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Malaria is one of the world’s most prevalent epidemics. Current control and eradication efforts are being frustrated by rapid
changes in climatic factors such as temperature and rainfall. This study is aimed at assessing the impact of temperature and
rainfall abundance on the intensity of malaria transmission. A human host-mosquito vector deterministic model which
incorporates temperature and rainfall dependent parameters is formulated. The model is analysed for steady states and their
stability. The basic reproduction number is obtained using the next-generation method. It was established that the mosquito
population depends on a threshold value θ, defined as the number of mosquitoes produced by a female Anopheles mosquito
throughout its lifetime, which is governed by temperature and rainfall. The conditions for the stability of the equilibrium points
are investigated, and it is shown that there exists a unique endemic equilibrium which is locally and globally asymptotically
stable whenever the basic reproduction number exceeds unity. Numerical simulations show that both temperature and rainfall
affect the transmission dynamics of malaria; however, temperature has more influence.

1. Introduction

Malaria is one of the world’s most prevalent epidemic
despite a series of control and eradication measures. It is
caused by the Plasmodium parasite transmitted between
humans through the bite of a female Anopheles mosquito
as it seeks blood necessary for ovipositon [1]. The malaria
parasites of humans are Plasmodium falciparum, Plasmo-
dium malariae, Plasmodium ovale, and Plasmodium vivax
[2]. Plasmodium falciparum and Plasmodium vivax are the
most prevalent species in the tropical areas and temperate
regions, respectively [3]. The life cycle of a mosquito begins
as an egg, it hatches into a larva which turns into a pupa,
then after about two to four days of pupation, the mosquito
emerges as an adult [4]. On biting a human host, the female
Anopheles mosquito injects sporozoites into the blood of the
human host. The sporozoite form of the Plasmodium para-
site multiplies in the host’s liver before developing into the

gametocyte form which is released in the bloodstream and
is ingested by a female Anopheles mosquito during a future
blood meal [5]. Malaria has a long incubation period so
symptoms can occur 7-30 days after the infection. Symp-
toms of malaria include fever, headache, body aches, chills,
and vomiting [6]. Severe malaria can develop when the
infection is not treated and may result in organ failure or
even death. Examples of severe malaria include cerebral
malaria, severe anemia, distress, kidney failure, acidosis,
and hypoglycemia [7]. Pregnant women and children aged
under 5 years are the most vulnerable groups affected by
malaria [8].

There are about 450 species of the Anopheles mosquito;
however, only about 35-40 transmit malaria. The Anopheles
gambiae, Anopheles arabiensis, and Anopheles coluzzii of
the Anopheleles gambiae species complex, and Anopheles
funestus of the Anopheles funestus species are major mos-
quito vector species of malaria in sub-Sahara Africa [9–11].
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Unlike humans, mosquitoes are ectotherms (they do not
regulate their own body temperatures) [12]. Both the
Anopheles mosquito vector and Plasmodium malaria para-
sites have highly temperature-dependent life cycles [13].
The aquatic immature Anopheles habitats are also strongly
dependent upon rainfall and local hydrodynamics. Change
in climatic factors may establish conditions favourable for
the malaria parasite and vector development and repro-
duction leading to the occurrence of malaria in previously
disease-free areas, or change the intensity of malaria trans-
mission due to changes in biting patterns determined by
seasonal factors [14]. Malaria prevalence in the African
tropics has been attributed to favourable environmental
conditions for larval development, and parasite maturation
within the infected mosquito [15–17]. Temperature plays a
major role in the life cycle of both the Anopheles mosquito
vector and the Plasmodium malaria parasites. Numerous
studies have shown that mosquito vectors are more active
at warmer temperatures [12, 18–20]. Rainfall provides
breeding sites for the mosquitoes thus increasing the num-
ber of mosquito larval habitants [17, 21]. The impact of
temperature and rainfall is therefore significant in the
transmission dynamics of malaria.

Mathematical models have been developed over the
years to gain insight into malaria transmission dynamics
and aid its control and eradication. Ross [22] developed a
simple susceptible-infective-susceptible (SIS) malaria model
which explained the relationship between the number of
mosquitoes and the incidence of malaria in humans. It
was noted that there is a threshold for the number of mos-
quitoes below which malaria can be sufficiently eliminated.
Macdonald [23] proposed a model in which it was shown
that reducing the number of mosquitoes is not a sufficient
control strategy, with the assumption that the amount of
infective material to which a population is exposed remains
unchanged. Mosquito vector longevity was identified as the
single most important variable in the force of transmission.
Aron [24] and Bailey [25] considered models with acquired
immunity to malaria that depends on exposure to malaria
infection. Tumwiine et al. [7] considered a host-vector
malaria model with delays in the development of immature
mosquitoes into adult mosquitoes that transmit malaria,
based on susceptible-infective-susceptible (SIS) for humans
and susceptible-infective (SI) for mosquito vectors. It was
established that the bigger the proportion of young mosqui-
toes that survives the developmental period, the higher the
susceptible vector population and the lower the susceptible
human host population. It was suggested that the infected
human population can be reduced if the adult mosquito
population is controlled. Martens et al. [3], Craig et al.
[26] and Bouma et al. [27] showed that environmental
and climatic factors play an important role in the geograph-
ical distribution and transmission of malaria.

The majority of the malaria models ignore the role of
aquatic mosquito stages since they are not involved in
the spread of malaria. However, the survival of the aquatic
mosquitoes increases the adult mosquito population that is
responsible for the spread of malaria. It is therefore
important to include the aquatic mosquito population in

the study of the effect of temperature and rainfall on
malaria transmission since they are highly affected by
these factors.

The dynamic process-based mathematical models play a
significant role that can provide strategic insights into the
effects of seasonal factors on malaria transmission. Several
studies have investigated the impact of seasonality and cli-
mate factors on malaria transmission [12, 19, 20, 28–32].
Beck-Johnson et al. [12] used a temperature-dependent,
stage-structured delayed differential equation model to
investigate how climate determines malaria risk and found
out that adult mosquito dynamics is highly affected by
temperature sensitivities and juvenile dynamics influences
adult age structure. Their model combined with the Detinova
curve predicts the peak temperature for potentially infectious
mosquitoes at 30°C, whereas when combined with the
Paaijman’s curve, it predicts peak temperature at 28°C.
Ngarakana-Gwasira et al. [31] assessed the impact of temper-
ature on malaria transmission dynamics. It was shown that
the malaria burden increases with the increase in tempera-
ture with an optimum temperature window of 30°C-32°C.
Mukhtar et al. [30] developed and analysed a human host-
mosquito vector disease-based model that included tempera-
ture and rainfall. The model was used to investigate the
potential impact of climatic conditions onmalaria prevalence
in two climatically distinct regions of South Sudan. It was
found out that malaria is more severe in the tropical region
than in the hot semiarid.

In this paper, a malaria transmission model with temper-
ature- and rainfall-dependent parameters is studied. The
present model differs from the models proposed by Mukhtar
et al. [30] and Bhuju et al. [33] in that it assumes that inter-
action coefficients between humans and mosquitoes are con-
stants and also ignores the exposed class in the mosquito
population. In addition, the stability analysis of the steady
states is also carried out.

This paper is organised as follows: Section 2 presents the
model formulation. In Section 3, the stability of equilibria,
sensitivity, and bifurcation analysis are presented. In Section
4, numerical simulation is performed. The discussion of
results is presented in Section 5.

2. Model Formulation

A human host-mosquito vector model is formulated to study
the transmission dynamics of malaria using a deterministic
model. The total human population NHðtÞ is divided into
the epidemiological classes: susceptible humans SHðtÞ,
exposed humans EHðtÞ, infectious humans IHðtÞ, and recov-
ered humans RHðtÞ. Individuals are recruited into the sus-
ceptible class through birth and immigration at a constant
rate ΛH . It is assumed that there is no recruitment of
infective humans and vertical transmission due to malaria.
Susceptible humans enter the exposed class with the inter-
action coefficient βH after being bitten by an infected
female Anopheles mosquito. This is because the sporozo-
ites injected by the infected female Anopheles mosquito
have not yet developed into gametocytes in the blood-
stream of the human and so cannot infect susceptible
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mosquitoes. Exposed humans progress to the infectious
class at the rate ρ. Infected humans either cure at the rate
ν to join the recovered class or die due to malaria at a rate
δ. Recovered humans lose their immunity at a rate σ.
Humans in all compartments die due to natural causes
at the rate μH .

The total mosquito population MTðtÞ is divided into the
aquatic mosquito population MAðtÞ and the adult mosquito
population NVðtÞ: The aquatic mosquito population consists
of the eggs, larvae, and pupae stages. The total adult female
Anopheles mosquito population is divided into susceptible
SVðtÞ and infective IVðtÞ mosquitoes. There is no recovered
class for mosquitoes because they do not cure from malaria
throughout their lifetime. It is assumed that mosquitoes do
not die from malaria due to their short lifespan. Adult female
Anopheles mosquitoes lay eggs at a temperature-dependent
rate LðTÞ, and the aquatic mosquito population increase is
constrained by the carrying capacity of the environment K
[33]. Aquatic mosquitoes mature and develop into adult
mosquitoes at a temperature- and rainfall-dependent rate λ
ðT , RÞ. Susceptible mosquitoes become infected with interac-
tion coefficient βV through biting infected humans. It is
assumed that aquatic mosquitoes die at a temperature-
dependent death rate μAðTÞ while adult mosquitoes die at a
temperature-dependent natural death rate μVðTÞ. It is also
assumed that all variables presented in each compartment
are differentiable with respect to time and all parameters
are nonnegative except that δ ≥ 0.

2.1. Model Equations. The human and mosquito populations
are governed by the following system of ordinary differential
equations.

dSH
dt

=ΛH − βHSHIV − μHSH + σRH , ð1Þ

dEH

dt
= βHSHIV − ρ + μHð ÞEH , ð2Þ

dIH
dt

= ρEH − μH + ν + δð ÞIH , ð3Þ

dRH

dt
= νIH − σ + μHð ÞRH , ð4Þ

dMA

dt
= L Tð Þ 1 − MA

K

� �
SV + IVð Þ − λ T , Rð Þ + μA Tð Þð ÞMA,

ð5Þ
dSV
dt

= λ T , Rð ÞMA − βVSVIH − μV Tð ÞSV , ð6Þ

dIV
dt

= βVSVIH − μV Tð ÞIV , ð7Þ

together with

NH tð Þ = SH tð Þ + EH tð Þ + IH tð Þ + RH tð Þ,
NV tð Þ = SV tð Þ + IV tð Þ,

ð8Þ

and

MT tð Þ =NV tð Þ +MA tð Þ: ð9Þ

It can be shown that the total human population is
bounded by ΛH/μH and the total adult mosquito population
is bounded by (λðT , RÞMAÞ/ðμVðTÞÞ. Therefore, the solu-
tion set of the system (1)–(7) is bounded in D = fðSH ,
EH , IH , RHÞ ∈ℝ4

+ : 0 ≤NH ≤ ðΛH/μHÞ, ðMA, SV , IVÞ ∈ℝ3
+ : 0

≤NV ≤ ðλðT , RÞMAÞ/ðμVðTÞÞg.

Theorem 1. For system (1)–(7) if SHð0Þ > 0, EHð0Þ > 0, IHð0Þ
> 0, RHð0Þ > 0,MAð0Þ > 0, SVð0Þ > 0, IVð0Þ > 0, then SHðtÞ
> 0, EHðtÞ > 0, IHðtÞ > 0, RHðtÞ > 0,MAðtÞ > 0, SVðtÞ > 0
and IVðtÞ > 0 for all t > 0:

Proof. Define a set H = ft > 0 : SHðtÞ > 0, EHðtÞ > 0, IHðtÞ >
0, RHðtÞ > 0,MAðtÞ > 0, SVðtÞ > 0, IVðtÞ > 0g:

It is assumed by contradiction that if the set H defined
above is bounded, then H has a supremum τ. Now, define
τ as

τ = sup t > 0 : SH tð Þ > 0, EH tð Þ > 0, IH tð Þ > 0, RH tð Þf
> 0,MA tð Þ > 0, SV tð Þ > 0, IV tð Þ > 0, 0 ≤ t ≤ τg: ð10Þ

Since SHðtÞ, EHðtÞ, IHðtÞ, RHðtÞ,MAðtÞ, SVðtÞ and IVðtÞ
are continuous, then τ > 0. If τ <∞, then it is necessary
that SHðτÞ = 0 or EHðτÞ = 0 or IHðτÞ = 0 or RHðτÞ = 0 or
MAðτÞ = 0 or SVðτÞ = 0 or IVðτÞ = 0:

From equation (1),

dSH
dt

=ΛH + σRH − βHIV + μHð ÞSH : ð11Þ

Let PðtÞ = exp ðμHt +
Ð t
0 βHIVðsÞdsÞ and note that Pð0Þ

= 1 and PðtÞ > 0 for all t > 0.
Consider

ðτ
0

d
dt

SH tð ÞP tð Þ½ �dt =
ðτ
0
P tð Þ ΛH + σRH½ �dt,

SH τð ÞP τð Þ − SH 0ð ÞP 0ð Þ =
ðτ
0
ΛH + σRH tð Þð ÞP tð Þdt,

SH τð Þ = P τð Þ−1 SH 0ð Þ +
ðτ
0
ΛH + σRH tð Þð ÞP tð Þdt

� �
:

ð12Þ

Therefore, SHðτÞ > 0 since all parameters are positive.
Applying the above reasoning to the remaining equations
of system (1)–(7) shows that EHðτÞ > 0, IHðτÞ > 0, RHðτÞ
> 0,MAðτÞ > 0, SVðτÞ > 0, IVðτÞ > 0; thus, τ =∞: This con-
tradicts τ being a supremum of H ; thus, H is not
bounded.
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This confirms the positivity of solutions for all t > 0. The
model is epidemiological and mathematically well posed.

3. Model Analysis

In this section, the equilibrium points of the system (1)–(7)
are obtained and analysed for their stability. It is established
that system (1)–(7) has two disease-free equilibrium points
and one endemic equilibrium point.

Theorem 2. System (1)–(7) has two disease-free equilibrium
points

E01 SH , EH , IH , RH ,MA, SV , IVð Þ
= ΛH

μH
, 0, 0, 0, 0, 0, 0

� �
, E02 SH , EH , IH , RH ,MA, SV , IVð Þ

= ΛH

μH
, 0, 0, 0, K L Tð Þλ T , Rð Þ − μV Tð Þ λ T , Rð Þ + μA Tð Þð Þ½ �

L Tð Þλ T , Rð Þ ,
�

� K L Tð Þλ T , Rð Þ − μV Tð Þ λ T , Rð Þ + μA Tð Þð Þ½ �
L Tð ÞμV Tð Þ , 0�,

ð13Þ

whose existence depends on parameter θ, where

θ = L Tð Þλ T , Rð Þ
μV Tð Þ λ T , Rð Þ + μA Tð Þð Þ : ð14Þ

Proof. Setting the right-hand side (RHS) of system (1)–(7)
equal to zero gives either MA = 0 or MA = ðK½LðTÞλðT , RÞ
− μVðTÞðλðT , RÞ + μAðTÞÞ�Þ/ðLðTÞλðT , RÞÞ.

For MA = 0, it implies that SV = IV = EH = IH = RH = 0
and SH =ΛH/μH . Therefore, there exists a disease-free equi-
librium point E01ðSH , EH , IH , RH ,MA, SV , IVÞ = ½ðΛH/μHÞ, 0,
0, 0, 0, 0, 0�. For MA = ðK½LðTÞλðT , RÞ − μVðTÞðλðT , RÞ +
μAðTÞÞ�Þ/ðLðTÞλðT , RÞÞ with IH = 0, it implies that IV = RH
= EH = 0, SH =ΛH/μH and SV = ðK½LðTÞλðT , RÞ − μVðTÞðλ
ðT , RÞ + μAðTÞÞ�Þ/ðLðTÞμVðTÞÞ. Therefore, there exists a
disease-free equilibrium point

E02 SH , EH , IH , RH ,MA, SV , IVð Þ
= ΛH

μH
, 0, 0, 0, K L Tð Þλ T , Rð Þ − μV Tð Þ λ T , Rð Þ + μA Tð Þð Þ½ �

L Tð Þλ T , Rð Þ ,
�

� K L Tð Þλ T , Rð Þ − μV Tð Þ λ T , Rð Þ + μA Tð Þð Þ½ �
L Tð ÞμV Tð Þ , 0

�
:

ð15Þ

E02 is positive and exists only if LðTÞλðT , RÞ > μVðTÞ
ðλðT , RÞ + μAðTÞÞ, which gives the condition of existence

of E02 as θ > 1, where θ = ðLðTÞλðT , RÞÞ/ðμVðTÞðλðT , RÞ
+ μAðTÞÞÞ.
3.1. Basic Reproduction Number. According to Diekmann
et al. [34], the basic reproduction number is the expected
number of secondary cases produced by a typical infected
individual during its entire period of infectiousness in a
completely susceptible population.

The basic reproduction number is obtained using the
next-generation matrix method as described by Diekmann
et al. [34].

The basic reproduction number is the spectral radius of
the next-generation matrix FV−1, where F = ∂F j and V = ∂
V j are computed at the disease-free equilibrium point of
the system.

R0 = σ FV−1� �
: ð16Þ

Consider the infected subsystem of system (1)–(7)
below.

dEH

dt
= βHSHIV − ρEH − μHEH ,

dIH
dt

= ρEH − μH + ν + δð ÞIH ,
dIV
dt

= βVSVIH − μV Tð ÞIV :

ð17Þ

The vector of new infections F and the vector formed
by other transfers V are given by

F =
βHSHIV

0
βVSVIH

2
664

3
775, ð18Þ

and

V =
μH + ρð ÞEH

−ρEH + μH + ν + δð ÞIH
μV Tð ÞIV

2
664

3
775: ð19Þ

For the disease-free equilibrium point E01, the matrix
FV−1 has only one eigenvalue equal to zero; thus, the basic
reproduction number is zero for this case. This implies
that if an infective individual is introduced into the popu-
lation at the steady-state E01, the disease will not spread
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due to the absence of the parasite-transmitting mosquito
vectors.

For the disease-free equilibrium point E02, the matrices F
and V are computed as follows:

F =

0 0 βHΛH

μH

0 0 0

0 KβV L Tð Þλ T , Rð Þ − μV Tð Þ λ T , Rð Þ + μA Tð Þð Þ½ �
L Tð ÞμV Tð Þ 0

2
666664

3
777775,

ð20Þ

and

V =
μH + ρ 0 0
−ρ μH + ν + δ 0
0 0 μV Tð Þ

2
664

3
775,

V−1 =

1
μH + ρ

0 0

ρ

ρ + μHð Þ μH + ν + δð Þ
1

μH + ν + δ
0

0 0 1
μV Tð Þ

2
666666664

3
777777775
:

ð21Þ

Thus, the next-generation matrix is given by

The eigenvalues of FV−1 are

0,− 1
μV Tð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρβHβVΛHK L Tð Þλ T , Rð Þ − μV Tð Þ λ T , Rð Þ + μA Tð Þð Þ½ �

L Tð ÞμH μH + ν + δð Þ μH + ρð Þ

s
,

� 1
μV Tð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρβHβVΛHK L Tð Þλ T , Rð Þ − μV Tð Þ λ T , Rð Þ + μA Tð Þð Þ½ �

L Tð ÞμH μH + ν + δð Þ μH + ρð Þ

s
:

ð23Þ

Therefore, the basic reproduction numberR0 is given by

R0 =
1

μV Tð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρβHβVΛHK L Tð Þλ T , Rð Þ − μV Tð Þ λ T , Rð Þ + μA Tð Þð Þ½ �

L Tð ÞμH μH + ν + δð Þ ρ + μHð Þ

s
:

ð24Þ

R0 exists only if LðTÞλðT , RÞ > μVðTÞðλðT , RÞ + μAðTÞÞ.
Expressing R0 in terms of θ gives

R0 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρβHβVΛHK λ T , Rð Þ + μA Tð Þð Þ θ − 1ð Þ
L Tð Þμ2V Tð ÞμH μH + ν + δð Þ μH + ρð Þ

s
: ð25Þ

R0 exists only if the term under the square root is non-
negative, that is, θ ≥ 1; otherwise, if θ < 1, there is no growth
of the mosquito population, and malaria will not develop in
the community since mosquito vectors are important for
the spread of malaria.

3.2. Sensitivity Analysis. Malaria control and eradication strat-
egies should target important parameters which have a high
impact on the basic reproduction number. A sensitivity analysis
ofR0 to the various parameters is thus presented in this section.
The basic reproduction number is explicitly determined by the
parameters ρ, βH , βV ,ΛH , LðTÞ, λðT , RÞ, μVðTÞ, μH , μAðTÞ,
ν and δ. The sensitivity indices of R0 to these parameters are
computed using the approach in Chitnis et al. [35].

Definition 3. The sensitivity index of a variable u that
depends continuously on a parameter p is defined as

⋎u
p =

∂u
∂p

:
p
u
, ð26Þ

where u is a differentiable function of p.

Thus, by the definition above, the formula used to derive an
expression for the sensitivity ofR0 to a parameter p is given by

⋎R0
p = ∂R0

∂p
:
p
R0

: ð27Þ

FV−1 =

0 0 βHΛH

μHμV Tð Þ
0 0 0

ρKβV L Tð Þλ T , Rð Þ − μV Tð Þ λ T , Rð Þ + μA Tð Þð Þ½ �
L Tð ÞμV Tð Þ μH + ν + δð Þ μH + ρð Þ

KβV L Tð Þλ T , Rð Þ − μV Tð Þ λ T , Rð Þ + μA Tð Þð Þ½ �
L Tð ÞμV Tð Þ μH + ν + δð Þ 0

2
666664

3
777775:

ð22Þ
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Table 1 shows the sensitivity indices of R0 to the parame-
ters (independent of temperature and rainfall variations) deter-
mining its value. Parameter values ΛH = 0:031, μH = 1/23178,
βH = βV = 0:00021, ρ = 1/20, ν = 1/30, δ = 0:00000638, and K
= 1000000 are used.

The MATLAB computer software program is used in the
simulation of the sensitivity of R0 with respect to tempera-
ture and rainfall since the temperature-rainfall-dependent
parameters μVðTÞ, LðTÞ, λðT , RÞ, and μAðTÞ are given by
nonlinear functions. The results are shown in Figure 1.

3.2.1. Interpretation of Sensitivity Analysis. The natural death
rate μH and the disease-induced death rate δ of the human
population are the most and least sensitive parameters,
respectively. A positive value in the sensitivity index shows
that if the parameter is increased when all other parameters
are kept constant, the value of R0 increases, while for a neg-
ative sensitivity index, when the parameter value is increased
with all other parameters kept constant, the value of R0
decreases. In Figure 1(a), rainfall is fixed at 10mm. It is
observed that R0 is most sensitive to temperatures within
the ranges 17°C-20°C and 37°C-40°C. This is in agreement
with Githeko et al. [16] in which the lower-end range and
the upper-end range of disease transmission are established
at 14°C-18°C and 35°C-40°C, respectively. The sensitivity

indices for temperatures between 17°C and 25°C are positive,
whereas those for temperatures between 25°C and 35°C are
negative. In Figure 1(b), the temperature is fixed at 25°C. It is
observed that the sensitivity to rainfall reduces with more rain-
fall received. Indices for daily rainfall below25mmare positive,
whereas indices for rainfall above 25mm are negative.

3.3. Local Stability of the Disease-Free Equilibrium. The Jaco-
bian matrix of the system (1)–(7) evaluated at the disease-free
equilibrium point E01 is shown below.

The eigenvalues of J E01
are −μH , −μVðTÞ, −ðμH + σÞ, −

ðμH + ν + σÞ, −ðρ + μHÞ and the zero points of the
polynomial.

Z2 + ðμVðTÞ + μAðTÞ + λðT , RÞÞZ + μVðTÞðλðT , RÞ +
μAðTÞÞ − λðT , RÞLðTÞ = 0, where Z is the eigenvalue.

The zero points of a polynomial of order two have nega-
tive real parts if and only if its coefficients and constant terms
are positive. Thus, the disease-free equilibrium E01 is stable
only if

λ T , Rð ÞL Tð Þ
μV Tð Þ λ T , Rð Þ + μA Tð Þð Þ < 1: ð29Þ

Theorem 4. The disease-free equilibrium point E02 of system
(1)–(7) is locally asymptotically stable if R0 < 1 and unstable
if R0 > 1.

Proof. It has already been shown that the disease-free equilib-
rium E02 only exists if ðLðTÞλðT , RÞÞ/ðμVðTÞðλðT , RÞ + μAð
TÞÞÞ > 1: If this condition is satisfied, thenR0 is real and pos-
itive. Thus, the basic reproduction numberR0 is biologically
consistent. Using the theorem by van den Driessche and
Watmough [36], the disease-free equilibrium E02 is locally
asymptotically stable if R0 < 1 and unstable if R0 > 1.

3.4. Global Stability of the Disease-Free Equilibrium. The
global stability of the disease-free equilibrium is investigated

Table 1: Numerical values of sensitivity indices of R0.

Parameter symbol Sensitivity index

μH -0.5011

βH 0.5

βV 0.5

ΛH 0.5

ν -0.4993

ρ 0.0004

δ -0.0001

J E01
=

−μH 0 0 σ 0 0 −βH
ΛH

μH

0 − ρ + μHð Þ 0 0 0 0 βH
ΛH

μH

0 ρ − μH + ν + δð Þ 0 0 0 0
0 0 ν − μH + σð Þ 0 0 0
0 0 0 0 − λ T , Rð Þ + μA Tð Þð Þ L Tð Þ L Tð Þ
0 0 0 0 λ T , Rð Þ −μV Tð Þ 0
0 0 0 0 0 0 −μV Tð Þ

2
6666666666666666664

3
7777777777777777775

: ð28Þ
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using a theorem by Castillo-Chavez et al. [37]. System (1)–(7)
can be expressed in terms of

dX
dt

= F X, Zð Þ
dZ
dt

=G X, Zð Þ,G X, 0ð Þ = 0,
ð30Þ

where X ∈ℝm denotes the number of uninfected individuals
and Z ∈ℝn denotes the number of infected individuals.

The following conditions (H1) and (H2) must be satisfied
provided R0 < 1 to guarantee global asymptotic stability.

(H1) For dX/dt = FðX, 0Þ,X∗is globally asymptotically
stable

(H2) GðX, ZÞ =MZ − ĜðX, ZÞ, ĜðX, ZÞ ≥ 0 for ðX, ZÞ ∈
Ω, whereM =DZGðX∗, 0Þ is anM-matrix andΩ is the region
where the model makes biological sense. From system
(1)–(7)

F X, Zð Þ =

ΛH − βHSHIV − μHSH + σRH

νIH − σ + μHð ÞRH

L Tð Þ 1 − MA

K

� �
SV + IVð Þ − λ T , Rð Þ + μA Tð Þð ÞMA

λ T , Rð ÞMA − βVSVIH − μV Tð ÞSV

2
66666664

3
77777775
,

ð31Þ

and

G X, Zð Þ =
βHSHIV − ρ + μHð ÞEH

ρEH − μH + ν + δð ÞIH
βVSVIH − μV Tð ÞIV

2
664

3
775: ð32Þ

To investigate condition (H1),

F X, 0ð Þ =

ΛH − μHSH

0

L Tð Þ 1 − MA

K

� �
SV − λ T , Rð Þ + μA Tð Þð ÞMA

λ T , Rð ÞMA − μV Tð ÞSV

2
6666664

3
7777775
:

ð33Þ

It has already been established that the threshold values
for the human and mosquito populations are ΛH/μH and ð
λðT , RÞMAÞ/μVðTÞ, respectively; thus, there is convergence
in Ω. Therefore, X∗ is globally asymptotically stable.

To investigate condition (H2) for the disease-free equilib-
rium point E01

M =
− ρ + μHð Þ 0 a2

ρ − μH + ν + δð Þ 0
0 0 −μV Tð Þ

2
664

3
775, ð34Þ

where a2 = βHΛH/μH

Ĝ X, Zð Þ =
βHIV

ΛH

μH
− SH

� �
0

−βVSVIH

2
66664

3
77775: ð35Þ

Since Ĝ3ðX, ZÞ < 0, condition (H2) is violated. Therefore,
the disease-free equilibrium point E01 may not be globally
asymptotically stable.
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Figure 1: (a) Sensitivity indices of the basic reproduction number with respect to temperature. (b) Sensitivity indices of the basic
reproduction number with respect to rainfall.
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For the disease-free equilibrium point E02

M =
− ρ + μHð Þ 0 a2

ρ − μH + ν + δð Þ 0
0 a1 −μV Tð Þ

2
664

3
775, ð36Þ

where a1 = ðβVK½LðTÞλðT , RÞ − μVðTÞðλðT , RÞ + μAðTÞÞ�Þ/
ðLðTÞμVðTÞÞ and a2 = βHΛH/μH

Ĝ X, Zð Þ =

βHIV
ΛH

μH
− SH

� �
0

βVIH
K L Tð Þλ T , Rð Þ − μV Tð Þ λ T , Rð Þ + μA Tð Þð Þ½ �

L Tð ÞμV Tð Þ − SV

� �

2
666664

3
777775:

ð37Þ

It has already been established that the threshold value of
the human population is ΛH/μH . Therefore, SH ≤ΛH/μH .
Similarly, SV ≤ ðK½LðTÞλðT , RÞ − μVðTÞðλðT , RÞ + μAðTÞÞ�Þ
/ðLðTÞμVðTÞÞ. This shows that ĜðT , RÞ ≥ 0; thus, equilib-
rium point E02 is globally asymptotically stable.

3.5. Bifurcation Analysis. In this subsection, the centre man-
ifold theorem by Castillo-Chavez and Song [38] is used to
investigate the bifurcation behaviour of system (1)–(7) when
the basic reproduction number R0 = 1.

Theorem 5. Consider a general system of ODEs with a param-
eter ϕ

dx
dt

= f x, ϕð Þ, f : ℝn ×ℝ⟶ℝn, f ∈ℂ2 ℝn ×ℝð Þ: ð38Þ

Without loss of generality, it is assumed that 0 is an equi-
librium for system (38) for all values of the parameter ϕ, that is

f 0, ϕð Þ ≡ 0 for all ϕ: ð39Þ

Assume

A1. A =Dxf ð0, 0Þ = ð∂f i/∂xjÞ is the linearisation matrix of
system (38) around the equilibrium 0 with ϕ evaluated at 0.
Zero is a simple eigenvalue of A and all other eigenvalues of
A have negative real parts.

A2. Matrix A has a nonnegative right eigenvector w and a left
eigenvector v corresponding to the zero eigenvalue.

Let f k be the k
th component of f and

a = 〠
n

k,i,j=1
vkwiwj

∂2 f k
∂xi∂xj

0, 0ð Þ,

b = 〠
n

k,i=1
vkwi

∂2 f k
∂xi∂ϕ

0, 0ð Þ:
ð40Þ

The local dynamics of (38) around 0 are totally deter-
mined by a and b.

(i) a > 0, b > 0, when ϕ < 0 with ∣ϕ ∣ < < 1, 0 is locally
asymptotically stable, and there exists a positive
unstable equilibrium; when 0 < ϕ < <1, 0 is unstable
and there exists a negative and locally asymptotically
stable equilibrium.

(ii) a < 0, b < 0, when ϕ < 0 with ∣ϕ ∣ < < 1, 0 is unstable;
when 0 < ϕ < <1, 0 is locally asymptotically stable,
and there exists a positive unstable equilibrium.

(iii) a > 0, b < 0, when ϕ < 0 with ∣ϕ ∣ < < 1, 0 is unstable,
and there exists a locally asymptotically stable nega-
tive equilibrium; when 0 < ϕ < <1, 0 is stable, and a
positive unstable equilibrium.

(iv) a < 0, b > 0, when ϕ changes from negative to posi-
tive, 0 changes its stability from stable to unstable.
Correspondingly, a negative unstable equilibrium
becomes positive and locally asymptotically stable.

A change in notations of the variables is used such that
SH = x1, EH = x2, IH = x3, RH = x4, MA = x5, SV = x6, and IV
= x7. For R0 = 1, let βH be a bifurcation parameter with
bifurcation value β∗

H ,

β∗
H = L Tð ÞμHμV Tð Þ2 μH + ν + δð Þ ρ + μHð Þ

ρβVΛHK L Tð Þλ T , Rð Þ − μV Tð Þ λ T , Rð Þ + μA Tð Þð Þ½ � :

ð41Þ

System (1)–(7) becomes

f1 x1, x2, x3, x4, x5, x6, x7ð Þ =ΛH − βHx1x7 − μHx1 + σx4,
ð42Þ

f2 x1, x2, x3, x4, x5, x6, x7ð Þ = βHx1x7 − ρ + μHð Þx2, ð43Þ

f3 x1, x2, x3, x4, x5, x6, x7ð Þ = ρx2 − μH + ν + δð Þx3, ð44Þ

f4 x1, x2, x3, x4, x5, x6, x7ð Þ = νx3 − σ + μHð Þx4, ð45Þ

f5 x1, x2, x3, x4, x5, x6, x7ð Þ = L Tð Þ 1 − x5
K

	 

x6 + x7ð Þ

− λ T , Rð Þ + μA Tð Þð Þx5,
ð46Þ

f6 x1, x2, x3, x4, x5, x6, x7ð Þ = λ T , Rð Þx5 − βVx6x3 − μV Tð Þx6,
ð47Þ

f7 x1, x2, x3, x4, x5, x6, x7ð Þ = βVx6x3 − μV Tð Þx7: ð48Þ
E02ðx1, x2, x3, x4, x5, x6, x7Þ = ½ðΛH/μHÞ, 0, 0, 0, ðKd/ðLð

TÞλðT , RÞÞÞ, ðKd/LðTÞμVðTÞÞ, 0�is a disease free equilibrium
point for system (42)–(48), where d = LðTÞλðT , RÞ − μVðTÞ
ðλðT , RÞ + μVðTÞÞ.
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The Jacobian matrix of system (42)–(48) evaluated at E02
is given by

where J1 = μH , J2 = ðρ + μHÞ, J3 = ðμH + ν + δÞ, J4 = ðμH
+ σÞ, J5 = ðLðTÞλðT , RÞÞ/ðμVðTÞÞ, and J6 = J7 = μVðTÞ.

The right eigenvector w = ðw1,w2,w3,w4,w5,w6,w7ÞT ,
corresponding to the zero eigenvalue, is computed using
J E02

w = 0 which yields

−J1w1 + σw4 −
βHΛH

μH
w7 = 0,

−J2w2 +
βHΛH

μH
w7 = 0,

ρw2 − J3w3 = 0,
νw3 − J4w4 = 0,

−J5w5 +
μV Tð Þ λ T , Rð Þ + μA Tð Þð Þ

λ T , Rð Þ w6 +
μV Tð Þ λ T , Rð Þ + μA Tð Þð Þ

λ T , Rð Þ w7 = 0,

−
βVKd

L Tð ÞμV Tð Þw3 + λ T , Rð Þw5 − J6w6 = 0,

βVKd
L Tð ÞμV Tð Þw3 − J7w7 = 0:

ð50Þ

Setting w7 = 1 gives,

w3 =
L Tð Þμv Tð Þ2

βVKd
,

w4 =
L Tð ÞνμV Tð Þ2
βVKd μH + σð Þ ,

w2 =
L Tð ÞμV Tð Þ2 μH + ν + δð Þ

ρβVKd
,

w1 =
1
μH

L Tð ÞνσμV Tð Þ2
βVKd μH + σð Þ −

βHΛH

μH

 !
,

ð51Þ

and

−
L Tð Þλ T , Rð Þ2

μV Tð Þ w5 + μV Tð Þ λ T , Rð Þ + μA Tð Þð Þw6

= −μV Tð Þ λ T , Rð Þ + μA Tð Þð Þ,
ð52Þ

λ T , Rð Þw5 − μV Tð Þw6 = μV Tð Þ: ð53Þ

Solving equations (52) and (53) simultaneously gives

w5 = 0,
w6 = −1:

ð54Þ

The left eigenvector v = ðv1, v2, v3, v4, v5, v6, v7Þ, corre-
sponding to the zero eigenvalue, is computed using vJ E02

=
0 which yields

−J1v1 = 0,
−J2v2 + ρv3 = 0,

−J3v3 + νv4 −
βVKd

L Tð ÞμV Tð Þ v6 +
βVKd

L Tð ÞμV Tð Þ v7 = 0,

σv1 − J4v4 = 0,
μV Tð Þ λ T , Rð Þ + μA Tð Þð Þ

λ T , Rð Þ v5 − J6v6 = 0,

βHΛH

μH
v1 +

βHΛH

μH
v2 +

μV Tð Þ λ T , Rð Þ + μA Tð Þð Þ
λ T , Rð Þ v5 − J7v7 = 0:

ð55Þ

J E02
=

−J1 0 0 σ 0 0 −
βHΛH

μH

0 −J2 0 0 0 0 βHΛH

μH

0 ρ −J3 0 0 0 0
0 0 ν −J4 0 0 0

0 0 0 0 −J5
μV Tð Þ λ T , Rð Þ + μA Tð Þð Þ

λ T , Rð Þ
μV Tð Þ λ T , Rð Þ + μA Tð Þð Þ

λ T , Rð Þ

0 0 −
βVKd

L Tð ÞμV Tð Þ 0 λ T , Rð Þ −J6 0

0 0 βVKd
L Tð ÞμV Tð Þ 0 0 0 −J7

2
6666666666666666666666664

3
7777777777777777777777775

ð49Þ
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It follows that v1 = v4 = 0, setting v3 = v6 = 1 gives

v2 =
ρ

ρ + μH
,

v5 =
λ T , Rð Þ

λ T , Rð Þ + μA Tð Þð Þ ,

v7 =
L Tð ÞμV Tð Þ μH + ν + δð Þ + βvKd

βVKd
:

ð56Þ

Since v1 = v4 = 0, the values of a and b are obtained
from

a = 〠
7

i,j=1
v2wiwj

∂2 f2
∂xi∂xj

+ 〠
7

i,j=1
v3wiwj

∂2 f3
∂xi∂xj

+ 〠
7

i,j=1
v5wiwj

∂2 f5
∂xi∂xj

+ 〠
7

i,j=1
v6wiwj

∂2 f6
∂xi∂xj

+ 〠
7

i,j=1
v7wiwj

∂2 f7
∂xi∂xj

,

b = 〠
7

k,i=1
vkwi

∂2 f k
∂xi∂β

∗
H

, ð57Þ

where the partial derivatives computed at E02 are

∂2 f2
∂x1∂x7

= βH ,

∂2 f5
∂x5∂x6

= −
L Tð Þ
K

,

∂2 f5
∂x5∂x7

= −
L Tð Þ
K

,

∂2 f6
∂x3∂x6

= −βV ,

∂2 f7
∂x3∂x6

= βV ,

∂2 f2
∂x7∂β

∗
H

= ΛH

μH
:

ð58Þ

It follows that

a = 2ρβH

μH ρ + μHð Þ
L Tð ÞνσμV Tð Þ2
βVKd μH + σð Þ −

βHΛH

μH

 !
+ 2L Tð ÞμV Tð Þ2

Kd

−
2L Tð ÞμV Tð Þ2 βVKd + L Tð ÞμV Tð Þ μH + ν + δð Þð Þ

βVK
2d2

,

b = ρβHΛH

μH ρ + μHð Þ > 0: ð59Þ

Since b > 0, the model undergoes a backward bifurca-
tion if a > 0, that is

2ρβHL Tð ÞνσμV Tð Þ2
μHβVKd μH + ρð Þ μH + σð Þ + 2L Tð ÞμV Tð Þ2

Kd

> 2ρβ2
HΛH

μ2H μH + ρð Þ + 2L Tð ÞμV Tð Þ2α
βVK

2d2
,

ð60Þ

where α = ðβVKd + LðTÞμVðTÞðμH + ν + δÞÞ.

Remark 6. Existence of a backward bifurcation when a > 0
means that there is a possibility of coexistence of an endemic
equilibrium and the disease-free equilibrium when R0 < 1.
In this case, the strategy of reducing the basic reproduction
number to a value less than unity would not be sufficient
for the eradication of malaria.

3.6. Existence and Stability of the Endemic Equilibrium

Theorem 7. System (1)–(7) has a unique endemic equilibrium
when R0 > 1.

Proof. Setting the right-hand side of the equations in system
(1)–(7) to zero shows that either IH = 0 or IH = ðKρβH

βVΛHðσ + μHÞd − LðTÞμHμVðTÞ2cÞ/ðKdβHβVðc − ρσνÞ + L
ðTÞβVμHμVðTÞcÞ, where d = LðTÞλðT , RÞ − μVðTÞðλðT , RÞ
+ μAðTÞÞ and c = ðμH + ν + δÞðσ + μHÞðρ + μHÞ. IH = 0
corresponds to the disease-free equilibrium.

Expressing IH above in terms of R0 using d = ðR2
0μ

2
VμHLð

TÞcÞ/ðKρβHβVΛHðσ + μHÞÞ gives

IH = ρΛHμV Tð Þ σ + μHð Þ R2
0 − 1

� �
R2

0μV Tð Þ c − ρσνð Þ + βVρΛH σ + μHð Þ : ð61Þ

Thus, there exists a unique endemic equilibrium point
E1 = ðS∗H , E∗

H , I∗H , R∗
H ,M∗

A, S∗V , I∗VÞ only if R2
0 > 1, that is, R0

> 1 since c > ρσν. The endemic equilibrium is given by

S∗H = L Tð ÞμV Tð Þ ΛH σ + μHð Þ + σνI∗H½ � βVI
∗
H + μV Tð Þð Þ

σ + μHð Þ KβHd + L Tð ÞμHμV Tð Þð ÞβVI
∗
H + L Tð ÞμHμV Tð Þ2� � ,

E∗
H = KβHβVdI

∗
H ΛHÞ σ + μHð Þ + σνI∗H½ �

ρ + μHð Þ σ + μHð Þ KβHd + L Tð ÞμHμV Tð Þð ÞβVI
∗
H + L T , Rð ÞμHμV Tð Þ2� � ,

I∗H = ρΛHμV Tð Þ σ + μHð Þ R2
0 − 1

� �
R2

0μV Tð Þ c − ρσνð Þ + βVΛHρ σ + μHð Þ ,

R∗
H = νI∗H

σ + μH
,

M∗
A =

Kd
L Tð Þλ T , Rð Þ ,

S∗V = Kd
L Tð Þ βVI

∗
H + μV Tð Þð Þ ,

I∗V = KβVdI
∗
H

L Tð ÞμV Tð Þ βVI
∗
H + μV Tð Þð Þ :

ð62Þ
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The Jacobian matrix of system of equations (1)–(7)
evaluated at the endemic equilibrium point E1 is given by

J E1
=

−e1 0 0 σ 0 0 −e2
e3 −e4 0 0 0 0 e2

0 ρ −e5 0 0 0 0
0 0 ν −e6 0 0 0
0 0 0 0 −e7 e8 e8

0 0 −e9 0 e10 −e11 0
0 0 e9 0 0 e12 −e13

2
666666666666664

3
777777777777775

,

ð63Þ

where e1 = βHI
∗
H + μH , e2 = βHS

∗
H , e3 = βHI

∗
V , e4 = ρ + μH , e5

= μH + ν + δ, e6 = σ + μH , e7 = ððLðTÞðS∗V + I∗VÞÞ/KÞ − ðλðT ,
RÞ + μAðTÞÞ, e8 = LðTÞð1 − ðM∗

A/KÞÞ, e9 = βVS
∗
V , e10 = λðT ,

RÞ, e11 = βVI
∗
H + μV , e12 = βVI

∗
H , and e13 = μVðTÞ.

The characteristic polynomial of the Jacobian matrix J E1
is obtained as

Z7 + a1Z
6 + a2Z

5 + a3Z
4 + a4Z

3 + a5Z
2 + a6Z + a7 = 0,

ð64Þ

where

a1 = e1 + e4 + e5 + e6 + e7 + e11 + e13,
a2 = e1 e4 + e5 + e6 + e7 + e11 + e13ð Þ + e4 e5 + e6 + e7 + e11ð Þ

+ e5 e6 + e7 + e11 + e13ð Þ + e6 e7 + e11 + e13ð Þ
+ e7 e11 + e13ð Þ + e13 e4 + e7ð Þ − e8e10,

a3 = e1e4 e5 + e6 + e7 + e11 + e13ð Þ + e1e5 e7 + e11 + e13ð Þ
+ e1e6 e7 + e11 + e13ð Þ + e4e5 e6 + e7 + e11 + e13ð Þ
+ e4e6 e7 + e11 + e13ð Þ + e5e6 e7 + e11ð Þ
+ e7e11 e1 + e4 + e5 + e6 + e7ð Þ − e8e10 e1 + e4 + e5 + e12ð Þ
+ e11e13 e1 + e4 + e5 + e6 + e7ð Þ − e8e13 e4 + e5 + e6ð Þ
− e2e9ρ + e1e7e13 − e8e10e13,

a4 = e2e9ρ e3 + e6 − e7 − e11 + e12 − e1ð Þ + e1e6e13 e4 + e5 + e7 + e11ð Þ
+ e1e4e13 e5 + e7ð Þ + e1e7 e5e13 + e4e11 + e11e13 + e4e6ð Þ
+ e4e5 e6e13 + e7e13 + e11e13 + e1e7 + e1e11 + e6e11 − e8e10ð
+ e6e7Þ + e4e7 e6e13 + e11e13 + e1e6 + e6e11ð Þ
+ e5e13 e6e7 + e6e11 + e8e10 + e7e11 + e1e11ð Þ
− e1e10 e8e12 + e8e13ð Þ + e6e8 + e5e8Þ
− e6e11 e1e7 + e5e7 − e4e8 + e1e4 + e1e5ð Þ
+ e8e10 e4e12 − e4e13 − e5e12 − e6e12 − e4e13 − e5e6 − e1e4ð Þ
+ e6e11e13 e4 + e7ð Þ − e3νρσ + e1e5e7e11,

a5 = e1e4e5 e6e7 + e6e11 + e6e13 + e7e11 − e8e10 + e7e13 + e11e13ð Þ
+ e1e5e6 e7e11 − e8e10 + e7e13 + e11e13ð Þ + e4e6e8 e10e13 − e5e10ð Þ
+ e2e9ρ e3e6 − e1e6 + e1e7 − e1e11 + e3e11 − e6e11 − e7e11 − e8e10ð
+ e1e12 − e3e12 + e6e12 + e7e12Þ + e4e5e6 e7e11 + e7e13ð Þ
− e8e10 e1e4e12 + e1e5e12 + e1e5e13 + e1e6e13 + e1e6e12ð
+ e4e5e12 + e1e4e13 + e5e6e13Þ + e7e11 e1e4e13 + e4e6e13ð Þ
+ e11e13 e4e5e6 + e4e5e7 + e1e6e7 + e1e5e7ð Þ
− e3νρσ e7 + e11 + e13ð Þ,

a6 = e1e4e5 e6e7e11 − e6e8e10 + e6e7e13 + e6e11e13 − e8e10e12ð
− e8e10e13 + e7e11e13Þ − e2e9ρ e3e6e7 − e1e6e11 − e1e7e11ð
+ e1e8e10 + e3e6e11 + e3e7e11 − e3e8e10 − e6e7e11
+ e6e8e10 + e1e6e12 + e1e7e12 − e3e6e12 − e3e7e12Þ
+ e1e4e6 e7e11e13 − e8e10e12 − e8e10e13ð Þ
− e1e5e6 e8e10e12 − e7e11e13 + e8e10e13ð Þ
− e4e5e6 e8e10e12 − e7e11e13ð Þ − e4e5e7e8e10e13
− e1e4e6e7e9ρ − νρσ e3e7e11 − e3e8e10 + e3e7e13 + e3e11e13ð Þ,

a7 = e1e2e6e9ρ e8e10 − e7e11ð Þ + e2e3e6e9e12ρ e7e11 − e8e10ð Þ
+ e1e4e5e6 e7e11e13 − e8e10e12ð Þ + e2e6e7e9e12ρ e1 − e3ð Þ
+ e3ρσ e8e10e12ν − e7e11e13ν + e8e10e13ð Þ − e1e4e5e6e8e10e13Þ:

ð65Þ

By the Routh-Hurwitz criteria, the endemic equilibrium
point E1 is locally stable provided

a1 > 0, a2 > 0, a3 > 0, a4 > 0, a5 > 0, a6 > 0, a7 > 0,

a1a2 > a3,

a1a2a3 − a21a4 − a23 > 0,

2a1a4a5 − a21a
2
4 − a1a

2
2a5 + a2a3a5 − a23a4 − a25 > 0,

2a1a2a5a6 + a21a3a4a6 − a31a
3
6 − a21a

2
4a5 − a1a

2
2a

2
5 − a1a2a

2
3a6

+ a1a2a3a4a5 − 3a1a3a5a6 + 2a1a4a25 + a2a3a
2
5

+ a3a6 − a3a4a5 − a35 > 0,
ð66Þ

and

a21a3a4a
2
6 − a31a

3
6 − 3a21a2a4a6a7 + 2a21a2a5a26 + a21a

3
4a7

− a21a
2
4a5a6 + 3a21a26a7 − a1a

3
2a

2
7 + 2a1a22a3a6a7

+ a1a
2
2a4a5a7 − a1a

2
2a

2
5a6 − a1a2a

2
3a

2
6 − a1a2a3a

2
4a7

+ a1a2a3a4a5a6 + 3a1a2a4a27 − a1a2a5a6a7 + a1a3a4a6a7
− 3a1a3a5a26 − 2a1a24a5a7 + 2a1a4a25a6 − 3a1a6a27 + a22a

2
3a6a7

− a2a3a4a5a7 + a2a3a
2
5a6 − a2a5a

2
7 + a33a

2
6 + a23a

2
4a7

− a23a4a5a6 − 2a3a4a27 + 3a3a5a6a7 + a4a
2
5a7 − a35a6 + a37 > 0:

ð67Þ
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The stability of the endemic equilibrium E1 is demon-
strated in the numerical simulations (see Section 4).

Theorem 8. The endemic equilibrium point E1 for system
(1)–(7) is globally asymptotically stable in D if R0 > 1.

Proof. Consider a Lyapunov function of the form

L tð Þ = SH − S∗H − S∗H ln SH
S∗H

� �� �
+ EH − E∗

H − E∗
H ln EH

E∗
H

� �� �

+ IH − I∗H − I∗H ln IH
I∗H

� �� �
+ RH − R∗

H − R∗
H ln RH

R∗
H

� �� �

+ MA −M∗
A −M∗

A ln MA

M∗
A

� �� �
+ SV − S∗V − S∗V ln SV

S∗V

� �� �

+ IV − I∗V − I∗V ln IV
I∗V

� �� �
:

ð68Þ

Differentiating LðtÞ with respect to time gives

dL
dt

= SH − S∗H
SH

� �
dSH
dt

+ EH − E∗
H

EH

� �
dEH

dt
+ IH − I∗H

IH

� �
dIH
dt

+ RH − R∗
H

RH

� �
dRH

dt
+ MA −M∗

A

MA

� �
dMA

dt

+ SV − S∗V
SV

� �
dSV
dt

+ IV − I∗V
IV

� �
dIV
dt

,

dL
dt

= SH − S∗H
SH

� �
ΛH − βHSHIV − μHSH + σRH½ �

+ EH − E∗
H

EH

� �
βHSHIV − ρ + μHð ÞEH½ �

+ IH − I∗H
IH

� �
ρEH − μH + ν + δð ÞIH½ �

+ RH − R∗
H

RH

� �
νIH − σ + μHð ÞRH½ � + MA −M∗

A

MA

� �

� L Tð ÞSV + L Tð ÞIV −
L Tð ÞSVMA

K

�

−
L Tð ÞIVMA

K
− λ T , Rð Þ + μA Tð Þð ÞMA

�

+ SV − S∗V
SV

� �
λ T , Rð ÞMA − βVIHSV − μV Tð ÞSV½ �

+ IV − I∗V
IV

� �
βVSVIH − μV Tð ÞIV½ �,

dL
dt

= SH − S∗H
SH

� �
ΛH − βH SH − S∗Hð Þ IV − I∗Vð Þ½

− μH SH − S∗Hð Þ + σ RH − R∗
Hð Þ� + EH − E∗

H

EH

� �
� βH SH − S∗Hð Þ IV − I∗Vð Þ − ρ + μHð Þ EH − E∗

Hð Þ½ �

+ IH − I∗H
IH

� �
ρ EH − E∗

Hð Þ − μH + ν + δð Þ IH − I∗Hð Þ½ �

+ RH − R∗
H

RH

� �
ν IH − I∗Hð Þ − σ + μHð Þ RH − R∗

Hð Þ½ �

+ MA −M∗
A

MA

� �
L Tð Þ SV − S∗Vð Þ + L Tð Þ IV − I∗Vð Þ½

−
L Tð Þ SV − S∗Vð Þ MA −M∗

Að Þ
K

−
L Tð Þ IV − I∗Vð Þ MA −M∗

Að Þ
K

− λ T , Rð Þ + μA Tð Þð Þ MA −M∗
Að Þ� + SV − S∗V

SV

� �
� λ T , Rð Þ MA −M∗

Að Þ − βV IH − I∗Hð Þ SV − S∗Vð Þ½
− μV Tð Þ SV − S∗Vð Þ� + IV − I∗V

IV

� �
� βV SV − S∗Vð Þ IH − I∗Hð Þ − μV Tð ÞIV½ �:

dL
dt

= ΛH SH − S∗Hð Þ
SH

−
βHIV SH − S∗Hð Þ2

SH
+ βHI

∗
V SH − S∗Hð Þ2

SH

−
μH SH − S∗Hð Þ2

SH
+ σRH SH − S∗Hð Þ

SH
−
σR∗

H SH − S∗Hð Þ
SH

+ βHSHIV EH − E∗
Hð Þ

EH
−
βHSHI

∗
V EH − E∗

Hð Þ
EH

−
βHS

∗
HIV EH − E∗

Hð Þ
EH

+ βHS
∗
HI

∗
V EH − E∗

Hð Þ
EH

−
ρ + μHð Þ EH − E∗

Hð Þ2
EH

+ ρEH IH − I∗Hð Þ
IH

−
ρE∗

H IH − I∗Hð Þ
IH

−
μH + ν + δð Þ IH − I∗Hð Þ2

IH
+ νIH RH − R∗

Hð Þ
RH

−
νI∗H RH − R∗

Hð Þ
RH

−
σ + μHð Þ RH − R∗

Hð Þ2
RH

+ L Tð ÞSV MA −M∗
Að Þ

MA
−
L Tð ÞS∗V MA −M∗

Að Þ
MA

+ L Tð ÞIV MA −M∗
Að Þ

MA
−
L Tð ÞI∗V MA −M∗

Að Þ
MA

−
L Tð ÞSV MA −M∗

Að Þ2
KMA

+ L Tð ÞS∗V MA −M∗
Að Þ2

KMA

−
L Tð ÞIV MA −M∗

Að Þ2
KMA

+ L Tð ÞI∗V MA −M∗
Að Þ2

KMA

−
λ T , Rð Þ + μA Tð Þð Þ MA −M∗

Að Þ2
MA

+ λ T , Rð ÞMA SV − S∗Vð Þ
SV

−
λ T , Rð ÞM∗

A SV − S∗Vð Þ
SV

−
βVIH SV − S∗Vð Þ2

SV
+ βVI

∗
H SV − S∗Vð Þ2

SV
−
μV Tð Þ SV − S∗Vð Þ2

SV

+ βVSVIH IV − I∗Vð Þ
IV

−
βVSVI

∗
H IV − I∗Vð Þ
IV

−
βVS

∗
VIH IV − I∗Vð Þ

IV

+ βVS
∗
VI

∗
H IV − I∗Vð Þ
IV

−
μV Tð Þ IV − I∗Vð Þ2

IV
: ð69Þ

Collecting positive terms together and negative parts
together gives

dL
dt

= A − B, ð70Þ
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where

A = ΛH SH − S∗Hð Þ
SH

+ βHI
∗
V SH − S∗Hð Þ2

SH
+ σRH SH − S∗Hð Þ

SH

+ βHIVSH EH − E∗
Hð Þ

EH
+ βHI

∗
VS

∗
H EH − E∗

Hð Þ
EH

+ ρEH IH − I∗Hð Þ
IH

+ νIH RH − R∗
Hð Þ

RH
+ L Tð ÞSV MA −M∗

Að Þ
MA

+ L Tð ÞIV MA −M∗
Að Þ

MA
+ L Tð ÞS∗V MA −M∗

Að Þ2
KMA

+ L Tð ÞI∗V MA −M∗
Að Þ2

KMA
+ λ T , Rð ÞMA SV − S∗Vð Þ

SV

+ βVI
∗
H SV − S∗Vð Þ2

SV
+ βVSVIH IV − I∗Vð Þ

IV
+ βVS

∗
VI

∗
H IV − I∗Vð Þ
IV

,

ð71Þ

and

B = βHIV SH − S∗Hð Þ2
SH

+ μH SH − S∗Hð Þ2
SH

+ σR∗
H SH − S∗Hð Þ

SH

+ βHSHI
∗
V EH − E∗

Hð Þ
EH

βHS
∗
HIV EH − E∗

Hð Þ
EH

+ ρ + μHð Þ EH − E∗
Hð Þ2

EH
+ ρE∗

H IH − I∗Hð Þ
IH

+ μH + ν + δð Þ IH − I∗Hð Þ2
IH

νI∗H RH − R∗
Hð Þ

RH

+ σ + μHð Þ RH − R∗
Hð Þ2

RH
+ L Tð ÞS∗V MA −M∗

Að Þ
MA

+ L Tð ÞI∗V MA −M∗
Að Þ

MA

L Tð ÞSV MA −M∗
Að Þ2

KMA

+ L Tð ÞIV MA −M∗
Að Þ2

KMA
+ λ T , Rð Þ + μA Tð Þð Þ MA −M∗

Að Þ2
MA

+ λ T , Rð ÞM∗
A SV − S∗Vð Þ
SV

+ βVIH SV − S∗Vð Þ2
SV

+ μV Tð Þ SV − S∗Vð Þ
SV

+ βVSVI
∗
H IV − I∗Vð Þ
IV

+ βVS
∗
VIH IV − I∗Vð Þ

IV
+ μV Tð Þ IV − I∗Vð Þ2

IV
:

ð72Þ

Hence, if A < B, then dL/dt ≤ 0. Note that dL/dt = 0 if
and only if SH = S∗H , EH = E∗

H , IH = I∗H , RH = R∗
H , MA =M∗

A,
SV = S∗V , and IV = I∗V . Thus, the largest compact invariant
set in ½ðS∗H , E∗

H , I∗H , R∗
H ,M∗

A, S∗V , I∗VÞ ∈D : dL/dt = 0� is the
singleton set E1. By Lasalle’s invariant principles [39], it
implies that E1 is globally asymptotically stable in D if
A < B.

4. Numerical Simulations

In this section, initial conditions SHð0Þ = 5000000, EHð0Þ =
200, IHð0Þ = 500, RHð0Þ = 300,MAð0Þ = 200000, SVð0Þ =
300000, IVð0Þ = 1000 are used to perform numerical simula-
tions of system (1)–(7) using the MATLAB computer soft-
ware program. Parameter values used are given in Table 2.
The replication temperature range 16°C-42°C used for analy-
sis is established from the condition given in Section 3, that
is, LðTÞ > μVðTÞ as shown in Figure 2.

4.1. Parameters Determining the Aquatic Mosquito
Maturation Rate. According to Mukhtar et al. [30], the mat-
uration rate of mosquitoes to adulthood is temperature-
rainfall dependent governed by the total number of eggs laid
per adult mosquito per oviposition ωðTÞ, daily survival prob-
ability of rainfall-dependent eggs P1ðRÞ, daily survival prob-
ability of rainfall-dependent larvae P2ðRÞ, daily survival

Table 2: Parameter values for the human and mosquito populations.

Parameter Symbol Value Unit Source

Recruitment rate of humans ΛH 0.031 day-1 [40]

Natural death rate of humans μH 1/23178 day-1 [41]

Interaction coefficient between susceptible humans and infected
mosquitoes

βH 0.00021 - [42]

Rate of loss of immunity σ 1/ 20 × 365ð Þ day-1 [43]

Progression rate from exposed class ρ 1/20 day-1 [43]

Recovery rate ν 1/30 day-1 [43]

Disease-induced death rate δ 0.00000638 day-1 [33]

Egg deposition rate L Tð Þ −0:153T2 + 8:61T − 97:7 day-1 [30]

Aquatic mosquito death rate μA Tð Þ 1:0257 − 0:094T + 0:0025T2 day-1 [30]

Interaction coefficient between susceptible mosquitoes and
infected humans

βV 0.00021 - [42]

Adult mosquito death rate μV Tð Þ −ln 0:522 − 0:000828T2 + 0:0367T
� �

day-1 [30]

Carrying capacity of the environment K 1000000 Dimensionless [30]
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probability of the rainfall-dependent pupae P3ðRÞ, daily sur-
vival probability of the temperature-dependent larvae P2ðTÞ,
and the temperature-dependent duration of the immature
mosquito development TEAðTÞ given by

ω Tð Þ = −0:153T2 + 8:61T − 97:7
μV Tð Þ ,

P1 Rð Þ = 4 × 0:93
2500 R 50 − Rð Þ,

P2 Rð Þ = 4 × 0:25
2500 R 50 − Rð Þ,

P3 Rð Þ = 4 × 0:75
2500 R 50 − Rð Þ,

P2 Tð Þ = exp 0:06737 − 0:00554Tð Þ,

TEA Tð Þ = 1
−0:00094T2 + 0:049T − 0:552

:

ð73Þ

It is assumed that aquatic mosquitoes cannot survive at
daily rainfall beyond 50mm. The maturation rate is given by

λ T , Rð Þ = ω Tð ÞP1 Rð ÞP2 Rð ÞP3 Rð ÞP2 Tð Þ
TEA Tð Þ : ð74Þ

In Figure 3, daily temperature and rainfall are fixed at T
= 25°C and R = 10mm, respectively. Results in Figure 3(a)
show a sharp fall in the susceptible human population and
a rise in the infectious human population within the first 50
days. The infectious human population then falls due to
recovery and death. Figure 3(b) shows a fall in the susceptible
vector population with a rise in the infectious vector popula-

tion. It is observed from Figure 3 that the steady state in both
populations is stable. Thus, the endemic equilibrium ðS∗H ,
E∗
H , I∗H , R∗

H ,M∗
A, S∗V , I∗VÞ of the model is locally stable.

In Figure 4, temperatures within the 16°C-42°Crange are
taken at a fixed amount of daily rainfall 10mm to investigate
the impact of temperature on the various compartments of
the mosquito population. Temperature values of 20°C,
25°C, 30°C, 35°C, and 40°C are considered. In Figure 4(a), it
is observed that the aquatic mosquito population is lowest
at 40°C at all times and highest at 25°C. Thus, a temperature
of 25°C is favourable for replication in the mosquito popula-
tion. Figure 4(a) also shows a fall in the aquatic mosquito
population with time at temperature 40°C. This shows that
the aquatic mosquitoes hardly survive at very high tempera-
tures. A sharp fall in the susceptible mosquito population is
observed at all temperatures in Figure 4(b). Figure 4(c) shows
the change in the infectious mosquito population with time.
The highest rate of infection in the vector population is
observed at 25°C and the lowest rate at 40°C. The comparison
of Figures 4(a) and 4(c) shows that although the aquatic mos-
quito population grows faster at 30°C than 20°C, the infection
rate on the other hand is higher at 20°C compared to 30°C.

Therefore, an increase in the aquatic mosquito popula-
tion does not necessarily imply that there will be a corre-
sponding rise in the infection rate. These results show that
temperature greatly affects the transmission dynamics of
malaria as there is a significant difference in the number of
infected mosquitoes at different temperature values. Malaria
is more effectively transmitted at 25°C as compared to other
temperature values considered.

Figure 5 shows the impact of daily rainfall at a fixed tem-
perature. According to Mukhtar et al. [30], aquatic mosqui-
toes cannot survive at daily rainfall beyond 50mm which
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Figure 2: Egg deposition rate and adult mosquito death rate versus temperature.
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limits the growth of the vector population. Therefore, values
below 50mm, that is, (10mm, 20mm, 30mm, 40mm) are
considered at a fixed temperature 25°C. The aquatic vector
population growth is observed to be lowest at rainfall value
30mm and highest at 40mm as shown in Figure 5(a). This
is because more rainfall received provides breeding sites for
the mosquitoes. Variations in the aquatic mosquito popula-
tion due to temperature differences are observed to be more
than the variations due to rainfall differences; thus, tempera-
ture affects the aquatic mosquito population more than rain-
fall. A rise followed by a sharp fall in the susceptible mosquito
population is observed in Figure 5(b) at all values of rainfall.
The infection rate in the vector population is highest at
30mm of daily rainfall. This shows that the malaria parasite
is more efficiently transmitted in the mosquito population
at 30mm as compared to other values considered. Similar
to the observation from Figure 5, comparing Figure 5(a)
and Figure 5(c), the aquatic mosquito population is higher
at 40mm than it is at 30mm; however, the infection is seen
to be higher at 30mm compared to 40mm. This suggests that
a higher aquatic mosquito population does not necessarily
lead to higher infection rates. From Figure 5, there is a varia-
tion in the infection rate for the different rainfall values; thus,
rainfall affects the transmission of malaria.

5. Discussion

In this paper, a malaria transmission model with temperature
and rainfall dependent parameters is formulated. The analy-
sis of the model reveals that the model is mathematically and
epidemiologically well posed. Further analysis shows that
there are two disease-free equilibrium points, one without
the mosquito population (E01) and the other with the mos-
quito population (E02). It is found out that the existence

and stability of the disease-free equilibria are dependent on
the vector reproduction number (θ). θ is a threshold param-
eter defined as the number of mosquitoes produced by a
female Anopheles mosquito throughout its lifetime, which is
entirely governed by temperature-rainfall-dependent param-
eters (that is egg deposition rate, maturation rate of aquatic
mosquitoes to adulthood, and the death rates of both adult
and aquatic mosquitoes). Seasonal factors highly determine
the population size of mosquito vectors which transmit
malaria because mosquito replication depends on the value
of θ. It was shown that the mosquito population replicates
only if θ > 1. The basic reproduction number R0 for the
model is computed using the next-generation method, and
it was shown that R0 only exists if θ > 1. Malaria transmis-
sion depends on the mosquito vectors which survive only if
θ > 1. The disease-free equilibrium point E01 is stable if θ <
1 which means that if an infective individual is introduced
into the community at this point, malaria does not spread
due to the absence of the mosquito vectors. The disease-free
equilibrium point E02 exists if θ > 1 and is stable if addition-
ally R0 < 1. This means that if an infected individual is
introduced into the community, malaria will not spread if
R0 < 1; otherwise, there will be an outbreak. There is a
unique endemic equilibrium if R0 > 1. This would suggest
that malaria remains in the community as long as R0 > 1;
thus, it is important to keep the basic reproduction number
below unity.

In order to establish the temperature range within which
mosquitoes replicate, the threshold parameter θ was investi-
gated. It was revealed that a replication range of 16°C-42°C is
favourable, and it is this range that was used in the proceed-
ing analysis, because any temperature outside this range was
assumed not to be favourable for mosquito reproduction.
Sensitivity analysis of the model revealed that the basic
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Figure 3: (a) Change in the human population with time over a period of 1000 days. (b) Change in mosquito population with time over a
period of 1000 days.
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reproduction number R0 is highly sensitive to temperature
variations within 17°C-20°C and 37°C-40°C temperature
ranges. The sensitivity of the basic reproduction number to
rainfall variations reduces with more rainfall received. It
was observed that sensitivity indices are positive below
25mm and negative above 25mm. This result shows that
when the rainfall received is below 25mm, a reduction in
the amount of rainfall reduces malaria endemicity while an
increase in the amount of rainfall received leads to a rise in
malaria endemicity. Rainfall increments in this case create
more breeding sites for the mosquitoes in the form of water
pools which aid mosquito population increase. Reduction in
rainfall would reduce the breeding sites and thus reduce the
mosquito population. On the other hand, when the rainfall
received is above 25mm, a reduction in the amount of rain-
fall received increases malaria endemicity whereas an
increase in rainfall reduces malaria endemicity. This is

because excessive rainfall flushes out breeding sites thus
reduces the mosquito population. Sensitivity indices due to
temperature variations are observed to be greater than those
due to rainfall variations. This implies that malaria transmis-
sion is more sensitive to temperature changes than rainfall
changes; thus, more attention should be directed to temper-
ature variations.

Numerical simulations of the model were performed to
investigate the effect of temperature and rainfall on malaria
transmission. Temperature values 20°C, 25°C, 30°C, 35°C,
and 40°C were considered; it was revealed that malaria is
more effectively transmitted at temperature 25°C (this is in
agreement with [30, 31]). Daily rainfall below 50mm, that
is, 10mm, 20mm, 30mm, and 40mm were considered, since
it was assumed that mosquitoes hardly survive rainfall above
50mm as breeding sites are flushed out. It was noted that that
daily rainfall of 30mm is favourable for malaria transmission
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Figure 4: Change in the mosquito population over time for temperatures values T = 20°C, T = 25°C, T = 30°C, T = 35°C, and T = 40°C. (a)
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as compared to other values considered. Mass malaria con-
trol programmes such as the distribution of mosquito nets
should be implemented when the temperature is 25C and
daily rainfall is 30mm. In agreement with sensitivity analysis,
it was observed that variations in malaria infection due to
temperature differences were more than the variations due
to rainfall differences. Therefore, temperature affects the
transmission dynamics of malaria more than rainfall. It was
also shown that the growth of the aquatic mosquito popula-
tion does not necessarily lead to higher infections. Therefore,
vector control measures should target adult mosquitoes
more, since most of the aquatic mosquitoes do not survive
to adulthood to participate in malaria transmission.
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