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A bewildering large number of test statistics have been found for testing the presence of an outlier in multiple linear regression
models. Exact critical values of these test statistics are not available, and approximate ones are usually obtained by the first-
order Bonferroni upper bound or large-scale simulations. In this paper, we show that the upper bound values of two of these
test statistics are algebraically the same. An application to real data for multiple linear regression is used to demonstrate the
procedure.

1. Introduction

An outlier is a discordant observation. It is an observation
that does not fit in with the pattern of the remaining obser-
vations. It differs markedly not only from other members of
the set from which it occurs, but also from its fitted value.
Such an observation usually has a large residual. Outliers
meet data analysts at the point of data analysis and in data
mining. Reference [1] pointed out that there various causes
of outliers such as human errors, erroneous operation of
computer systems, sampling errors, or standardization fail-
ures. Excellent books on outliers include [2–4].

Outliers usually have a major influence on the resulting
parameter estimates, and their presence impacts adversely
on the results of the statistical inference concerning the
models. They can reduce the power of statistical tests during
analysis. Reference [5] advised that there is the need for the
analyst to identify outliers if they exist so that appropriate
measures might be taken.

Outliers need to be identified and corrected or elimi-
nated. The process of identification and correction of
outliers is not a straightforward thing; rather, it requires
marked ability, competence, circumspection, and a strict
adherence to scientific objectivity (impartiality) of high

degree. If identified outliers cannot be remedied, they need
to be removed because they contaminate the information
contained by the remainder of that set of data (see [1, 6]).

Test for an outlying observation in the response variable is
usually based on the use of test statistics that depend on the
standardized residuals. Different test statistics have been
developed for testing of an outlier in a least squares analysis
of linear regression models. However, exact critical values of
some of these test statistics are not available and are not easy
to obtain. The available approximate ones are based on the
first-order Bonferroni upper bound or large-scale simulations.

Upper bounds for the critical values of test statistics for
detecting the presence of a single outlier in linear regression
have been developed by [7, 8]. Although formal distinctions
exist in the principles invoked by [7, 8] in deriving these
upper bounds, we show in this paper that these upper
bounds derived by [7, 8] are algebraically the same.

The multiple linear regression model is

Y = Xβ + ε, ð1Þ

where Y is the n × 1 observation vector, X is an n × p matrix
of constants, β is a p × 1 vector of unknown parameters to be
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estimated, and ε is an n × 1 vector of normally distributed
errors. Assuming that EðεÞ = 0 and VarðεÞ = σ21, the least
squares estimator of β in (1) is given by

bβ = X′X
� �−1

X′Y, ð2Þ

and the vector of residuals is

e = Y −Xbβ = I −X X′X
� �−1

X′
� �

ε: ð3Þ

The variance-covariance matrix e

Var eð Þ = I −X X′X
� �−1

X′
� �

σ2: ð4Þ

If σ2 is estimated using σ∧2 = e′e/ðn − pÞ, then the esti-
mated variance-covariance matrix of e becomes

dVar eð Þ = I =X X′X
� �−1

X′
� �

σ∧2: ð5Þ

Residuals are important diagnostic tools in regression
analysis as no regression analysis is complete without a thor-
ough examination of them. They are versatile as most regres-
sion diagnostics are written in terms of them. They are used
in checking model adequacy and the validity of model
assumptions. A thorough examination of the residuals there-
fore provides valuable information concerning the appropri-
ateness of assumptions that underlie statistical models and
helps in pinpointing an appropriate model. Different types
of graphic plots (representations) of residuals are used for
diagnostic purposes.

Ordinary residuals are not all that suitable for diagnostic
purposes, and a standardized version of them is usually pre-
ferred. This is because the variances of the residuals are not
homogeneous, and this makes them intractable. A standard-
ized residual has a representation of the form

Ri =
yi − ŷi

σ∧2
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − hii

p , ð6Þ

where ŷi is the predicted value of yi and hii is the ith element

of matrix XðX′XÞ−1X′, called the hat matrix. The ith trans-
formed residual Ri is often called an internally studentized
residual. They are tractable and are more versatile. They
are used as a replacement of the ordinary residuals in regres-
sion diagnostics. Numerous graphical and numerical tech-
niques for checking model assumptions using standardized
residuals can be found in the regression literature. They
are also fundamental building blocks for most of the known
test statistics studied in the literature for outlier detection in
linear models (see [9, 10]).

The test statistic

Rn =max yi − ŷi
σ∧2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − hii

p�����
����� =max Rij j, ð7Þ

is called the maximum absolute internally studentized resid-
uals. Reference [11], following the suggestion of [12], used a
large-scale simulation study involving many thousands of
sampling experiments to obtain approximate critical values
of (7) for a simple linear regression. The approximate values
obtained by [11] are almost the same with the values
obtained by [13].

Reference [7] considered the test statistic

R∗
n =max ei

�σei

�����
�����, ð8Þ

where �σ2ei is the estimated average variance of the ordinary
residuals. Reference [9] showed that the variance of the
residuals is ðn − pÞσ2/n, so that the estimated variance of
the ordinary residuals �σ2ei = ðn − pÞσ∧2/n.

Therefore,

R∗
n =

n1/2 max eij j
∑e2i
� 	1/2 : ð9Þ

Reference [7] showed that the corresponding percentage
point R∗

0 of R∗
n is bounded above by

U =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n − pð ÞF
n − p − 1 + F

s
, ð10Þ

where F is the 100ð1 − α/nÞ percentage point of the F distri-
bution with degrees of freedom 1 and n − p − 1, n is the
number of observations, and p is the number parameters
estimated. Reference [7] results for simple linear regression
were found to be almost identical to those of [11]. Reference
[7] also suggested the use of (10) to obtain other critical
values that are not in Table 1. The reference [7] result was
not elaborate and extensive enough as the result in [8]
because of the unavailability of the needed values of the F
-distribution (see [8]).

Define

ξi =
Riffiffiffiffiffiffiffiffiffiffi
n − p

p : ð11Þ

Reference [14] showed that the joint distribution of ξi′s has a
multivariate Inverted-Students Function and that the proba-
bility density function for any ξi is a univariate Inverted-
Students Function with probability density function given by

f ξið Þ = C 1 − ξ2i

� � n−p−3ð Þ/2
, ξ2i ≤ 1, ð12Þ
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where

C
Γ n − pð Þ/2ð Þ

Γ 1/2ð ÞΓ n − p − 1ð Þ/2ð Þ : ð13Þ

Reference [8], following the suggestion of [7], made use of
the results of [14]. Reference [8] used the first-order
Bonferroni inequality to obtain the upper bounds R0 of the
critical values of Rn. Reference [8] obtained ξ0 fromð1

ξ0

2nf ξið Þdξi = α, ð14Þ

where ξ0 = R0/
ffiffiffiffiffiffiffiffiffiffi
n − p

p
and then obtained R0 using the rela-

tionship between R0 and ξ0 given by the equation

R0 = ξ0
ffiffiffiffiffiffiffiffiffiffi
n − p

p , ð15Þ

for sample sizes up to n = 100, regression parameters p = 25
and α = 0:10, 0.05, and 0.01. With that, [8] is claimed to have
produced the most elaborate upper bound values R0. For
p = 2, the upper bounds R∗

0 computed by [7] using (10)
and the upper bound values R0 computed by [8] using (14)
are extremely very close.

2. Demonstration of the Sameness of
Upper Bounds

In this section, we show that the upper bounds R∗
0 and R0 are

algebraically identical. From (10), we let

U =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n − pð ÞF
n − p − 1 + F

s
: ð16Þ

We determine the distribution of U as follows:

Pr U < uð Þ = Pr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n − pð ÞF
n − p − 1 + F

s
< u

 !
= Pr F < u2 n − p − 1ð Þ

n − p − u2

� �
,

ð17Þ

so that

f U uð Þ = f F
u2 n − p − 1ð Þ
n − p − u2

� �
, 1, n − p − 1


 � 2 n − p − 1ð Þ n − pð Þu
p + u2 − nð Þ2

,

ð18Þ

with distribution domain or range given by ð0, ffiffiffiffiffiffiffiffiffiffi
n − p

p Þ.
Explicitly, we have

f U uð Þ =H 1 − u2

n − p

� � n−p−3ð Þ/2
 0 < u < ffiffiffiffiffiffiffiffiffiffi

n − p
p , ð19Þ

where

H = 2Γ n − pð Þ/2ð Þ
Γ 1/2ð Þ ffiffiffiffiffiffiffiffiffiffi

n − p
p

Γ n − p − 1ð Þ/2ð Þ : ð20Þ

Then, using the first Bonferroni inequality, one can
obtain the upper bounds R∗

0 by solvingð ffiffiffiffiffiffin−pp

R∗
0

nf U uð Þdu = α: ð21Þ

Now, from (11), we have

Pr Ri < rð Þ = Pr ξi
ffiffiffiffiffiffiffiffiffiffi
n − p

p < rð Þ = Pr ξi <
rffiffiffiffiffiffiffiffiffiffi
n − p

p
� �

, ð22Þ

so that

f Ri
rð Þ = f ξ

rffiffiffiffiffiffiffiffiffiffi
n − p

p
� �
 � 1ffiffiffiffiffiffiffiffiffiffi

n − p
p , ð23Þ

with distribution domain or range given by ð− ffiffiffiffiffiffiffiffiffiffi
n − p

p ,ffiffiffiffiffiffiffiffiffiffi
n − p

p Þ. Explicitly, we have

f Ri
rð Þ =D 1 − r2

n − p

� � n−p−3ð Þ/2
−

ffiffiffiffiffiffiffiffiffiffi
n − p

p < r < ffiffiffiffiffiffiffiffiffiffi
n − p

p , ð24Þ

where

D = Γ n − pð Þ/2ð Þ
Γ 1/2ð Þ ffiffiffiffiffiffiffiffiffiffi

n − p
p

Γ n − p − 1ð Þ/2ð Þ : ð25Þ

Let

Yi = Rij j,
Pr Yi < yð Þ = Pr Rij j < yð Þ = Pr −y < Ri < yð Þ:

ð26Þ

Table 1: Upper bounds of the critical values of Rn for detecting a
single outlier in a simple linear regression model.

Sample size
α = 0:10 α = 0:05 α = 0:01

Rn Rn Rn

4 1.4131 1.4139 0.4142

5 1.6974 1.7147 1.7286

6 1.8838 1.9270 1.9751

7 2.0142 2.0799 2.1667

8 2.1125 2.1961 2.3178

9 2.1911 2.2883 2.4398

10 2.2562 2.3643 2.5407

12 2.3602 2.4840 2.6988

14 2.4414 2.5760 2.8186

16 2.5079 2.6502 2.9136

18 2.5641 2.7121 2.9919

20 2.6126 2.7651 3.0575

30 2.7869 2.9516 3.2812

60 3.0508 3.2247 3.5869
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Because of the symmetry of the distribution of Ri in (24),
we obtain the distribution of Yi = jRij as follows:

Pr Yi < yð Þ = 2 Pr Ri < yð Þ: ð27Þ

Explicitly, we have

f Yi
yð Þ =H 1 − y2

n − p

� � n−p−3ð Þ/2
 0 < y < ffiffiffiffiffiffiffiffiffiffi

n − p
p

: ð28Þ

Then, using the first Bonferroni inequality, one can
obtain R0 by solving

ð ffiffiffiffiffiffin−pp

R0

nf Yi
yð Þdy = α: ð29Þ

The sameness of (21) and (29) means that

ð ffiffiffiffiffiffin−pp

R∗
0

nf Ui
uð Þdu = α⇒

ð ffiffiffiffiffiffin−pp

R0

nf Yi
yð Þdy = α, ð30Þ

implying that R0 = R∗
0 . This also means that Rn and R∗

n have
distributions that are bounded by the same distribution.

Using (21) to obtain the upper bounds R∗
0 averts the

problem encountered by [7]. This is because (10) depends
on the tabulated percentage points of F-distribution while
(21) does not. Reference [8] remarked that implementation
of the suggestion made by [7] was very difficult because
the needed percentage points of the F-distribution were
not available. Therefore, for any value of α, R∗

0 can easily
be obtained using (21) without recourse to a tabulated value
of the F-distribution. It is also preferable to use (29) to
obtain R0 instead of (14). This is because, using (14) involves
a kind of transformation from ξ0 to R0 as indicated in (15),
but using (29) does not. The use of approximate critical
values for detecting a single outlier in linear regression can
be found in the work of [7, 8].

3. Table Construction

We use the Bonferroni inequality to obtain upper bound
values for the 10 percent, 5 percent, and 1 percent critical
values of the test statistic Rn. A table of the upper bounds
of the critical values of Rn is presented in Table 1 for a simple
linear regression and sample sizes up to 60. These were
obtained by solving (29) using the Mathematica Software.
It is to demonstrate numerically that the upper bound values
of the two test statistics (7) and (8) are the same as what (30)
shows. Equation (29) produces precise and accurate values
of upper bound values of these test statistics ((7) and (8)).
The values in Table 1 compare favorably with values
obtained by [7] by solving (10), the values obtained by [8]
by solving (14), and the approximate values obtained by
[11] via simulation.

4. Application to Real Data

We now show that the upper bounds of the two test statistics
are the same with an application to a real data set. The data in
Table 2 is from [15]. Reference [15] carried out an investiga-
tion concerning the source from which corn plants obtain
their phosphorus. It was carried out by chemically determin-
ing the concentrations of inorganic (X1) and organic (X2)
phosphorus in the soils. They used eighteen soil samples in
the experiment and measured the phosphorus content Y of
the corn grown on n = 18 Iowa soils. The phosphorus content
Y was used as the dependent variable in a multiple regression
analysis with X1 and X2 as the independent variables. The
content Y (phosphorus content) of the corn in soil sample
number 17 was found to be considerably larger than the phos-
phorus content of the corn grown in the other soil samples (no
explanation was given for its size) and produced a standard-
ized residual of 3.18. Multiple linear regression analysis of
the data set produced the result in Table 2.

We now show that the upper bound values R∗
0 and R0 are

the same. We compute the upper value R∗
0 of R

∗
n using equa-

tion (10) which is given byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n − pð ÞF

n − p − 1 + F

s
, ð31Þ

where F is the 100ð1 − α/nÞ percentage point of the F distri-
bution with degrees of freedom 1 and n − p − 1, n is the
number of observations, and p is the number parameters
estimated. For α = 0:01, n = 18, p = 3, and F = 19:76, the
upper bound for their critical value of R∗

n is

Table 2: Data set and standardized residuals for multiple
regression of plant available phosphorus (Y) on inorganic
phosphorus (X1) and organic phosphorus (X2).

Soil sample n Y X1 X2 Ri

1 64 0.4 53 0.13331

2 60 0.4 23 0.04388

3 71 3.1 19 0.40169

4 61 0.6 34 0.02905

5 54 4.7 24 -0.68481

6 77 1.7 65 0.79326

7 81 9.4 44 0.19893

8 93 10.1 31 0.80425

9 93 11.6 29 0.68538

10 51 12.6 58 -1.72895

11 76 9.4 37 -0.02256

12 96 23.1 46 -0.29759

13 77 23.1 50 -1.29842

14 93 21.6 44 -0.30278

15 95 23.1 56 -0.39542

16 54 1.9 36 -0.45870

17 168 26.8 58 3.17401

18 99 29.9 51 -0.85219
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R∗
0 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15 × 19:76
14 + 19:76

r
= 2:96: ð32Þ

To obtain the upper bound for the critical value of Rn, we
make use of equation (14). For α = 0:01, n = 18, and p = 3, we
apply equation (14) using the Mathematica software to
obtain R0 = 2:96. Thus, the upper bound values of the two
test statistics are the same. Equation (21) or (29) gives the
same value.

Finally, the observed value of 3.18 is found to be signifi-
cant at the one percent level (3:18 > 2:97). Thus, the phos-
phorus content of the corn grown in soil sample number
17 should be regarded as an outlier, and the null hypothesis
of no outlier in the data set is rejected at the 0.01 level.

5. Conclusions

In this article, we have shown that the upper bound values
R0 of the test statistic (7) and the upper bounds R∗

0 of the test
statistic (8) are identical. Although formal distinctions exist
in the principles used by [7] in deriving R∗

0 and those
employed by [8] in deriving R0, we have herein shown that
they are algebraically the same. Having shown this, we rec-
ommend the use of (29) to compute the upper bounds of
(7) or (8). It is more tractable than (10) and (14). Since
(14) borders on some kind of transformation and (10)
makes use of tabulated values of F-distribution, accuracy
and precision may be lost when using them.

Data Availability

A real data set on regression with a single outlier has been
analyzed and included in the paper.
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