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The flexible link system (FLS) was a highly nonlinear model, multivariable and absolutely unstable dynamic system. In practice, it
is common to integrate multiple subsystems into the main system with dynamically turned k-input signals (k =1, 2,…, N) to
diversity the functionality of the main system. The flexibility of the division method to convert k-input MIMO system to SISOs
system combined with the optimal algorithm creates a powerful tool that can be applied to many different MIMO nonlinear
systems with high success rates. The optimal controllers can be created in the future for the flexible system is implemented on
an experiment system using Arduino UNO micro-controller KIT. This paper describes division method to convert the k-input
MIMO system to SISOs system, after that combined with the optimal algorithm to control for the flexible link system.
Specifically, the author will conduct oscillating component analysis of a system with k input pairs (k =1, 2) so that the author
can better understand the nature of sub-components as they interact with the system.

1. Introduction

The flexible link system is a topic that attracts the attention
of professionals in forming flexible structures for an automa-
tion system, from a simple model to a model with a relatively
complex structure. The structural flexibility when using flex-
ible links gives the system many advantages compared to the
previous traditional model: the system volume will be less,
the operation will be faster, and more flexibility, due to less
system volume, the power consumption of the system is
reduced. The linear quadratic optimal boundary control of
the flexible robotic arm is a new proposition based on the
reference of the paper [1]. I am currently researching for
using this technique [1] for the other system: Ac-robot. I
can apply the techniques in article [2] to flexible robotic
arms. The use of techniques in this article [3] in control sys-
tems is a promising research topic. The application of dis-
tributed parameter models for the robot’s mobile feet

based on the reference of the article [4] is a new idea. A
new proposal is the use of modern controllers for the design
of systems in the paper [5]. The use of the optimal controller
in [6, 7] is a new proposition. The application of the fuzzy
algorithm in [8, 9] is a promising idea. Path Planning [10]
of a planetary robot is an important research work for the
field of astronomy. Theoretical and experimental study of
DLCC [11] for a flexible link system of any model is wel-
come. The use of achievements [12] for a soft body is an
interesting topic. Maximum Allowable Load [13] of a flexi-
ble robotic arm is a promising topic.

This article focuses on the MIMO system with k-input
pairs in the flexible link system, the author can apply a mod-
ern control method: The method of using the optimal con-
troller to control the flexible link system. The application
of a novel control method with a MIMO system can be
applied to many complex MIMO system models. The
state-of-the-art controllers will be created in the future,
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which will flexibly change the oscillation characteristics. The
author will compare the efficiency of the above controller for
the k-input system with k=1, 2. This can be checked to show
effectiveness of the real system. Through this article, the
reader can find out the effectiveness of the above control
method for a system. The author will also compare the pros
and cons of a system using an optimal controller versus a
system without any controller. Examining sub-components
in a system with k inputs (k =1, 2) is essential for the main-
tenance of a system. Sub-components can have more or less
impact on a system depending on how much they affect the
server. This paper will give an overview through the
evaluation of simulation results. From there, the author
can confirm their impact on a host system. Previous studies
have not been able to show the existence of components that
make up a system. Besides, the operation of sub-components
in a host system has not been investigated meticulously in
previous studies. Sub-components here can be variables that
describe an individual form of activity in the constitutive of
the system’s motions. Specifically in this article are the levels
of flexible link properties, the degree of oscillation around
the specified position,....Therefore, controlling the behavior
of a sub-component in a large system is an important task.
Readers can understand that the components involved in
the operation of the system work in harmony with each
other or not? Do they interact with each other? The answers
to these questions will be presented through the analytical
sections of this paper. The difference of this paper compared
to other papers is the detailed description of the operation of
one of the elements constituting the system with 1 input
pair, 2 input pairs... These elements are very diverse in terms
of their structure as well as their functions. Each system has
many distinct elements. Exploring these elements gives the
reader a detailed look at the functions of these categories.
This can give designers more incentive to create new compo-
nents to improve the quality of a system’s features.

2. Related Theory

2.1. Structure of the FLS. A block diagram showing the con-
troller based on the Arduino UNO Kit is provided in
Figure 1. The FLS system consists of a flexible metal (LINK)
rod attached to one end of the DC deceleration motor, the
other (TIP) with an acceleration sensor to measure the hor-
izontal oscillation. Motor rotates the metal horizontally, due
to the flexible metal rod, so the TIP will vibrate a lot. A
720ppr encoder was used to measure the position of the cur-
rent of the LINK is θ and the acceleration sensor measures
the deflection of the angle ðαÞ of the TIP (Figure 2). The
control system uses the Arduino UNO Kit, the AVR
ATMEGA328 micro-controller reads the value from the
encoder, which it receives the value from the accelerometer
sensor. It implements the optimal control algorithm and
supplies PWM signals to the motor. The sampling frequency
of the system is 4ms.

Table 1 shows the simulation results described below.

2.2. A Mathematical Model of FLS. FLS [14, 15] can be con-
verted into blocks for analysis, such as Figure 3.

The input of the FLS system is the voltage, which sup-
plies for (Vm) voltage to the motor, the two outputs are con-
trolled by the position of the motor’s rotation and the
deviation of the angle of the LINK (Figure 3).

Using Lagrange equation to determine the equations of
motion of the system through the total kinetic energy and
the total potential energy of the elements in the FLS system
in motion.

The potential energy of FLS system is the elastic energy
when the LINK vibrates:

V = 1
2KSα

2 ð1Þ

The kinetic energy of a FLS system consists of two com-
ponents, the kinetic energy component rotated by the
motor and the kinetic energy component when the LINK
is deviated:

T = 1
2 Jeq

_θ
2 + 1

2 JL
_θ + _α
� �2 ð2Þ

PC

UART PWM

ARduino UNO QEI

ADC

H Bridge

θ Dc Motor

μ ACCE Sensor

Figure 1: A block diagram of FLS control system.
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X0

M1

θ > 0
α > 0

τ

Figure 2: A Spatial model of FLS [14].
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Lagrange’s the equation:

L = T −V = 1
2 Jeq

_θ
2 + 1

2 JL
_θ + _α
� �2

−
1
2KSα

2 ð3Þ

The differential components of the Lagrange equation
follows θ:

∂L
∂ _θ

= Jeq _θ + JL _θ + _α
� �

d
dt

∂L
∂ _θ

� �
= Jeq€θ + JL €θ + €α

� �
∂L
∂θ

= 0

8>>>>>>>><
>>>>>>>>:

ð4Þ

The differential components of the Lagrange’s equation
follow α:

∂L
∂ _α

= JL _θ + _α
� �

d
dt

∂L
∂ _α

� �
= JL €θ + €α

� �
∂L
∂α

= −KSα

8>>>>>>><
>>>>>>>:

ð5Þ

Force of the balance [27] of (4), (5) follows Lagrange
equation:

Jeq + JL
� �€θ + JL€α + Beq

_θ = τ

JL€θ + JL€α + BL α
: + KSα = 0

τ =
ηgKgηmKt Vm − KgKm

_θ
� �
Rm

8>>>>>><
>>>>>>:

ð6Þ

The (BL) the damping coefficient of the LINK is very
small, which it can be considered as a~0, the system of
equations (6) becomes:

€θ = −
Beq

Jeq
_θ + KS

Jeq
α −

ηgKg
2ηmKtKm

JeqRm

_θ +
ηgKgηmKt

JeqRm
Vm

€α =
Beq

Jeq
_θ − KS

1
Jeq

+ 1
JL

 !
α +

ηgKg
2ηmKtKm

JeqRm

_θ −
ηgKgηmKt

JeqRm
Vm

8>>>>><
>>>>>:

ð7Þ

I set the state and output variables for the FLS system
(k=1) as follows:

x1 = θ, x2 = α, x3 = _θ, x4 = _α

y1 = x1, y2 = x2

(
ð8Þ

I combine (7) and (8) to obtain the system of state
equations describing the FLS system:

Table 1: Physical specifications of the real system [14].

Symbol Description Value Unit

Beq Equivalent viscous damping coefficient 0.004 Nm/(rad/s)

η g Gearbox efficiency 0.9

Kt Motor torque constant 0.0134 N-m/A

Km Back-emf constant 0.0134 V-s/rad

Jeq Moment of inertia of the rotor of the motor 2.08x10-3 Kg.m2

Rm Armature resistance of motor 1.9 Ω

ηm Motor efficiency 0.8

JL Equivalent moment of inertia at the LINK 0.0038 Kg.m2

m Mass of LINK 0.115 Kg

L Length to LINK’s center of mass 0.25 m

Ks Stiffness of LINK 1.3 Nm/rad

BL Equivalent viscous damping coefficient of LINK 0.00004 Nm/(rad/s)

BL

JLJeq

Beq Ks

Motor

Vm

𝜏, 𝜃 𝛼

Figure 3: The Analysis of block diagram of FLS system [14].
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I replaced the physical parameters from Table 1 into
equation (9), the system of state equation of the FLS system
has been designed:

_x1

_x2

_x3

_x4

2
666664

3
777775 =

0 0 1 0
0 0 0 1
0 623:7 −7:2 0
0 −965:3 7:2 0

2
666664

3
777775

x1

x2

x3

x4

2
666664

3
777775 +

0
0

479:8
−479:8

2
666664

3
777775Vm

y1

y2

" #
=

1 0 0 0
0 1 0 0

" #
x1

x2

" #

8>>>>>>>>>>><
>>>>>>>>>>>:

ð10Þ

The transfer function of the FLS system is:

G sð Þ = 479:8s2 + 2:196 × 10‐10s + 1:639 × 105
s4 + 7:2s3 + 965:3s2 + 2460s ð11Þ

I set state and output variables for the FLS system with 2
input pairs (k =2) as follows:

x1 = θ, x2 = α, x3 = _θ, x4 = _α, x5 = θ1, x6 = α1, x7 = _θ1, x8 = _α1

y1 = x1, y2 = x2, y3 = x5, y4 = x6

(
ð12Þ

I combine (7) and (8), (12) to obtain the system of state
equations describing the FLS system with 2 input pairs:

_x1

_x2

_x3

_x4

2
666664

3
777775 =

0 0 1 0
0 0 0 1

0 Ks

Jeq

−BeqRm − ηgK
2
gηmKtKm

JeqRm
0

0 −Ks
1
Jeq

+ 1
JL

 !
BeqRm + ηgK

2
gηmKtKm

JeqRm
0

2
66666666664

3
77777777775

x1

x2

x3

x4

2
666664

3
777775

y1

y2

" #
=

1 0 0 0
0 1 0 0

" #
x1

x2

" #

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

+

0
0

ηgKgηmKt

JeqRm

−ηgKgηmKt

JeqRm

2
6666666664

3
7777777775
Vm ð9Þ

_x1

_x2

_x3

_x4

_x5

_x6

_x7

_x8

2
666666666666666664

3
777777777777777775

=

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

0 Ks

Jeq

−BeqRm − ηgK
2
gηmKtKm

JeqRm
0 0 0 0 0

0 −Ks
1
Jeq

+ 1
JL

 !
BeqRm + ηgK

2
gηmKtKm

JeqRm
0 0 0 0 0

0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

0 0 0 0 0 Ks

Jeq

−BeqRm − ηgK
2
gηmKtKm

JeqRm
0

0 0 0 0 0 −Ks
1
Jeq

+ 1
JL

 !
BeqRm + ηgK

2
gηmKtKm

JeqRm
0

2
66666666666666666666666666664

3
77777777777777777777777777775

x1

x2

x3

x4

x5

x6

x7

x8

2
666666666666666664

3
777777777777777775

y1

y2

y3

y4

2
666664

3
777775 =
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0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

2
666664

3
777775

x1

x2

x3

x4
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x6
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2
666666666666666664

3
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8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

+

0
0

ηgKgηmKt

JeqRm

−ηgKgηmKt

JeqRm

0
0

ηgKgηmKt

JeqRm

−ηgKgηmKt

JeqRm

2
666666666666666666666666664

3
777777777777777777777777775

Vm

ð13Þ
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I replaced the physical parameters from Table 1 into the
equation (9), the system of state equations of the FLS system
has been designed:

The transfer function of the FLS system with 2 input
pairs (k=2) is:

G1 sð Þ = 479:8s2 + 1:613 × 10‐10s + 1:639 × 105
s4 + 7:2s3 + 965:3s2 + 2460s

G2 sð Þ = ‐479:8s‐2:213 × 10‐12
s3 + 7:2s2 + 965:3s + 2460

G3 sð Þ = 479:8s2 + 2:196 × 10−10s + 1:639 × 105
s4 + 7:2s3 + 965:3s2 + 2460s

G4 sð Þ = ‐479:8s + 1:107 × 10‐12
s3 + 7:2s2 + 965:3s + 2460

ð15Þ

2.3. Method of Splitting MIMO System into SISOs System.
Obviously FLS system is multivariate, the oscillator variable
is α and the LINK’s position variable is θ. The control volt-
age which supplies the motor is Vm voltage. FLS can be sep-
arated into two SISO systems. The input of the first SISO
system is θ, the output of the first SISO system is the voltage
Vm1 which it supplies to the total set. The input of the sec-
ond SISOs system is α, the output of the second SISO system
is VM2 provides to the total set. The KPOS and KOSC coeffi-
cients are used to set priorities for the system controller. 2-
inputs of the second SISO system are α, α1, 2-outputs of
the second SISO system are Vm3, Vm4 provides to the total
set. The MIMO system for the FLS with 1 input pair is

shown in Figure 4. The MIMO system for the FLS with 2
input pairs is shown in Figure 5.

3. Designing the Optimal Controller for
Fls with 1 Input Pair (K=1)

3.1. Designing the Equation of State for the Oscillation of the
FLS with 1 Input Pair. The author considered the system of
state equations when only the variable name was α as
follows:

_x1

_x2

_x3

_x4

2
666664

3
777775 =

0 0 1 0
0 0 0 1
0 623:7 0 0
0 −965:3 0 0

2
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2
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3
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0
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3
777775Vm
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y2

" #
=
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x2

" #

8>>>>>>>>>>><
>>>>>>>>>>>:

ð16Þ

The author applied the algorithm according to the
controller design of the SISOs system for the oscillation
corresponding to the MIMO system with the state equa-
tion presented above.

_x1

_x2

_x3

_x4

_x5

_x6

_x7

_x8

2
666666666666666664

3
777777777777777775

=

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 623:7 −7:2 0 0 0 0 0
0 −965:3 7:2 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 623:7 −7:2 0
0 0 0 0 0 −965:3 7:2 0

2
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3
777777777777777775
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x8
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777777777777777775

+

0
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0
0
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2
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777777777777777775

Vm

y1

y2
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2
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3
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0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

2
666664

3
777775

x1
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x6
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2
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3
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8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð14Þ
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3.2. Designing the Optimal Controller Splitting MIMO into
SISOs for the FLS with 1 Input Pair. A control system
designed in the best working mode is always in the optimal
state according to a certain quality (the standard extreme
value is reached).

Whether or not it is stable depends on the required qual-
ity, and understanding of the object and its impacts, based
on the working condition of the control system ... In the pre-
sentation, The author designed the controller to operate in
the optimal state according to the J quality criteria function
as required by the problem, that traditional model without
using the optimal controller has not been achieved.

The diagram of the optimal controller splitting MIMO
into SISOs for the FLS is shown below (Figure 4).

A =

0 0 1 0
0 0 0 1
0 623:7 −7:2 0
0 −965:3 7:2 0

2
666664

3
777775 ; B =

0
0

479:8052
−479:8052

2
666664

3
777775

C =
1 0 0 0
0 1 0 0

" #

ð17Þ

3.3. Designing the Optimal Controller for the Oscillation of
FLS with 1 Input Pair. The diagram of the Optimal control
for the oscillation of FLS is shown below (Figure 6).

Aα1
=

0 0 1 0
0 0 0 1
0 623:7 0 0
0 −965:3 0 0

2
666664

3
777775 ; Bα1

=

0
0

479:8
−479:8

2
666664

3
777775

Cα1
=

1 0 0 0
0 1 0 0

" #
ð18Þ

The transfer function Gα1
ðsÞ:

G1
α1

sð Þ = 479:8s2 + 1:79 × 10−11s + 1:639 × 105
s4 + 965:3s2

G2
α1

sð Þ = −479:8
s2 + 965:3

ð19Þ

The author consider the system to have the external
impact ðu ≠ 0Þ:

_x = Aα1
x + Bα1

u ð20Þ

The author need to find the matrix Kα1
of the optimal

control vector: uðtÞ = −Kα1
∗ xðtÞ satisfy the quality index

value of Jα1 and Jα1 must reach the minimum value:

Jα1 =
ð∞
0

xTQα1
x + uTRα1

u
� �

dt ð21Þ

where Qα1
is a positive deterministic matrix, Rα1

is a positive
deterministic matrix.

The matrix of Kα1
is determined from Riccati’s equation

of the form:

Kα1
= Rα1

−1Bα1
TP ð22Þ

The state feedback control structure is shown below
(Figure 7).

Thus, the optimal control law for an optimal control
problem with the quality criteria is a linear equation and it
has the form:

u tð Þ = −Kα1
tð Þ = −Rα1

−1Bα1
TPx tð Þ ð23Þ

The value of the matrix is P, P must be satisfied the
equation:

PAα1
+ Aα1

TP +Qα1
− PBα1

Rα1
−1Bα1

TP = _P ð24Þ

The equation (24) is known as Riccati’s equation.
The author choose the values of the matrix ðQα1

Þ and the
values of the matrix ðRα1

Þ as follows:

Qα1
=

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

2
666664

3
777775, Rα1

= 1: ð25Þ

The author calculate the value of the matrix Kα1
through

Matlab software:

Kα1
= lqr Aα1

, Bα1
,Qα1, Rα1

� �
= 1:0 − 15:8142 1:0509 − 0:3879½ �

ð26Þ

3.4. Designing the Optimal Controller for FLS with 2 -Input
Pairs (Figure 5)

3.4.1. Designing the Optimal Controller for the Oscillation of
FLS with 2 Input Pairs (Figure 8). The author considered

KOSC

KPOS

+

+

+

+ FLS

–

–
𝜃

𝛼

Figure 4: The diagram the optimal controller splitting MIMO into
SISOs for FLS system with 1 input pairs (k =1).

6 Journal of Applied Mathematics



the system of state equations when only the variable names
were α ; α1 as follows:
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The author applied the algorithm according to the con-
troller design of the SISOs system for the oscillation corre-
sponding to the MIMO system with the state equation
presented above.

The transfer function Gα2
ðsÞ:

Gα2
sð Þ = 479:8s2 + 1:79 × 10−11s + 1:639 × 105

s4 + 965:3 × s2

Aα2
=

0 −30:17 0 0
32 0 0 0
0 1 0 0
0 0 1 0

2
666664

3
777775 ; Bα2

=

64
0
0
0

2
666664

3
777775 ;

Cα2
= 0 0:2343 2:913 × 10−15 80:03
� 	 ð28Þ

The author consider the system to have the external
impact ðu ≠ 0Þ:

_x = Aα2
x + Bα2

u ð29Þ

I need to find the matrix Kα2
of the optimal control vec-

tor: uðtÞ = −Kα2
∗ xðtÞ satisfy the quality index value of Jα2

and Jα2 must reach the minimum value:

Jα2 =
ð∞
0

xTQα2
x + uTRα2

u
� �

dt ð30Þ

where Qα2
is a positive deterministic matrix, Rα2

is a positive
deterministic matrix.

The matrix of Kα2
is determined from Riccati’s equation

of the form:

Kα2
= Rα2

−1Bα2
TP ð31Þ

The state feedback control structure is shown below
(Figure 9).

FLS

+

++

+

+ +

+

+

––

– –

𝛼 𝛼1KOSC
KOSC

KPOS KPOS𝜃 𝜃1

Figure 5: The diagram the optimal controller splitting MIMO into SISOs for FLS with 2 input pairs (k =2).

VM2 FLS+–
𝛼

Figure 6: The diagram of the Optimal control for the oscillation.

K

w u y

x

x = A
𝛼1x+B

𝛼1u
.

Figure 7: The state feedback control structure.

FLS system+ +
– –Vm4Vm3𝛼 𝛼1

Figure 8: The diagram of the Optimal control for the oscillation.

K

–
w u y

x

x = A𝛼2x+B𝛼2u.

Figure 9: The state feedback control structure.

K

w u y

x

x = A𝛼3x+B𝛼3u.

Figure 10: The state feedback control structure.

K

w u y

x
–

x = A𝛼4x+B𝛼4u.

Figure 11: The state feedback control structure.
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generator

Constant

–5

Transfer fon

s4+985.3s2

479.8s2+1.79⁎10^ (–11) s+1.639⁎10^ (5)
++

Figure 12: The model without using any algorithms G1
α1
ðsÞ.

–479.8

s2+965.3

Transfer fon ScopePulse
generator

Constant

–5

++

Figure 13: The model without using any algorithms G2
α1
ðsÞ.

s4+965.3s2

Transfer fon ScopePulse
generator

Constant

–5

++
479.8s2+1.79⁎10^ (–11) s+1.639⁎10^ (5)

Figure 14: The model without using any algorithms Gα2
ðsÞ.

–479.8

s2+965.3

Transfer fon ScopePulse
generator

Constant

–5

++

Figure 15: The model without using any algorithms Gα3
ðsÞ.

num (s)

s4+965.3s2

Transfer fon ScopePulse
generator

Constant

–5

++

Figure 16: The model without using any algorithms Gα4
ðsÞ.
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Figure 17: Applying the optimal LQR control method for the system Gα1
ðsÞ.
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Figure 18: The system with the optimal controller Gα1
ðsÞ.
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Figure 19: Applying the optimal LQR control method for the system Gα3
ðsÞ.
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Figure 20: The system with the optimal controller Gα3
ðsÞ.
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Figure 21: Applying the optimal LQR control method for the system Gα4
ðsÞ, Gα2

ðsÞ.
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Figure 22: The system with the optimal controller Gα4
ðsÞ,Gα2

ðsÞ.
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Thus, the optimal control law for an optimal control
problem with the quality criteria is a linear equation and it
has the form:

u tð Þ = −Kα2
tð Þ = −Rα2

−1Bα2
TPx tð Þ ð32Þ

The value of the matrix is P, P must be satisfied the
equation:

PAα2
+ Aα2

TP +Qα2
− PBα2

Rα2
−1Bα2

TP = _P ð33Þ

The equation (33) is known as Riccati’s equation.

The author choose the values of the matrix Qα2
and the

values of the matrix Rα2
as follows:

Qα2
=

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

2
666664

3
777775 ; Rα2

= 1: ð34Þ

×104
0

–1

–2

–3

–4

–5 0 2 4 6 8 10

Figure 23: The simulation result without using any algorithms G1
α1
ðsÞ.
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1

0
0 2 4 6 8 10

Figure 24: The simulation result without using any algorithms G2
α1
ðsÞ.
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–4

–5
0 2 4 6 8 10

×104

Figure 25: The simulation result without using any algorithms
Gα2

ðsÞ.

4
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2

1

0
0 2 4 6 8 10

Figure 26: The simulation result without using any algorithms
Gα3

ðsÞ.
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Figure 27: The simulation result without using any algorithms Gα4
ðsÞ.
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Figure 28: The simulation result using optimal control Gα1
ðsÞ. Initial condition: x1 = 0.04, x2 = 0.03, x3 = 0.03, x4 = 0.03.
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Figure 29: The simulation result using optimal control Gα1
ðsÞ.

Initial condition: x1 = 0.01, x2 = 0.01, x3 = 0.01, x4 = 0.01.
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Figure 30: The simulation result using optimal control Gα3
ðsÞ.

Initial condition: x1 = 0.01, x2 = 0.01.
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The author calculate the value of the matrix Kα2
through

Matlab software:

Kα2
= lqr Aα2

, Bα2
,Qα2

, Rα2

� �
Gα3

sð Þ = −479:8
s2 + 965:3

Aα3
=

0 −30:17
32 0

" #
; Bα3

=
4
0

" #
; Cα3

= 0 −3:748½ �

ð35Þ

The author consider the system to have the external
impact ðu ≠ 0Þ:

_x = Aα3
x + Bα3

u ð36Þ

The author need to find the matrix Kα3
of the optimal

control vector: uðtÞ = −Kα3
∗ xðtÞ satisfy the quality index

value of Jα3 and Jα3 must reach the minimum value:

Jα3 =
ð∞
0

xTQα3
x + uTRα3

u
� �

dt ð37Þ

where Qα3
is a positive deterministic matrix, Rα3

is a positive
deterministic matrix.

The matrix of Kα3
is determined from Riccati’s equation

of the form:

Kα3
= Rα3

−1Bα3
TP ð38Þ

The state feedback control structure is shown below
(Figure 10).

Thus, the optimal control law for an optimal control
problem with the quality criteria is a linear equation and it
has the form:

u tð Þ = −Kα3
tð Þ = −Rα3

−1Bα3
TPx tð Þ ð39Þ

The value of the matrix is P, P must be satisfied the
equation:

PAα3
+ Aα3

TP +Qα3
− PBα3

Rα3
−1Bα3

TP = _P ð40Þ

The equation (40) is known as Riccati’s equation.
I choose the values of the matrix Qα3

and the values of
the matrix Rα3

as follows:

Qα3
=

1 0
0 1

" #
; Rα3

= 1: ð41Þ

Then I calculate the value of the matrix Kα3
through

Matlab software:

Kα3
= lqr Aα3

, Bα3
,Qα3

, Rα3

� �
= 1:4339 0:066½ �

Gα4
sð Þ = 479:8s2 + 5:966 × 10−12s + 1:639 × 105

s4 + 965:3s2

Aα4
=

0 −30:17 0 0
32 0 0 0
0 1 0 0
0 0 1 0

2
666664

3
777775 ; Bα4

=

64
0
0
0

2
666664

3
777775 ;

Cα4
= 0 0:2343 2:913 × 10−15 80:03
� 	 ð42Þ

0.05

–0.05

0

0.05

–0.05

0

0 2 4 6 8 10

Figure 31: The simulation result using optimal control Gα3
ðsÞ. Initial condition: x1 = 0.04, x2 = 0.03.
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I consider the system to have the external impact ðu ≠ 0Þ:

_x = Aα4
x + Bα4

u ð43Þ

I need to find the matrix Kα4
of the optimal control vec-

tor: uðtÞ = −Kα4
∗ xðtÞ satisfy the quality index value of Jα4

and Jα4 must reach the minimum value:

Jα4 =
ð∞
0

xTQα4
x + uTRα4

u
� �

dt ð44Þ

where Qα4
is a positive deterministic matrix, Rα4

is a positive
deterministic matrix.

The matrix of Kα4
is determined from Riccati’s equation

of the form:

Kα4
= Rα4

−1Bα4
TP ð45Þ

The state feedback control structure is shown below
(Figure 11).

Thus, the optimal control law for an optimal control
problem with the quality criteria is a linear equation and it
has the form:

u tð Þ = −Kα4
tð Þ = −Rα4

−1Bα4
TPx tð Þ ð46Þ

The value of the matrix is P, P must be satisfied the
equation:

PAα4
+ Aα4

TP +Qα4
− PBα4

Rα4
−1Bα4

TP = _P ð47Þ

The equation (47) is known as Riccati’s equation.
I choose the values of the matrix Qα4

and the values of
the matrix Rα4

as follows:

Qα4
=

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

2
666664

3
777775, Rα4

= 1: ð48Þ
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0
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0 2 4 6 8 10

Figure 33: The simulation result using optimal control Gα4
ðsÞ,Gα2

ðsÞ. Initial condition: x1 = 0.04, x2 = 0.03, x3 = 0.03, x4 = 0.03.
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Figure 32: The simulation result using optimal control Gα4
ðsÞ,Gα2

ðsÞ. Initial condition: x1 = 0.01, x2 = 0.01, x3 = 0.01, x4 = 0.01.
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Then I calculate the value of the matrix Kα4
through

Matlab software:

Kα4
= lqr Aα4

, Bα4
,Qα4

, Rα4

� �
= 1:3035 0:6991 1:8279 1:0000½ �

ð49Þ

Figures 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 are shown
below.

4. Simulation Results and Discussions

Simulation results are shown Figures 23, 24, 25, 26, 27, 28,
29, 30, 31, 32, 33.

My comments:
Figures 23, 24, 25, 26, 27 show that the amplitude of

oscillation is large.
From Figures 28, 29, 30, 31, 32, 33 of the simulation

results show me with the optimal controller, it will help sta-
bilize the output signal of the system. However, if the input
signal is large (Figures 28, 31, 33), then the oscillation range
of the signal amplitude at the output is high before it is sta-
bilized. The result in Figures 29, 30, 32 is better than in
Figures 28, 31, 33. The simulation results accurately reflect
the problem: the optimal controller performs better when
there is no external force applied to the system, for example:
noise levels of other signals ..The optimal controller used in
this case is more efficient than the simulation result without
using any algorithms.

From Figures 28, 29 and Figures 32, 33 it is shown that
the system with 2 input pairs has slightly higher amplitude
of oscillation than the system with one input pair in using
the same controller. This shows that the more complex the
system, the larger the amplitude of the vibration compared
to the simple structure. Furthermore, this system with com-
plex structure takes faster to return to steady state (2 sec) this
the system with simpler structure (4 sec).

5. Conclusions

In this paper, it is proposed to investigate the operation of a
flexible link system with 2 input pairs based on the simula-
tion results to help the system achieve the desired functions.
Besides, the simulation helps me to determine the values of
the parameters to have the basis to control the operation of
the system to suit the requirements. This also shows the flex-
ibility in adjusting the parameters of modern controllers as it
is applied to the above model. Through this survey, the
research achievements on modern control theory for sys-
tems with relatively complex structure like the above system
will be applied in the future. This method is useful for check-
ing the operational status of all the existing components in a
system. In the case of possible problems such as a failure of
elements inside a server, this survey is a reference for quality
control as well as the functions of these elements. For com-
plex structured systems, the author can use control methods
for each of the transfer functions in the host system. From
there, the author took insight into the problem and the
author was able to evaluate the host system’s properties most

accurately. In the future, the author can apply modern con-
trol algorithms like neural control in above model. Specifi-
cally, a neural control method is applied: a model with 1
input pair, a model with 2 input pairs...After that, the author
evaluate the effect of the neural network for the above
models. With the above controller applied in this paper, its
efficiency has been tested for most of the subsystems in a
system. This article is a premise for me to study for other
complex models based on the above implemented contents.
Another advantage of using the above controller for this
model is that the time to steady state for the system is faster
for the complex structures (2 input pairs) than for the sim-
pler structure (1 input pair). The time to return to steady
state is negligible (~0.1 sec -2 sec) for a system with 2 input
pairs. This rarely happens for a system with a complex
structure.

Data Availability

Readers are free to access supporting data for research con-
clusions from the references at the end of my paper.
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