingest tapeworm eggs
in the contaminated ground; once ingested, the eggs hatch
and develop into cysts in the internal organs. The most
common mode of transmission to humans is by the acci-
dental consumption of water or food that has been contam-
inated by the fecal matter of an infected dog. Echinococcus
eggs that have been deposited in the soil stay viable for up
to a year [5–7].

Geographically, the greatest prevalence of cystic echino-
coccosis in human and animal hosts is found in Australia,
some parts of America (especially South America), central
Asia, northern and eastern Africa, and the Mediterranean
Basin [4, 5, 7]. Cystic echinococcosis typically occurs in poor
pastoral regions in which sheep or other livestock are raised
and in which dogs are kept, for herding or property guarding,
in close proximity to households. Dogs in such regions are
frequently fed offal, and, for religious and other reasons, their
populations might not be curtailed [8]. The prevalence of the
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parasite within the offal and the contact rate between sheep
and dogs will play an important role in the rate of infection
within these populations [9–11].

In an ecosystem, predator-prey interaction between spe-
cies has been understood as a determining factor in the pop-
ulation dynamics. Predation is a biological interaction where
a predator feeds on its prey. Predators reduce prey densities
while consuming individual prey. In the absence of preda-
tors, the population of prey can grow until it approaches
the carrying capacity of the environment. In turn, prey den-
sities affect the number of predators because, when prey
becomes scarce, predators die of starvation or fail to repro-
duce [12]. There are considerable and significant efforts to
study the population dynamics in predator-prey relation-
ships by using mathematical modeling. Lotka and Volterra
initially proposed the prey-predator model [13, 14]. After-
wards, prey-predator models became an important research
area in applied mathematics.

Mathematical modeling has played a crucial role in
understanding the dynamics of an epidemic outbreak and
in developing different control measures [15–17]. In the past,
various models have been developed to study the transmis-
sion dynamics of this parasitic disease, principally in the
sheep-dog interaction, and much progress has been made
over the last 30 years in modeling [6, 18–23]. To better
understand the dynamics of transmission and to propose
effective prevention and intervention strategies against cystic
echinococcosis outbreak, an advanced study by inclusion of a
human transmission component to Echinococcus granulosus
is essential. In [24], a mathematical model of the transmis-
sion dynamics of alveolar echinococcosis (AE) that took into
account the predator-prey interaction between the popula-
tions of fox and voles with analysis was presented. Based on
the framework of this paper, we have developed a model that
helps us to understand the transmission dynamics of cyst
echinococcosis. As life cycle of Echinococcus granulosus’ eggs
involves dog, sheep, and human populations, the effect of
predator-prey interaction between these populations in the
transmission of cystic echinococcosis needs to be considered.
We formulate and analyze a mathematical model for the
transmission dynamics of cystic echinococcosis, which takes
into account predator-prey interactions of dog, sheep, and
human populations. We consider the populations of dog to
be definite host, the populations of sheep and human to be
intermediate hosts, and the concentration of parasites in
the environment to be the source of infection for intermedi-
ate hosts.

This paper is organized as follows. In Section 2, mathe-
matical models of predator-prey interaction between the
populations of sheep, dog, and human with analysis are pre-
sented, and cystic echinococcosis with assumptions is given
in detail. In Section 3, well-posedness of the system is dis-
cussed, and in Section 4, both the disease-free and endemic
equilibrium points are determined; local and global stabilities
of these equilibrium points with calculation of the basic
reproduction number are presented. Moreover, local and
global sensitivity analyses, numerical simulations, and con-
trolling strategies are presented in Section 5, and finally, con-
clusions are drawn in Section 6.

2. Mathematical Modeling

2.1. Predator-Prey Model. The dynamics of sheep, dog, and
human populations can be represented in a predator-prey
relationship. We consider the case where dogs feed only on
organs of sheep. Without sheep as the source of food, the
dog population (Nd) would exponentially decrease and
becomes extinct. However, Nd is increased by a rate propor-
tional to the number of encounters between the sheep popu-
lation (Ns) and dog population (Nd). The growth rate of the
dog population due to consumption of sheep is ωNsNd,
where ω denotes the conversion efficiency of consumed
sheep into the dog reproduction rate. Sheep are the main
food source for human. In the absence of sheep, it is assumed
that there exists some alternative food source for growth of
the human population. With sheep as the source of food,
the human population (Nh) is increased by a rate propor-
tional to the number of encounters between the sheep popu-
lation (Ns) and human population (Nh). The growth rate of
the human population due to consumption of sheep is θNs
Nh, where θ denotes the conversion efficiency of consumed
sheep into the human reproduction rate. Without sheep as
the source of food, the human population Nh grows expo-
nentially at a per-capita growth rate rh but eventually
increases up to the carrying capacity of the environment Kh
. As the number of dog and human populations increases,
the population decreases in response to increased rates of
consumption. The rate of consumption of sheep by dogs
and humans is represented by a and c, respectively. However,
in the absence of dog and human populations, the sheep pop-
ulation Ns increases logistically. It initially increases expo-
nentially at a per-capita growth rate rs, and it is self-limited
by the carrying capacity of the environment Ks. Furthermore,
the sheep, dog, and human populations die naturally at rates
represented by μs, μd, and μh, respectively. Hence, the
predator-prey interaction between the sheep, dog, and
human populations is represented by a system of nonlinear
ordinary differential equations:

dNs
dt

= rs 1 − Ns
Ks

� �
Ns − aN sNd − cNhNs − μsNs, ð1Þ

dNd
dt

= ωNsNd − μdNd, ð2Þ

dNh
dt

= rh 1 − Nh
Kh

� �
Nh + θNsNh − μhNh, ð3Þ

with initial conditions Nsð0Þ ≥ 0, Ndð0Þ ≥ 0, and Nhð0Þ ≥ 0,
where rs > 0, a > 0, ω > 0, c > 0, μs > 0, μd > 0, μh > 0, θ > 0,
and rh > 0.

Theorem 1. The region Ω = fðNs,Nd ,NhÞ ∈ℝ3
+ : 0 ≤NsðtÞ

+NdðtÞ +NhðtÞ ≤ η/εg, where 0 < ε ≤ μd and η = ðKs/ð4rsÞÞ
ðrs + εÞ2 + ðKh/ð4rhÞÞðrh + εÞ2, is positively invariant (mathe-
matically well-posed) for the model (1)–(3).

Proof. The proof of this theorem is presented in Appendix A.
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2.1.1. Equilibrium Points. Our next result concerns the exis-
tence of equilibrium points of the system (1)–(3) that are bio-
logically feasible and determines the conditions for the
existence of the equilibrium of the system in the feasible
region. At equilibrium, equations of the model (1)–(3) are

rs 1 − Ns
Ks

� �
Ns − aNsNd − cNhNs − μsNs = 0,

ωNsNd − μdNd = 0,

rh 1 − Nh
Kh

� �
Nh + θNsNh − μhNh = 0:

ð4Þ

Equilibrium points are as follows:

(1) The trivial fixed point E0 = ð0, 0, 0Þ, which represents
the extinction of the three populations

(2) E1 = ðKsð1 − ðμs/rsÞÞ, 0, 0Þ, which represent the coex-
istence of the sheep

(3) E2 = ð0, 0, Khð1 − ðμh/rhÞÞÞ, which represent the
coexistence of humans

(4) E3 = ð~Ns, ~Nd, ~NhÞ = ðμd/ω, ð1/aÞðrsð1 − ðμd/ðωKsÞÞÞ
− μsÞ, 0Þ and E4 = ðN̂s, N̂d, N̂hÞ = ðKs½rhðrs − μsÞ + c
Khðμh − rhÞ�/ðrsrh + cθKsKhÞ, 0, Kh½rsðrh − μhÞ + θ
Ksðrs − μsÞ�/ðrsrh + cθKsKhÞÞ, which represent the
extinction of humans and the extinction of dogs,
respectively

(5) Equilibrium point of the coexistence:

E5 = N∗
s ,N∗

d ,N∗
hð Þ = μd

ω
, 1
a

rs 1 − μd
ωKs

� �
− μs

��
−
cKh
rh

rh − μh +
θμd
ω

� ��
, Kh
rh

rh − μh +
θμd
ω

� ��
,

ð5Þ

which represents the coexistence of all the three populations

2.1.2. Stability of Equilibrium Points. In the next sections, the
transmission dynamics of cystic echinococcosis is studied.
Since the dog, sheep, and human populations are important
for the transmission dynamics of the disease, we are mainly
concerned with the equilibrium point of the coexistence.
Thus, the detail analysis of the local stability conditions of
the equilibrium points is presented in Appendix B, and the
stability conditions of E5 are presented in the following
theorem.

Theorem 2.

(1) E5 is locally asymptotically stable provided that a1 > 0,
a3 > 0, and a1a2 − a3 > 0, where

a1 = rh − μh +
rsμd
ωKs

+ θμd
ω

,

a2 =
rsμd
ωKs

rh − μh +
θμd
ω

� �
+ cθμdKh

ωrh
rh − μh +

θμd
ω

� �
+ μd rs 1 −

μd
ωKs

� �
−
μs −

cKh

rh
rh − μh +

θμd
ω

� �� �
,

a3 = μd rs 1 −
μd
ωKs

� �
− μs −

cKh

rh
rh − μh +

θμd
ω

� �� �
: ð6Þ

(2) The equilibrium point E5 is globally asymptotically
stable in the Int:ℝ3

+

Proof. The proof of this theorem is presented in Appendix B.

2.2. Modeling the Transmission Dynamics of Cystic
Echinococcosis. We model the dynamics of echinococcosis
as a compartmental framework. In the human population,
there are four classes: the susceptible (Sh), exposed (Eh),
infectious (Ih), and removed (Rh) classes. The dog population
has three classes: the susceptible (Sd), exposed (Ed), and
infectious (Id) classes. The sheep population has also three
classes: the susceptible (Ss), exposed (Es), and infectious (Is)
classes.

In the dynamics of the disease transmission, susceptible
sheep are infected by ingesting parasite eggs in the feces of
infected definitive hosts (dogs), while humans are infected
by accidentally ingesting Echinococcus granulosus’ eggs from
the environment. Echinococcus granulosus’ egg contamina-
tion rate in the environment by infected dogs is represented
by δ. The incorporation of the saturation is relevant since
for the disease to be spread from the environment to sheep,
there must be a sufficient number (saturation) from the envi-
ronment that can cause infection. It measures the crowding
effect of the parasite in the environment, the inhibition effect
of susceptible human and sheep when their number
increases, and the probability of contracting the disease by
sheep and human populations from the environment. Sus-
ceptible humans Sh and susceptible sheep Ss become infected
with the disease at rates βehB/ðχh + BÞ and βesB/ðχs + BÞ,
respectively, where B denotes the concentration of Echino-
coccus granulosus’ eggs in the environment, βeh denotes the
rate of ingestion of Echinococcus’ egg from the environment
by humans, βes denotes the rate of ingestion of Echinococcus’
egg from the environment by sheep, and χh and χs are the
half-saturation constants of parasite in the environment suf-
ficient to infect humans and sheep, respectively. Susceptible
dogs are infected by preying on the infected sheep. The dis-
ease transmission rate from sheep to dogs is denoted by βsd.

The model is developed based on the following
assumptions.

(1) The total population of dogs, sheep, and humans
is assumed constant, and at stable equilibrium,
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E5 = ðN∗
d ,N∗

s ,N∗
hÞ, so that the birth rate and death

rate of each of the populations are equal

(2) Dog, sheep, and human populations are recruited to
the susceptible class by birth at rates μd, μs, and μh,
respectively

(3) The infected human population could recover from
the disease naturally, and their recovery rate is repre-
sented by αh, where as sheep and dogs cannot recover
once they are infected. We assume that there is no
Echinococcus-induced death. However, dogs, sheep,
and humans die naturally at rates μd, μs, and μh,
respectively

All variables and parameters are introduced in Tables 1
and 2, and the flowchart for the transmission dynamics of
the disease is shown in Figure 1.

The flowchart in Figure 1 demonstrates the interactions
between the three populations and the transition of individ-
uals from one compartment to another. The solid arrows
show progression of individuals from one compartment to
another. The broken line from Is to the line between Sd and
Ed tells us that dogs become infected when they feed on
organs of an infected sheep. The broken lines from B to the
line between Es and Ss and from B to the line between Eh
and Sh express the fact that sheep and humans are infected
by accidentally ingesting an egg of Echinococcus granulosus.

Based on these assumptions and using the transitions
among different classes of disease stages given in Figure 1,
the transmission dynamics of cystic echinococcosis in the
populations of dogs, humans, and sheep can be expressed
by the following system of ordinary differential equations.

dSd
dt

= μdN
∗
d − βsdIsSd − μdSd, ð7Þ

dEd
dt

= βsdIsSd − ~γdEd, ð8Þ

dId
dt

= γdEd − μdId, ð9Þ

dB
dt

= δId − μeB, ð10Þ

dSh
dt

= μhN
∗
h − μhSh −

βehB
χh + B

Sh, ð11Þ

dEh
dt

= βehB
χh + B

Sh − ~γhEh, ð12Þ

dIh
dt

= γhEh − ~qhIh, ð13Þ

dRh
dt

= αhIh − μhRh, ð14Þ

Table 1: Definitions of variables.

Variables Definitions

Sh, Eh, Ih, and Rh Number of susceptible, exposed, infected, and removed humans, respectively

Sd, Ed, and Id Number of susceptible, exposed, and infected dogs, respectively

Ss, Es, and Is Number of susceptible, exposed, and infected sheep, respectively

B The concentration of Echinococcus granulosus’ eggs in the environment

N∗
d , N

∗
s , and N∗

h Total number of dogs, sheep, and humans, respectively

Table 2: Descriptions of parameters.

Parameters Descriptions

μd Natural death rate = birth rate of dog
μh Natural death rate = birth rate of human
μs Natural death rate = birth rate of sheep
μe Natural death rate of Echinococcus granulosus’ eggs

γd, γs, and γh The rates at which exposed dogs, sheep, and humans progress to infective classes, respectively

βsd The transmission rate from sheep to dogs

βes Transmission rate of Echinococcus’ eggs from the environment to sheep

βeh Transmission rate of Echinococcus’ eggs from the environment to humans

δ Egg contamination rate in the environment by infected dogs

χh The concentration of Echinococcus granulosus’ eggs at which half of all contacts with humans produce infection

χs The concentration of Echinococcus granulosus’ eggs at which half of all contacts with sheep produce infection

αh Human recovery rate
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dSs
dt

= μsN
∗
s − μsSs −

βesB
χs + B

Ss, ð15Þ

dEs
dt

= βesB
χs + B

Ss − ~γsEs, ð16Þ

dIs
dt

= γsEs − μsIs, ð17Þ

where ~γd = μd + γd, ~γh = μh + γh, ~qh = μh + αh, and ~γs =
μs + γs.

3. Well-Posedness of the Solutions

In this section, we test whether the model (7)–(17) is well
posed epidemiologically and mathematically in a set or not.

Theorem 3. The region D =D1 ×D2 ×D3 ×D4 ⊂ℝ3 ×ℝ4 ×
ℝ3 ×ℝ, where D1 = fðSd , Ed , IdÞ ⊂ℝ3

+ : Sd + Ed + Id ≤N∗
dg,

D2 = fðSh, Eh, Ih, RhÞ ⊂ℝ4
+ : Sh + Eh + Ih + Rh ≤N∗

hg, D3 = f
ðSs, Es, IsÞ ⊂ℝ3

+ : Ss + Es + Is ≤N∗
s g, and D4 = fB ⊂ℝ+ : B

≤ δN∗
d /μeg, is positively invariant for the model (7)–(17).

Proof. The detailed proof of this theorem is presented in
Appendix C.

4. Existence and Stability of Equilibria

The equilibrium points of the system (7)–(17) are found by
equating each time derivative to zero. Thus,

μdN
∗
d − βsdIsSd − μdSd = 0, ð18Þ

βsdIsSd − ~γdEd = 0, ð19Þ

γdEd − μdId = 0, ð20Þ

δId − μeB = 0, ð21Þ

μhN
∗
h − μhSh −

βehB
χh + B

Sh = 0, ð22Þ

βehB
χh + B

Sh − ~γhEh = 0, ð23Þ

γhEh − ~qhIh = 0, ð24Þ

αhIh − μhRh = 0, ð25Þ

μsN
∗
s − μsSs −

βesB
χs + B

Ss = 0, ð26Þ

βesB
χs + B

Ss − ~γsEs = 0, ð27Þ

γsEs − μsIs = 0: ð28Þ
From equations (20) and (21), we, respectively, have

Id =
μeB
δ

,

Ed =
μdμeB
δγd

:

ð29Þ

From equations (18) and (19) and using (29), we have

Sd =N∗
d −

μe~γdB
δγd

: ð30Þ

𝜇hRh

𝛼hIh 𝛾hEh

𝛾dEd

𝛾sEs

𝛿Id

𝜇hNh

𝜇eB

Rh Ih Eh Sh

𝜇hIh

𝜇dEd
𝜇dSd

Sd

Is Es Ss

Ed Id

𝜇hEh 𝜇hSh

B

⁎

𝜇dId

𝛽ehB

𝛽sdIsSd

Sh𝜒h + B

𝜇dNd
⁎

𝜇sNs

𝜇sSs𝜇sEs𝜇sIs

⁎

𝛽esB

𝜒s + B
Sh

Figure 1: The flow diagram for cystic echinococcosis transmission dynamics.
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Substituting (30) in (18) yields

Is =
1
βsd

μeμd~γdB
δγdN

∗
d − μe~γdB

� �
: ð31Þ

Similarly, from equations (26)–(28), we obtain

Is =
γsβesN

∗
s B

~γs μsχs + μs + Besð ÞB½ � : ð32Þ

By equating (31) and (32), we then obtain a quadratic
equation:

B2 μe~γd μd~γs μs + βesð Þ + γsβesβsdN
∗
sð Þ½ �

− B δγdγsβesβsdN
∗
sN

∗
d − μeχsμsμd~γd~γs½ � = 0:

ð33Þ

Thus, we have two roots:

B = 0,

B = δγdγsβesβsdN
∗
sN

∗
d − μeχsμsμd~γd~γs

μe~γd μd~γs μs + βesð Þ + γsβesβsdN
∗
sð Þ :

ð34Þ

All the remaining state variables Sh, Eh, Ih, Rh, Ss, and Es
obtained from equations (22)–(27) are expressed in terms of
B, where B ≥ 0. Thus, we have two cases, and the results are
presented in Sections 4.1 and 4.4.

4.1. Disease-Free Equilibrium (DFE). From algebraic compu-
tation when B = 0, the system (7)–(17) has the DFE X0 =
ðS0d , E0

d , I0d , B0, S0h, E0
h, I0h, R0

h, S0s , E0
s , I0s Þ = ðN∗

d , 0, 0, 0,N∗
h, 0, 0,

0,N∗
s , 0, 0Þ.

4.2. The Basic Reproduction Number. The basic reproduction
number is one of the fundamental concepts in mathematical
biology. It is a threshold parameter, intended to quantify the
spread of disease by estimating the average number of sec-
ondary infections in a wholly susceptible population, giving
an indication of the invasion strength of an epidemic. We
determine the basic reproduction number using the next-
generation matrix (NGM) approach [25]. See Appendix D
for the detailed computation. Therefore, the basic reproduc-
tion number, denoted by R0, is given by

R0 = ρ FV−1� �
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γsβesN

∗
s

μs~γs

βsdγdN
∗
d

μd~γd

δ

χsμe

s
: ð35Þ

We write it as R0 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RdRsRe

p
, where Rd = βsdγdN

∗
d/μd~γd

corresponds to the average number of dogs in which one
infectious sheep causes the disease over its expected infection
period in a completely susceptible dog population, Rs = γs
βesN

∗
s /μs~γs corresponds to the number of sheep in which

an infectious dog induces the disease over its expected infec-
tion period in a completely susceptible sheep population, and
Re = δ/μeχs corresponds to the contribution of the environ-
ment to the sheep population as a result of one infectious
dog subject during its infectious period.

4.3. Stability of the DFE

Theorem 4. If R0 < 1, then the disease-free equilibrium X0 is
locally asymptotically stable.

Proof. See Theorem 2 in [25].

Theorem 5. If R0 < 1, then the disease-free equilibrium X0 is
globally asymptotically stable in D. If R0 > 1, then the DFE is
unstable, the system is persistent, and there is at least one
endemic equilibrium in the interior of D.

Proof. To prove the global stability of the disease-free equilib-
riumX0, we use amatrix-theoreticmethod as explained in [26].

The disease compartments of the model (7)–(17) can be
written as

x′ = F −Vð Þx − f x, yð Þ, ð36Þ

where x = ðEd, Id, B, Eh, Ih, Es, IsÞT , y = ðSd, Sh, Rh, SsÞT , F
and V are matrices given in (D.2) and (D.3), and

f x, yð Þ =

βsdIs N
∗
d − Sdð Þ
0
0

βehB
χh

N∗
h −

χhSh
B + χh

� �
0

βesB
χs

N∗
s −

χsSs
B + χs

� �
0

0BBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCA

≥ 0, ð37Þ

since Sd ≤N∗
d , Sh ≤N∗

h , χh ≤ χh + B, Ss ≤N∗
s , and χs ≤ χs + B.

Matrices F and V−1 are entry-wise nonnegative with

V−1F =

0 0 0 0 0 0 βsdN
∗
d

~γd

0 0 0 0 0 0 γdβsdN
∗
d

μd~γd

0 0 0 0 0 0 δγdβsdN
∗
d

μeμd~γd

0 0 βehN
∗
h

χh~γh
0 0 0 0

0 0 γhβehN
∗
h

χh~γh~qh
0 0 0 0

0 0 βesN
∗
s

χs~γs
0 0 0 0

0 0 γsβesN
∗
s

χs~γsμs
0 0 0 0

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

:

ð38Þ
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Since V−1F is a reducible matrix [27], the condition of
Theorem 2 in [26] fails. Instead, to establish the global stabil-
ity of the DFE, we construct a Lyapunov function by using
Theorem 1 of [26]. Let WT = ðw1,w2,w3,w4,w5,w6,w7Þ be
the left eigenvector of V−1F corresponding to the eigenvalue
R0. Thus,

WTV−1F = R0W: ð39Þ

As a result, we found that W = ð0, 0, 1, 0, 0, 0, 0, δγdβsd
N∗

d/μdμe~γdR0Þ is the left eigenvector of V−1F corresponding
to the eigenvalue R0. Thus, by Theorem 1 of [26],

Q =WTV−1x = δγdEd
μdμe~γd

+ δId
μdμe

+ B
μe

+ γs
μs~γs

Es +
Is
μs

� �
δγdβsdN

∗
d

μdμe~γdR0

ð40Þ

is a Lyapunov function for the model (7)–(17). Then, differ-
entiating along the solutions of the system (7)–(17) gives

Q′ = R0 − 1ð Þ δγdβsdIsN
∗
d

μdμe~γdR0
+ B

� �
−

δγdβsdIs
μdμe~γd

N∗
d − Sdð Þ + γsγdβesβsdBN

∗
d

μsμeμdχs~γdR0
N∗

s −
Ssχs
B + χs

� �� �
:

ð41Þ

Since Sd ≤N∗
d , Ss ≤N∗

s , and χs ≤ χs + B, Q′ ≤ 0 if R0 < 1.
Furthermore, Q′ = 0 implies that B = 0 and Is = 0. Thus,
using the results obtained in Section 4, we have Ed = 0, Id =
0, Eh = 0, Ih = 0, Rh = 0, Es = 0, Sd =N∗

d , Sh =N∗
h , and Ss =

N∗
s . Hence, the largest invariant set of the model where

Q′ = 0 in int ðDÞ is the singleton fX0g. Therefore, by
LaSalle’s invariance principle [28], the disease-free equilib-
rium X0 is globally asymptotically stable if R0 < 1. Further-
more, from (41), if R0 > 1, then Q′ > 0 in D when B > 0
and ðSd, SsÞ = ðN∗

d ,N∗
s Þ. Thus, the disease-free equilibrium

X0 is unstable, and using Theorem 2 of [26], the system
(7)–(17) is uniformly persistent and hence implies that
there is at least one endemic equilibrium in the interior
of D.

4.4. Existence and Stability of the Endemic Equilibrium (EE).
From the result in (34), an endemic equilibrium is obtained
when B > 0. Thus, the endemic equilibrium point of the sys-
tem in terms of the reproduction number R0 is given by

XE = S∗d , E∗
d , I∗d , B∗, S∗h, E∗

h, I∗h, R∗
h, S∗s , E∗

s , I∗sð Þ, ð42Þ

where

I∗d =
μeB

∗

δ
= μeχsμdμs~γs
δ μd~γs μs + βesð Þ + γsβsdβesN

∗
sð Þ R2

0 − 1
� �

,

ð43Þ

E∗
d =

μeχsμ
2
dμs~γs

δγd μd~γd μs + βesð Þ + γsβsdβesN
∗
sð Þ R2

0 − 1
� �

, ð44Þ

S∗d =N∗
d −

μe~γdB
δγd

, ð45Þ

S∗h =
μhN

∗
h χh + B∗ð Þ

μh χh + B∗ð Þ + βehB
∗ , ð46Þ

E∗
h =

μhβehN
∗
hB

∗

~γh μh χh + B∗ð Þ + βehB
∗ð Þ , ð47Þ

I∗h =
μhγhβehN

∗
hB

∗

~qh~γh μh χh + B∗ð Þ + βehB
∗ð Þ , ð48Þ

R∗
h =

γhαhβehN
∗
hB

∗

~qh~γh μh χh + B∗ð Þ + βehB
∗ð Þ , ð49Þ

S∗s =
μs χs + B∗ð ÞN∗

s
μs χs + B∗ð Þ + βesB

∗ , ð50Þ

E∗
s =

μsβesN
∗
s B

∗

~γs μs χs + B∗ð Þ + βesB
∗ð Þ , ð51Þ

I∗s =
γsβesN

∗
s B

∗

~γs μs χs + B∗ð Þ + βesB
∗ð Þ , ð52Þ

B∗ = χsμdμs~γs
μd~γs μs + βesð Þ + γsβsdβesN

∗
s

R2
0 − 1

� �
: ð53Þ

Theorem 6. If R0 > 1, then an endemic equilibrium XE =
ðS∗d , E∗

d , I∗d , B∗, S∗h , E∗
h , I∗h , R∗

h , S∗s , E∗
s , I∗s Þ defined by equations

(43)–(53) is globally asymptotically stable.

Proof. The detailed proof of this theorem is presented in
Appendix E.

5. Numerics: Elasticity Indices, Numerical
Simulations, and Control Strategies

5.1. Elasticity Indices. Our analysis in previous sections dem-
onstrated that the quantity of R0 plays a crucial role in deter-
mining the dynamic behavior of our model. In this section,
we will identify which parameters have a high impact on
the basic reproduction number R0 using data from the liter-
ature and assumed (estimated) values as given in Table 3,
and we use the result for intervention strategies.

To determine the parameter that contributes most to the
disease transmission, we perform local sensitivity analysis by
calculating the normalized sensitivity index (elasticity index)
as introduced in [31, 32]. The normalized forward sensitivity
index (elasticity index) of a variable (R0) with respect to a
parameter p is the ratio of the relative change in the variable
to the relative change in the parameter, given by

YR0
p = ∂R0

∂p
× p
R0

: ð54Þ

Table 4 gives the elasticity indices of R0 with respect to
the key parameters of the model (7)–(17) at the baseline
values indicated in Table 3 and arranged in descending order
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of magnitudes. The sign of the elasticity index tells whether
R0 increases (positive sign) or decreases (negative sign)
with the parameter, whereas the magnitude determines
the relative importance of the parameter. From the magni-
tude of the elasticity index, we can notice that four param-
eters (βes, βsd, δ, and χs) have equal and the greatest
influence for the transmission of the disease, followed by
γs and γd.

5.2. Global Sensitivity Analysis. From the local sensitivity
analysis, we observed that it is impossible to differentiate
explicitly the most influential parameter(s) of the model. In
order to determine which parameter(s) among the six is
(are) most influential in the dynamics of the disease, global
sensitivity analysis is done. We employed the technique of
Latin hypercube sampling (LHS) to test the sensitivity of
the model to each input parameter, as described and imple-
mented in [33], and partial rank correlation coefficients
(PRCC) to assess the significance of each parameter with
respect to each metric are used. Latin hypercube sampling
is a stratified sampling technique that creates sets of parame-
ters by sampling for each parameter according to a prede-
fined probability distribution. To examine the dependence
of R0 on parameter variations, we determine the PRCC values
by considering a range of parameters as given in Table 4, with
sample size 1000. The result is depicted in Figure 2. The
parameter with the PRCC value far away from zero indicates
more strongly the parameter influence R0. The negative sign
for PRCC indicates inverse proportionality.

From Figure 2, it is observed that the transmission rate of
Echinococcus’ eggs from the environment to sheep ðβesÞ, the
contamination rate of Echinococcus’ eggs in the environment
by infected dogs (δ), and the transmission rate from sheep to
dogs (βsd) are the most influential parameters among the six
parameters in the disease dynamics.

5.3. Numerical Simulations. In this section, numerical simu-
lations to gain insight into some of quantitative features of
the model (7)–(17) are presented.

For the model (1)–(3), we estimate the parameter
values: Ks = 2000, Kh = 1000, rh = 0:01, θ = 0:0000001, c =
0:000000001, ω = 0:0000005, a = 0:0000001, μh = 0:00004,
μd = 0:00088, and μs = 0:00114. These parameter values
result in an asymptotically stable equilibrium point E5 =
ðN∗

s ,N∗
d ,N∗

hÞ = ð1760,590,1014Þ. Thus, using the total popu-
lations N∗

d = 590, N∗
h = 1014, and N∗

s = 1760, an initial con-
centration of Echinococcus’ eggs B = 100, and the baseline
parameter values given in Table 3, we obtain a reproductive
number R0 = 0:57 < 1. Figure 3 depicts the global stability of
the disease-free equilibrium as proven in Theorem 5 with dif-
ferent initial conditions. We can notice that all disease com-
partments E∗

d , I∗d , B∗, E∗
h , I∗h , R∗

h , E∗
s , and I∗s converge

asymptotically to zero, while the noninfected compartments
S∗d , S

∗
h , and S∗s converge to their respective total populations.
Figure 4 shows the time evolution of human, sheep, and

dog populations for the model (7)–(17) with parameter
values given in Table 3 by increasing βes = 0:0001 to βes =
0:001. In this case, the reproductive number is R0 = 1:8 > 1
and depicts the global stability of the endemic equilibrium
as proven in Theorem 6. It can be noticed that all the com-
partments of the dog, human, and sheep populations converge
asymptotically to their respective endemic equilibrium points
irrespective of any initial conditions.

5.4. Control Strategies. The global sensitivity analysis pre-
sented in Sections 5.1 and 5.2 demonstrates that cystic echi-
nococcosis can be controlled by reducing the transmission
rate of Echinococcus’ eggs from the environment to sheep
ðβesÞ. In this section, we illustrate the effect of the trans-
mission rate of Echinococcus’ eggs from the environment
to sheep ðβesÞ.

The effect of the transmission rate of Echinococcus’ eggs
from the environment to sheep (βes) using baseline parame-
ter values in Table 3, and when βes varied from 0.01 to
0.0001, is displayed in Figure 5. As a result, the infectious
sheep, dog, and human populations are, respectively, reduced
from 123 to 0, 84 to 0, and 145 to 0, where the basic reproduc-
tive number is also reduced from R0 = 5:72 to R0 = 0:57. The
result shows that increasing the transmission rate of Echino-
coccus’ eggs from the environment to sheep ðβesÞ will inten-
sify the transmission of the disease. Thus, to control the
disease transmission, we suggest that it is important to plan
an intervention strategy to decrease the transmission rate of
Echinococcus’ eggs from the environment to sheep ðβesÞ.

6. Conclusion

In this paper, we first derived a mathematical model of the
predator-prey interaction of the sheep, dog, and human pop-
ulations in order to ascertain the conditions for the coexis-
tence of these populations in predator-prey relationship.
We then determine the equilibrium points and study the
stability of each of these points. We also formulated a com-
partmental model for transmission dynamics of cystic

Table 3: Parameters, baseline values, and sources.

Parameters Baseline values (Unit = day−1) Sources

μd 0.00088 [22]

βsd 0.00001 Assumed

γd 0.0001 Assumed

μh 0.00004 [23]

βeh 0.0001 Assumed

γh 0.00019 [29]

αh 0.0001 Assumed

μs 0.00114 [22]

βes 0.0001 Assumed

μe 0.0039 [22]

γs 0.0001 [30]

δ 0.003 Assumed

χh 40 Assumed

χs 20 Assumed
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echinococcosis. We calculated both the disease-free equilib-
rium (DFE) and the endemic equilibrium (EE) points of the
model. To study the behavior of the disease, the basic repro-
duction number R0 is derived. We proved that, when R0 < 1,
the DFE is locally asymptotically stable and globally asymp-
totically stable, which implies that the disease dies out,
whereas when R0 > 1, the EE is globally asymptotically stable,
which implies that the disease persists in all the populations.
To identify which parameter has a great impact on the dis-
ease transmission, we performed both local and global sensi-
tivity analyses on the basic reproduction number, from
which we have noticed that the most sensitive parameter is
the transmission rate of Echinococcus’ eggs from the environ-
ment to sheep (βes). Furthermore, we have also observed that
the variation of βes has a significant effect on the number of
infectious sheep, dog, and human populations. Thus, the

effective controlling strategy that controls the disease trans-
mission is decreasing the transmission rate of Echinococcus’
eggs from the environment to sheep (βes). To this effect, we
suggest that the transmission dynamics of the disease by con-
sidering different intervention strategies must be studied.
Therefore, extension of our work by introducing intervention
strategies is an interesting future study.

Appendix

A. Proof of Theorem 1

Proof. Here, we show the existence and uniqueness of solu-
tions, positivity, and boundedness of the solution of the
model (1)–(3), since the state variables Ns, Nd, and Nh repre-
sent population densities. The positivity of these variables is

Table 4: Elasticity indices of R0 relative to some model parameters.

Parameters Formula YR0
p = ∂R0/∂pð Þ × p/R0ð Þ

	 

Baseline value Range Elasticity index

βes
1
2 0.0001 0.00001-0.0002 0.5

βsd
1
2 0.00001 0.000001-0.00002 0.5

δ
1
2 0.003 0.0003-0.006 0.5

χs −
1
2 20 10-40 -0.5

γs
μs

2 μs + γsð Þ 0.0001 0.00001-0.0002 0.46

γd
μd

2 μd + γdð Þ 0.0001 0.00001-0.0002 0.45

Sensitivities

PRCC −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

𝛾d

𝛾s

𝛽sd

𝛽es

𝜒s

𝛿

(p < 0.05)

Figure 2: Global sensitivity analysis displaying the partial rank correlation coefficients (PRCC).
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to conform with the reality for biological populations, while
boundedness of the solution is to conform with the natural
restriction to growth due to limited resources.

A.1. Existence and Uniqueness of Solutions. The system
(1)–(3) with initial conditions can be expressed as

dX
dt

= f Xð Þ, X 0ð Þ = X0, ðA:1Þ

where X = ðNs,Nd,NhÞT is a vector in ℝ3
+ and f ðXÞ =

ð f1ðXÞ, f2ðXÞ, f3ðXÞÞT is the vector field in ℝ3
+ such that

f1ðXÞ = rsð1 − ðNs/KsÞÞNs − aNsNd − cNhNs − μsNs, f2ðXÞ
= ωNsNd − μdNd, and f3ðXÞ = rhð1 − ðNh/KhÞÞNh + θNs
Nh − μhNh. Using a standard theorem of the dynamical
system [34], f ðXÞ is the Lipschitz continuous. Hence,
there exists a unique solution of (1)–(3) for all times
t ≥ 0.
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Figure 3: Time evolution of the dog, sheep, and human populations with baseline parameter values given in Table 3, using different initial
conditions, which gives R0 = 0:57.
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Figure 4: Time evolution of the dog, sheep, and human populations with baseline parameter values given in Table 3, using different initial
conditions, except for βes = 0:0001, which gives R0 = 1:8, and with approximate equilibrium values S∗d = 414, E∗

d = 158, I∗d = 18, S∗h = 617,
E∗
h = 69, I∗h = 94, R∗

h = 234, S∗s = 1296, E∗
s = 427, and I∗s = 37.
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A.2. Positivity and Boundedness of Solutions. Equation (1) is a
Bernoulli type. Thus, the integral solution of equation (1) is
given by

Ns tð Þ =
KsNs 0ð Þe

Ð t

0
rs−aNd−cNh−μsð Þdτ

Ks + rsNs 0ð ÞÐ t0 eÐ t

0
rs−aNd−cNh−μsð Þdτdτ

: ðA:2Þ

Since Nsð0Þ ≥ 0, we can notice that NsðtÞ ≥ 0 for all t > 0.
Equation (2) is a separable differential equation, whose

integral solution is given by

Nd tð Þ =Nd 0ð Þe
Ð t

0
ωNs τð Þ−μdð Þdτ

: ðA:3Þ

Thus, Ndð0Þ ≥ 0 implies that NdðtÞ ≥ 0 for all t > 0. In a
similar manner, an integral solution of (3) is given by

Nh tð Þ = KhNh 0ð Þe
Ð t

0
rh+θNs−μhð Þdτ

Kh + rhNh 0ð ÞÐ t0 eÐ t

0
rh+θNs−μhð Þdτdτ

: ðA:4Þ

Since Nhð0Þ ≥ 0, we obtain NhðtÞ ≥ 0 for t > 0. Therefore,
the solution ðNsðtÞ,NdðtÞ,NhðtÞÞ of the model (1)–(3) is
nonnegative for all t ≥ 0.

To prove the boundedness of the solution, let us assume
that ðNsðtÞ,NdðtÞ,NhðtÞÞ is the solution of the system
(1)–(3) such that TðtÞ =NsðtÞ +NdðtÞ +NhðtÞ. Then,

dT
dt

= rsNs −
rsN

2
s

Ks
+ ω − að ÞNsNd + θ − cð ÞNsNh + rhNh

−
rhN

2
h

Kh
− μsNs − μdNd − μhNh:

ðA:5Þ

For some ε > 0, we have

dT
dt

+ εT = rs + εð ÞNs + rh + εð ÞNh − μd − εð ÞNd −
rsN

2
s

Ks

+ ω − að ÞNsNd + θ − cð ÞNsNh −
rhN

2
h

Kh
− μsNs − μhNh:

ðA:6Þ

Now choose ε such that 0 < ε ≤ μd; then, we have

dT
dt

+ εT ≤ rs + εð ÞNs + rh + εð ÞNh −
rsN

2
s

Ks
−
rhN

2
h

Kh
+ ω − að ÞNsNd + θ − cð ÞNsNh

= Ks
4rs

rs + εð Þ2 − rs
Ks

Ns −
Ks
2rs

rs + εð Þ
� �2

+ Kh
4rh

rh + εð Þ2 − rh
Kh

Nh −
Kh
2rh

rh + εð Þ
� �2

+ ω − að ÞNsNd + θ − cð ÞNsNh:

ðA:7Þ

Case 1. If ω − a < 0 and θ − c < 0, then

dT
dt

+ εT ≤
Ks
4rs

rs + εð Þ2 + Kh
4rh

rh + εð Þ2 ≔ η: ðA:8Þ

From the solution of the differential equation, we obtain

0 < T Ns tð Þ,Nd tð Þ,Nh tð Þð Þ ≤ η

ε
1 − e−εt
� �

+ T 0ð Þe−εt: ðA:9Þ
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Figure 5: The numerical simulations displaying effects of controlling strategies on the cumulative number of infectious dog, human, and
sheep populations, using parameter values in Table 3, with varying values of βes.

11Journal of Applied Mathematics



Case 2. If ω − a > 0 and θ − c > 0, then we can observe that

ω − að ÞNsNd + θ − cð ÞNsNh ≤ ω + θð Þ − a + cð Þð ÞT2:

ðA:10Þ

Thus, ðdT/dtÞ+ εT ≤ η + ψT2, whereψ≔ ðω+ θÞ− ða+ cÞ.
From the solution of the differential equation, we

obtain

0 < T Ns tð Þ,Nd tð Þ,Nh tð Þð Þ
≤
η

ε
1 − e−εt
� �

+ T 0ð Þe−εt + T 0ð Þε
ψ T 0ð Þ − T 0ð Þ − ε/ψð Þð Þeεtð Þ :

ðA:11Þ

In both cases, we have 0 < TðtÞ ≤ η/ε as t→∞. This
proves that all solutions of the system are uniformly
bounded.

B. Proof of Theorem 2

B.1. Local Stability of Equilibrium Points

Proof. Since we are working with a first-order nonlinear sys-
tem of differential equations, we can analyze the stability of
our model at its equilibrium points by linearizing the system
using the Jacobian matrix. The Jacobian matrix for the sys-
tem (1)–(3) is

J =

rs −
2rsNs
Ks

− aNd − cNh − μs −aNs −cNs

ωNd ωNs − μd 0

θNh 0 rh −
2rhNh
Kh

+ θNs − μh

0BBBBBBB@

1CCCCCCCA
:

ðB:1Þ

The eigenvalues of the Jacobian are determined from the
characteristic equation:

χ Jð Þ = λ3 + a1λ
2 + a2λ + a3 = 0, ðB:2Þ

where a1 = −TrðJÞ, a2 = A11 + A22 + A33, and a3 = −det ðJÞ,
where A11, A22, and A33 are the minors of the entries a11,
a22, and a33 for the Jacobian J = ðaijÞ3.

The local stability conditions of the equilibrium points
obtained in Section 2.1.1 are discussed as follows.

(1) The Jacobian matrix at the equilibrium point E0 is

J E0ð Þ =

rs − μs 0 0
0 −μd 0
0 0 rh − μh

0BBBBB@

1CCCCCA: ðB:3Þ

The eigenvalues of JðE0Þ are λ1 = rs − μs, λ2 = −μd, and
λ3 = rh − μh. Hence, E0 is stable if rs < μs and rh < μh. Other-
wise, it is unstable

(2) The Jacobian matrix at the equilibrium point E1 is

J E1ð Þ =

μs − rs −aK s 1 − μs
rs

� �
−cKs 1 − μs

rs

� �
0 ωKs 1 − μs

rs

� �
− μd 0

0 0 θKs 1 − μs
rs

� �
+ rh − μh

0BBBBBBBBBB@

1CCCCCCCCCCA
:

ðB:4Þ

The eigenvalues of JðE1Þ are λ1 = μs − rs, λ2 = ωKsð1 −
ðμs/rsÞÞ − μd, and θKsð1 − ðμs/rsÞÞ + rh − μh. Hence, E1 is
stable if rs > μs, rh > μh, and Ks < rsμd/ðrs − μsÞ and unsta-
ble if otherwise

(3) The Jacobian matrix at the equilibrium point E2 is

J E2ð Þ =

rs − μs − cKh 1 − μh
rh

� �
0 0

0 −μd 0

θKh 1 − μh
rh

� �
0 μh − rh

0BBBBBBBB@

1CCCCCCCCA
:

ðB:5Þ

The eigenvalues of JðE2Þ are λ1 = rs − μs − cKhð1 − ðμh/
rhÞÞ, λ2 = −μd, and λ3 = μh − rh. Hence, E2 is stable if μh <
rh and μs > rs and unstable if otherwise

(4) The Jacobian matrix at the equilibrium point E3 is

J E3ð Þ =

−
rsμd
ωKs

−
aμd
ω

−
cμd
ω

ω

a
rs 1 − μd

ωKs

� �
− μs

� �
0 0

0 0 θμd
ω

+ rh

0BBBBBBBBB@

1CCCCCCCCCA
:

ðB:6Þ

Hence, E3 is unstable since the eigenvalue λ = ððθμdÞ/ωÞ
+ rh > 0.
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(5) The Jacobian matrix at the equilibrium point E4 is

J E4ð Þ =

−rsA
D

aKsA
D

−cKsA
D

0 −ωKsA
D

− μd 0

cKhB
D

0 −rhB
D

0BBBBBBBBB@

1CCCCCCCCCA
,

ðB:7Þ

where A = rhðrs − μsÞ + cKhðμh − rhÞ, B = rsðrh − μhÞ
+ θKsðrs − μsÞ, and D = rsrh + cθKsKh. By the neces-
sary and sufficient conditions of the Routh-Hurwitz
criteria, E4 is stable provided that a1 = −trðJðE4ÞÞ =
ð1/DÞðrsA + ωKsA + rhBÞ > 0, a3 = −det ðJðE4ÞÞ > 0,
and a1a2 − a3 > 0

(6) The Jacobian matrix at the equilibrium point E5 is

By the necessary and sufficient conditions of the
Routh-Hurwitz criteria, E5 is asymptotically stable
provided that a1 = −trðJðE5ÞÞ = rh − μh + ðrsμd/ωKsÞ + ðθ
μd/ωÞ > 0, a3 = −det ðJðE5ÞÞ > 0, and a1a2 − a3 > 0,
where a2 = ðrsμd/ωKsÞðrh − μh + ðθμd/ωÞÞ + ðcθμdKh/ωrhÞð
rh − μh + ðθμd/ωÞÞ + μd½rsð1 − ðμd/ωKsÞÞ−μs − ðcKh/rhÞðrh
− μh + ðθμd/ωÞÞ�
B.2. Global Stability of E5. The method of Lyapunov func-
tions enables the analysis to be extended beyond only a
small region near the equilibrium point (global analysis).
To study the global stability of the coexistence equilib-
rium point, we construct a Lyapunov function for a
predator-prey model (1)–(3) (Theorem 4.2 of [35]). For
an equilibrium point E5 = ðN∗

s ,N∗
d ,N∗

hÞ, let us define a
function:

V Ns,Nd,Nhð Þ =Ns −N∗
s −N∗

s ln
Ns
N∗

s

+ a
ω

Nd −N∗
d −N∗

d ln
Nd
N∗

d

� �
+ c
θ

Nh −N∗
h −N∗

h ln
Nh
N∗

h

� �
:

ðB:9Þ

(i) VðE5Þ =N∗
s −N∗

s −N∗
s ln ðN∗

s /N∗
s Þ + ða/ωÞfN∗

d −N∗
d

−N∗
d ln ðN∗

d/N∗
dÞg + ðc/θÞfN∗

h −N∗
h −N∗

h ln ðN∗
h/N∗

h
Þg = 0

The time derivative of V is

V ′ Ns,Nd,Nhð Þ = ∇V Ns,Nd,Nhð Þð ÞTV Ns,Nd,Nhð Þ
= ∂V
∂Ns

dNs
dt

+ ∂V
∂Nd

dNd
dt

+ ∂V
∂Nh

dNh
dt

= Ns −N∗
s

Ns

� �
dNs
dt

+ a
ω

Nd −N∗
d

Nd

� �
dNd
dt

+ c
θ

Nh −N∗
h

Nh

� �
dNh
dt

= −
rs
Ks

Ns −N∗
sð Þ2 + crh

θKh
Nh −N∗

hð Þ2
� �

:

ðB:10Þ

Thus, V ′ðE5Þ = 0.
In order to verify that VðNs,Nd,NhÞ > 0 for all ðNs,Nd

,NhÞ ≠ E5, it suffices to show that VðE5Þ is a minimum
(global minimum). In this case, we apply the second-order
partial test for three variables. The Hessian matrix is shown
as follows:

H E5ð Þ =

1
N∗

sð Þ2 0 0

0 a

ω N∗
dð Þ2 0

0 0 c

θ N∗
dð Þ2

0BBBBBBBBB@

1CCCCCCCCCA
, ðB:11Þ

J E5ð Þ =

−
rsμd
ωKs

−
aμd
ω

−
cμd
ω

ω

a
rs 1 − μd

ωKs

� �
− μs −

cKh
rh

rh − μh +
θμd
ω

� �� �
0 0

θKh
rh

rh − μh +
θμd
ω

� �
0 − rh − μh +

θμd
ω

� �

0BBBBBBBB@

1CCCCCCCCA
: ðB:8Þ
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with D1 = 1/ðN∗
s Þ2 > 0,

D2 =

1
N∗

sð Þ2 0

0 a

ω N∗
dð Þ2
























> 0, ðB:12Þ

and D3 = jHðE5Þj > 0. This indicates that VðE5Þ is the local
minimum. Moreover, V is a convex function on a convex
set. Therefore, VðE5Þ is minimum, and consequently, VðNs,
Nd,NhÞ > 0 for all ðNs,Nd,NhÞ ≠ E5.

(ii) From the result in (i), we can see that V ′ðNs,Nd,
NhÞ < 0 whenever ðNs,Nd,NhÞ ≠ E5

(iii) Clearly VðNs,Nd,NhÞ→∞ if kðNs,Nd,NhÞk =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

s +N2
d +N2

h
p

→∞

Thus, V is a Lyapunov function. Therefore, the equilib-
rium point E5 = ðN∗

s ,N∗
d ,N∗

hÞ is globally asymptotically stable.

C. Proof of Theorem 3

C.1. Existence and Uniqueness of Solutions

Proof. The model (7)–(17) with initial conditions can be
expressed as

dX
dt

= f Xð Þ, X 0ð Þ = X0, ðC:1Þ

where X = ðSd, Ed, Id, B, Sh, Eh, Ih, Rh, Ss, Es, IsÞT is a vector in
ℝ11

+ and f ðXÞ = ð f1ðXÞ, f2ðXÞ,⋯,f11ðXÞÞT is the vector field
in ℝ11

+ such that f1ðXÞ, f2ðXÞ,⋯, f11ðXÞ are right sides of
the model (7)–(17). Using a standard theorem of the dynam-
ical system [34], f ðXÞ is the Lipschitz continuous. Hence,
there exists a unique solution of (7)–(17) for all times t > 0.

C.2. Positivity and Boundedness of Solutions. Since the model
deals with the human, sheep, and dog populations, we need
to show that the state variables remain positive for all times.
Suppose that ðSdðtÞ, EdðtÞ, IdðtÞ, BðtÞ, ShðtÞ, EhðtÞ, IhðtÞ, Rh
ðtÞ, SsðtÞ, EsðtÞ, IsðtÞÞ is the solution of the model
(7)–(17) defined for all t ≥ 0.

From equations (7), (11), and (15), we, respectively, obtain

dSd
dt

> − βsd + μdð ÞSd ⇒ Sd tð Þ > Sd 0ð Þe−
Ð t

0
βsdIs+μdð Þdτ > 0,

dSh
dτ

> − μh +
βehB
χh + B

� �
Sh ⇒ Sh tð Þ > Sh 0ð Þe−

Ð t

0
μh+ βehB/χh+Bð Þð Þdτ > 0,

dSs
dt

> − μs +
βesB
χs + B

� �
Ss ⇒ Ss tð Þ > Ss 0ð Þe−

Ð t

0
μs+ βesB/χs+Bð Þð Þdτ > 0:

ðC:2Þ

Thus, the variables SdðtÞ, ShðtÞ, and SsðtÞ are positive for
all t ≥ 0.

We prove that the remaining variables are positive by a
method of contradiction. Suppose that the conclusion is not
true. Then, there exists t1 ∈ ½0, rÞ for some r > 0 such that

e t1ð Þ
=min Ed t1ð Þ, Id t1ð Þ, B t1ð Þ, Eh t1ð Þ, Ih t1ð Þ, Rh t1ð Þ, Es t1ð Þ, Is t1ð Þð Þf g
= 0:

ðC:3Þ

If eðt1Þ = Edðt1Þ, then from (8) and since SdðtÞ > 0 for t > 0,
we obtain dEd/dt > −~γdEd for all t ∈ ½0, t1Þ. It then follows that

0 = Ed t1ð Þ > Ed 0ð Þe
Ð t1

0
−~γddt > 0, ðC:4Þ

which leads to a contradiction.
If eðt1Þ = Idðt1Þ, then from (9), we have dId/dt > −μdId

for all t ∈ ½0, t1Þ. Thus,

0 = Id t1ð Þ > Id 0ð Þe
Ð t1

0
−μddt > 0, ðC:5Þ

which leads to a contradiction.
If eðt1Þ = Bðt1Þ, then from (10), we have dB/dt > −μeB for

all t ∈ ½0, t1Þ. Thus,

0 = B t1ð Þ > B 0ð Þe
Ð t1

0
−μedt > 0, ðC:6Þ

which also leads to a contradiction.
Similar contradictions can be obtained if eðt1Þ = Ehðt1Þ,

eðt1Þ = Ihðt1Þ, eðt1Þ = Rhðt1Þ, eðt1Þ = Esðt1Þ, or eðt1Þ = Isðt1Þ.
From continuity of the functions (the state variables), any

of the variables can never be negative. Therefore, the solution
of (7)–(17) is positive for all t ≥ 0.

Secondly, we prove the boundedness of the solutions as
follows.

From equations (7)–(9), we have

dNd
dt

= μdN
∗
d − μdNd, ðC:7Þ

where Nd = Sd + Ed + Id. After some algebraic manipulation,
the solution of this differential equation results in NdðtÞ =
N∗

d + ðNdð0Þ −N∗
dÞe−μdt . This implies that limsup

t→∞
NdðtÞ ≤

N∗
d . Hence, SdðtÞ, EdðtÞ, and IdðtÞ are bounded.
From equations (11)–(14), we have

dNh
dt

= μhN
∗
h − μhNh, ðC:8Þ

whereNh = Sh + Eh + Ih + Rh. Solving the differential equation
results in NhðtÞ =N∗

h + ðNhð0Þ +N∗
hÞe−μht . Thus, limsup

t→∞
Nhð

tÞ ≤N∗
h . Hence, ShðtÞ, EhðtÞ, RhðtÞ, and IhðtÞ are bounded.

From equations (15)–(17), we have

dNs
dt

= μsN
∗
s − μsNs, ðC:9Þ
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where Ns = Ss + Es + Is. In a similar manner, limsup
t→∞

NsðtÞ ≤
N∗

s . Hence, SsðtÞ, EsðtÞ, and IsðtÞ are bounded. Finally, from
equation (10) of the model and since IdðtÞ ≤NdðtÞ ≤N∗

d , we
have

B tð Þ ≤ e−
Ð t

0
μedτ

ðt
0
δN∗

de
−
Ð τ

0
μedsdτ

� �
≔

δN∗
d

μe
−
δN∗

d
μe

e−μet ≤
δN∗

d
μe

:

ðC:10Þ

D. Calculation of the Basic
Reproduction Number

According to the concepts of the next-generation matrix and
reproduction number presented in [25, 36], we define

F =

βsdIsSd

0
0

βehB
χh + B

Sh

0
βesB
χs + B

Ss

0

0BBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCA

,

V =

~γdEd

μdId − γdEd

μeB − δId

~γhEh

~qhIh − γhEh

~γsEs

μsIs − γsEs

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
:

ðD:1Þ

The Jacobian matrix of the infection subsystem at X0 can
be decomposed as F −V , where F is a matrix of transmission
rates given by

F =

0 0 0 0 0 0 βsdN
∗
d

0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 βehN
∗
h

χh
0 0 0 0

0 0 0 0 0 0 0

0 0 βesN
∗
s

χs
0 0 0 0

0 0 0 0 0 0 0

0BBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCA

, ðD:2Þ

and V is a matrix of transition rates given by

V =

~γd 0 0 0 0 0 0
−γd μd 0 0 0 0 0
0 −δ μe 0 0 0 0
0 0 0 ~γh 0 0 0
0 0 0 −γh ~qh 0 0
0 0 0 0 0 ~γs 0
0 0 0 0 0 −γs μs

0BBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCA

: ðD:3Þ

Thus,

V−1 =

1
~γd

0 0 0 0 0 0

γd
μd~γd

1
μd

0 0 0 0 0

δγd
μeμd~γd

δ

μeμd

1
μe

0 0 0 0

0 0 0 1
~γh

0 0 0

0 0 0 γh
~γh~qh

1
~qh

0 0

0 0 0 0 0 1
~γs

0

0 0 0 0 0 γs
μs~γs

1
μs

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

,

ðD:4Þ

and the next-generation matrix is

FV−1 =

0 0 0 0 0 γsβsdN
∗
d

μs~γs

βsdN
∗
d

μs

0 0 0 0 0 0 0
0 0 0 0 0 0 0

δrdβehN
∗
h

χhμdμe~γd

δβehN
∗
h

χhμdμe

βehN
∗
h

χhμe
0 0 0 0

0 0 0 0 0 0 0
δrdβesN

∗
s

χsμdμe~γd

δβesN
∗
s

χsμdμe

βesN
∗
s

χsμe
0 0 0 0

0 0 0 0 0 0 0

0BBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCA

:

ðD:5Þ
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The basic reproduction number is the spectral radius.
Thus,

R0 = ρ FV−1� �
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γsβesN

∗
s

χsμe

βsd
μs~γs

δγdN
∗
d

μd~γd

s
: ðD:6Þ

E. Proof of Theorem 6

Proof. To prove the global asymptotic stability of the endemic
equilibria, we use the method of Lyapunov functions com-
bined with the theory of Volterra-Lyapunov stable matrices.
To do this, we define a Lyapunov function:

V =w1 Sd − S∗dð Þ2 +w2 Ed − E∗
dð Þ2 +w3 Id − I∗dð Þ2 +w4 B − B∗ð Þ2

+ 1
2 Sh − S∗h + Eh − E∗

h + Ih − I∗h + Rh − R∗
hð Þ2

+ 1
2 Ss − S∗s + Es − E∗

s + Is − I∗sð Þ2:
ðE:1Þ

Thus,

dV
dt

= 2w1 Sd − S∗dð Þ dSd
dt

� �
+ 2w2 Ed − E∗

dð Þ dEd
dt

� �
+ 2w3 Id − I∗dð Þ dId

dt

� �
+ 2w4 B − B∗ð Þ dB

dt

� �
+ Ss − S∗s + Es − E∗

s + Is − I∗sð Þ d
dt

Ss + Es + Isð Þ
� �

+ Sh − S∗h + Eh − E∗
h + Ih − I∗h + Rh − R∗

hð Þ
� d

dt
Sh + Eh + Ih + Rhð Þ

� �
:

ðE:2Þ

The time derivative of VðtÞ along the solutions of model
equations (7)–(17), we obtain

dV
dt

= Y WA + ATWT� �
YT − μs Ss − S∗s + Es − E∗

s + Is − I∗sð Þ2

− μh Sh − S∗h + Eh − E∗
h + Ih − I∗h + Rh − R∗

hð Þ2,
ðE:3Þ

where Y = ðSd − S∗d , Ed − E∗
d , Id − I∗d , B − B∗Þ, W = diag ðw1,

w2,w3,w4Þ, and

A =

−βsdIs − μd 0 0 0
βsdIs −~γd 0 0
0 γd −μd 0
0 0 δ −μe

0BBBBBBBB@

1CCCCCCCCA
: ðE:4Þ

Obviously, the second and third terms of dV/dt are neg-
ative. To show the global stability of endemic equilibrium XE,

it suffices to show that A is Volterra-Lyapunov stable in D/
fXEg. For this purpose, we show that matrix ~A is Volterra-

Lyapunov stable and matrix U =gA−1 is Volterra-Lyapunov

stable (or −gA−1 is diagonally stable) [37, 38].

Condition 1. To show that ~A is Volterra-Lyapunov stable, we
consider

D = −~A =
βsdIs + μd 0 0
−βsdIs ~γd 0

0 −γd μd

0BB@
1CCA: ðE:5Þ

The matrix ~D is obtained by deleting its 3rd row and 3rd
column and results in

−~D =
−βsdIs − μd 0

βsdIs −~γd

 !
: ðE:6Þ

Clearly, a11 = −βsdIs − μd < 0, a22 = −~γd, and det ð−~DÞ > 0.
Based on Lemma 2.4 of [37], −~D is Volterra-Lyapunov stable.

Moreover, we obtain

−gD−1 =
−

1
βsdIs + μd

0

−
βsdIs

~γd μd + βsdIsð Þ −
1
~γd

0BBB@
1CCCA: ðE:7Þ

Clearly, the diagonal elements −ð1/βsdIs + μdÞ < 0, −ð1/
~γdÞ < 0, and det ð−gD−1Þ > 0. Thus, based on Lemma 2.4 of

[37], −gD−1 is Volterra-Lyapunov stable.
Therefore, D = −~A is diagonally stable, and hence, ~A is

Volterra-Lyapunov stable.

Condition 2. To show thatgA−1 is Volterra-Lyapunov stable,
we consider

E = −gA−1 =

1
βsdIs + μd

0 0

βsdIs
~γd μd + βsdIsð Þ

1
~γd

0

βsdIsγd
~γdμd μd + βsdIsð Þ

γd
~γdμd

1
μd

0BBBBBBBB@

1CCCCCCCCA
: ðE:8Þ

This results in

−~E =
−

1
βsdIs + μd

0

−
βsdIs

~γd μd + βsdIsð Þ −
1
~γd

0BBB@
1CCCA: ðE:9Þ
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Using Lemma 2.4 of [37], it is easy to observe that −~E is
Volterra-Lyapunov stable.

Moreover, we have

−fE−1 =
−βsdIs − μd 0

βsdIs −~γd

 !
: ðE:10Þ

Based on Lemma 2.4 of [37], we can also observe that −fE−1 is also Volterra-Lyapunov stable.

Therefore,gA−1 is Volterra-Lyapunov stable.
Based on Lemma 2.8 of [37], there exists a diagonal

matrix W = diag fw1,w2,w3,w4g such that Wð−AÞ +
ð−AÞTWT > 0 or WA + ATWT < 0, which indicates that A
is Volterra-Lyapunov stable.

Therefore, dV/dt < 0, and by LaSalle’s invariance princi-
ple [28], XE is globally asymptotically stable in the interior of
D and is unique provided that R0 > 1.
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