Hindawi

Journal of Applied Mathematics

Volume 2021, Article ID 3572555, 13 pages
https://doi.org/10.1155/2021/3572555

Research Article

Hindawi

An Enhanced Method for Tail Index

Estimation under Missingness

F. Ayiah-Mensah,"* R. Minkah ©," L. Asiedu(®,' and F. O. Mettle ('

"Department of Statistics and Actuarial Science, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences,

University of Ghana, Ghana

*Department of Mathematics, Statistics and Actuarial Science, Takoradi Technical University, Takoradi, Ghana

Correspondence should be addressed to R. Minkah; rminkah@ug.edu.gh

Received 13 May 2021; Revised 17 June 2021; Accepted 27 June 2021; Published 29 July 2021

Academic Editor: A. Bassam

Copyright © 2021 F. Ayiah-Mensah et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Extreme events in earthquakes, wind speed, among others are rare but may lead to catastrophic effects on humans and the
environment. The primary parameter in the estimation of such rare events is the tail index which measures the tail heaviness of
an underlying distribution. Since extreme events are rare, the presence of missing observations may further lead to flawed. In
view of this, there is a growing effort by researchers to address this problem. However, the existing methods of estimating the
tail index use only the available nonmissing data. Thus, if the missing observations are influential values, ignoring them could
introduce more bias and higher mean square error (MSE) in the tail index estimation and subsequently other extreme event-
estimators such as high quantiles and small exceedance probabilities. In this study, we propose imputation of the missing
observations before applying some standard estimators (Hill and geometric-type) to estimate the tail index. Through a
simulation study, we assess the performance of the standard estimators under the proposed data enhancement method and the
existing modified estimators of the tail index. The results show that the enhanced estimators have relatively lower bias and MSE.
The estimation method was illustrated with a practical dataset on wind speed with missing values. Therefore, we recommend
imputation mechanism as viable for enhancing the performance of tail index estimators in the case where there is missingness.

1. Introduction

Statistics of extremes is a branch of Statistics that deals with
the estimation of parameters of rare events. It enables the
assessment of the probability of events that are more extreme
than any previous observation from a sample of random var-
iables Coles [1]. According to Gomes and Guillou [2, 3], the
occurrence of rare events in phenomena such as earthquakes,
hurricanes, wind speed, sea waves, and floods can have a cat-
astrophic impact on human beings and the environment.
Modelling the occurrence of such events aids in planning to
reduce or prevent the impact of such events.

Recent developments in this area focus on modelling and
predicting rare events to mitigate their negative impact on
humans and properties. The primary parameter of interest
is the tail index or extreme value index (EVI), which mea-
sures the tail heaviness of an underlying distribution. One

key challenge researchers encounter in their quest to model
rare events or estimate the tail index is that the number of
observations available is usually very small to none due to
their unusual occurrence. Therefore, having missing observa-
tions can affect the tail index estimates computed from the
sample, thereby leading to unreliable estimates for exceed-
ance probabilities, high quantile, and return period which
are the goals of extreme value analysis. In this study, we pro-
pose an enhanced method of estimating the tail index of
underlying distributions, where the missing values are esti-
mated and replaced in the data via an imputation method.
Extreme Value Theorem (EVT) was proposed to model
the tails of probability distribution. According to Fisher and
Tippett [4], there are three broad families of the limiting dis-
tributions in EVT, namely, Gumbel, Frechet (Pareto or Fre’
chet-Pareto), and Weibull. These are also referred to as the
extreme value distributions (EVD). These three families of
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extreme value distributions were simplified by Jenkinson [5]
as the generalised extreme value (GEV) distribution. The
GEV distribution function for a random variable X € R is
given by

NV _
exp{—<1+f¥> }, 1+£¥>0,E:ﬁ0,

oo o (-5)

O(x) =

—00<x<00,E=0,
(1)

where —00 < p < 00, 0 > 0, and £ are the location, scale, and
the tail index (or extreme value index (EVI)), respectively.
According to Coles [1], £ in (1) determines the most suitable
type of tail behaviour for a dataset. The tail distribution is
classified as Gumbel when & = 0, Frechet-Pareto when & > 0,
and Weibull when & <0.

Many researches conducted in statistics of extremes have
been limited to estimating the tail index and other parame-
ters of extremes with complete dataset (Beirlant et al., Amer-
aoui et al., Minkah et al. [6-9]). Gomes and Pestana [10] and
Beirlant et al. [11] proposed reduced-bias estimators for the
tail index parameter on complete data. In the case of presence
of censoring, Gomes and Neves [12], Ameraoui et al. [6], and
Minkah et al. [13] provide techniques for incorporating cen-
soring in the estimation of the tail index. Li and Qi [14]
employed an existing adjusted empirical likelihood method,
to construct confidence intervals of the tail index so as to
achieve a better accuracy. Through a simulation study, they
found their method to be superior in terms of the coverage
probability and length of confidence intervals. In the case of
the presence of covariate information, Ma et al. [15] propose
empirical likelihood-based statistics to construct confidence
regions for the regression coeflicient of the parametric tail
index regression model. Also, Minkah et al. [16] studies sev-
eral estimators of the tail index in the presence of both cen-
soring and covariate information. However, all these
estimators do not take into account missing data and hence
are somewhat challenged in the presence of missing
observations.

Since missing data is a common problem in statistics,
some authors such Mladenovic and Piterbarg [17] worked
on the estimation of the exponent of the regular variation
with the use of incomplete data samples. They proved the
asymptotic consistency of the Hill estimator. Ili¢ and Mlade-
novic [18] extended the works of Hsing [19] and Mladenovic
and Piterbarg [17] where the authors relied on available
observations (incomplete samples). Under the assumption
of weak dependency, they proved the consistency of their
proposed Hill-type estimator of the tail index based on an
incomplete sample.

In addition, Zou et al. [20] focused on extreme value
analysis without the largest values. The study revealed that
the presence of missing extremes makes the choice of thresh-
old for the top order statistics problematic. They simulta-
neously considered the number of missing extremes with
the tail index and other parameters and proposed a func-
tional version of the Hill estimator and named it Hill Estima-
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tor Without Extremes (HEWE). The estimator was found to
be robust to missing extremes on light-tailed dataset.

Furthermore, Ili¢ and Veli¢kovi¢ [21] considered the
simple tail index estimation in the case of heterogeneous
and dependent data samples with missing values. Their study
was on the asymptotic behaviour of the median estimator
and its robustness against deviations of the slowly varying
function. Although under small deviations from the assumed
parametric model, the proposed method provided a reliable
tail index, the top values of the sample were not considered.

However, the existing methods for estimating the tail
index use reduced sample size since portions of the dataset
within the order statistics that are missing are ignored. Using
only portions of the data may result in estimators with large
bias and/or variance especially if the missing observations are
influential in the top order statistics which are of interest in
statistics of extremes.

Therefore, in the quest to reduce bias and variance in tail
index estimation in the presence of missing observations; we
propose imputation of the missing observations before
applying standard tail index estimators (such as Hill and geo-
metric-type), instead of using the modified estimators in the
literature.

The rest of the paper is organised as follows. In Section 2,
we present the materials and methods including the existing
and the proposed method for estimating tail index. Section 3
presents the results of the simulation study and a discussion
of the results. Lastly, in Section 4, we provide concluding
remarks, areas for future research, and recommendations.

2. Material and Methods

Let X,, X,, ---, X, be a sample of independent and identically
distributed observations from some process with underlying
distribution F. Assume X, , <X, , <---<X,  to be the sam-
ple order statistics associated with the sample. The so-called
semiparametric estimators of the tail index (see, e.g., Beirlant
et al. [7, 22], de Haan and Resnick [23]) in the literature rely
on the exceedances over a particular threshold, X, ; . Thus,
the dependence of tail index on the k + 1 largest order statis-
tics makes the selection of k critical. A careful choice of k is
needed as a small value leads to large X, ; , and hence few
observations for estimation. This may lead to a tail index esti-
mator with smaller bias but larger variance. On the contrary,
a large k leads to small X, , which may result in the inclu-
sion of observations with smaller magnitude leading to a
larger sample. Although, having more data will reduce the
variance, it is at the expense of bias. The problem is addressed
by choosing k such that as n increases, k increases but at a
slower rate. Formally,

k=k, — coasn —> oo, (2)
such that
k,=o(n). (3)

Equations (2) and (3) are used to obtain a number of
nonzero sequence of integers k, which are referred to as
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intermediate. Next, we present some standard estimators for
tail index estimation under complete dataset.

2.1. Hill Estimator. The Hill estimator (Hill [24]) is the most
popular estimator in the Frechet-Pareto family under semi-
parametric method (Gomes and Guillou [2, 3]). The Hill esti-
mator is valid for £ > 0 and is given by

1 k
El(c,Hn> = E Z lOan—iJrl,n - loan—k,n (4)
i=1

where k is an intermediate sequence of integers defined in (2)
and (3). Some desirable properties of the Hill estimator are its
consistency and asymptotic normality (de Haan and Resnick
[23]). However, it is known for its dependence on k and
exhibits large bias for large k values.

2.2. Geometric-Type Estimator. The Geometric-type estima-
tor, proposed by Brito and Freitas [25], is an adopted geomet-
rical estimator motivated by the fact that, for large random
variable X, —log (1 - F(X)) is approximately linear with
slope R, where R is a positive constant. The estimator is given

by

A S log? (n/t) - (1/k,) (X log(nit) )
R(k,) = ( ) G

" e k, ?
Zt:an—Hl,n - (1/kn) (Zt:lxn—H—l,n)

where 7 is the sample size (number of random variables), k,,
is a sequence of positive integers satisfying 1 <k, < n, as well
as Equations (2) and (3). Brito and Freitas [25] investigated
the weak asymptotic properties of the geometric-type estima-
tor and showed that its distribution is asymptotically normal
under general conditions.

2.3. Estimators of Tail Index under Missing Observations. We
now discuss existing modifications of the Hill and geometric-
type estimators of the tail index when there are missing
observations. For a given sample X, X,, -+, X, with some
missing observations, we consider an observed portion in
the sample to be X, X,, ---,Xsn, where S, is the number of
observed random variables among the first n terms of the
sequence S, and S, < n. The order statistics of the observed

sample is Xis, £ X555 55X 555 such that the associated
maximum is X 5,5,

According to Ili¢ [26], a sample with missing observa-
tions may be obtained on condition that every observed term
has probability p > 0 which is independent of the other terms.
Hence, S, is a binomial random variable with parameters n
and p. To obtain the tail index estimator, the following
assumption must be satisfied:

The random variable §,, is independent of X, X,, -+, and
there exists a sequence of real numbers {y,} such that
lim, .y, = +0o, (6)

TaBLE 1: Frechet-Pareto type distributions.

Distribution ~ Notation 1-F(x) Conditions ¢
gt 1
Burr Burr (B, 7, 1) x>0;81,A>0 —
B+x" At
1
Fréchet Fréchet («) 1-exp (—x") x>0,a>0 =
«
i 1
Pareto Pa («) x x>1La>0 -
o
and
n P
- — ¢y >0asn—> oo. (7)

n

Let 3, be a sequence of real numbers such that
lim, ,B,=00 and lim,_, f,/n=0. Also, let M, =S,/

B, and

0, ifS,=0,
=y M 8
P =, ifS, > 1. ®)
n
Then, the inequalities [S,/B,]<S,/B,<IS,/B,]+1

and S,/B8,-1<1S,/B,1<S,/B, will hold for bxc, the larg-
est integer not greater than x.

The modified Hill and geometric-type estimators are
respectively given as

Mﬂ
zlongn—m,sn —log Xs M5, 9)

n t-1

MHill) 1
Eon | =1(8,2B,)

and

2
SiLi10g2 (/1) - (1M,,) (Slog(S,1))
M 5 M,y % z
Zt:ilogzxs,l—m,s” - (1/M,) <Zr:110gxs,,—r,sn>

(10)

where [ is the indicator function such that for x € A4, I(x) =1,
and I(x) =0 if x ¢ A.

R(S,)=1(S,2p,)

2.4. Multivariate Imputation with Chain Equations (MICE).
MICE is one of the widely used imputation methods for fill-
ing missing observations in data. MICE, also known as the
sequential regression or fully conditional specification multi-
ple imputation, is a very flexible method because it can han-
dle different variable types such as discrete and continuous. It
uses fully conditional specification to preserve unique fea-
tures such as bounds, skip patterns, interactions, and brack-
eted responses in the data (Van Buuren [27]).

The MICE operation is based on the assumption of Miss-
ing at Random (MAR) with the implication that missing
value probability is independent of unobserved values but is
dependent of the observed values Schafer and Graham [28].
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Generate a sample of size n, (n = 50,
500, 2000) from the burr distribution

A

'

Introduce a percentage of missingness
(10%, 30% and 60%) to obtain a
second sample with missingness

I

Compute the tail index for the generated
sample using modified hill and modified
geometric-type estimators at different number
of top order statistics, k (k=2, ..., 0.6n)

Impute the missing observations using the
MICE algorithm to obtain a semblance of

the complete data

iterations,
N> 8007

v

Compute the tail index for the generated
sample using standard hill and standard
geometric-type estimators at different top
order statistics, k (k=2, ..., 0.6n)

Is the number of

Compute the bias and the mean square error
(MSE) of each estimator at each value of k

FIGURE 1: Simulation algorithm.

TABLE 2: Notation of estimators.

Name of estimator Notation
Modified Hill M_Hill
Modified geometric-type Geom
Hill on MICE imputed dataset Im.Hill
Geometric-type on MICE imputed dataset Im.Geom

MICE has three different phases which are similar to any
other multiple imputation method: imputation, analysis,
and pooling. It creates multiple imputations to overcome
the limitation of single imputation. MICE can handle large
data sets through the use of chain equations as compared to
other imputation methods that uses joint models (He et al.
[29]). This makes it a flexible multiple imputation method
that uses a number of regression algorithms. In this study,
we use the MICE algorithm to impute missing observations.

2.5. Proposed Data Enhancement Method for Tail Index
When Observations Have Missingness. This method uses
MICE algorithm to impute the missing observations before
applying the standard estimators of the tail index such as
the Hill and geometric-type. Again, consider the sample X,
, X5, -+, X,,, where n is the sample size of a dataset which is
not fully realized due to missing observation(s). That is, the
dataset available is X;,X,, -+, X , and §, <n. We propose
the following data enhancement and estimation method of
the tail index parameter:

(1) Apply MICE on the incomplete data, X, X,, -+, Xsn,
to generate the missing observations X7,XJ,--,
X

(2) Combine the imputed observations X7, X3, -+, X _¢
and the available observations (X;,X,, X ) to
obtain a sample of size n with observations X, X,,

X, X7, X5, -+, X} » hereinafter referred to as
an imputed dataset

(3) Obtain the order statistics X,,<X,, < <X,,
associated with X, X, - X , X7, X3 --- X5 such
that the associated maximum is X:’n =max (X, X,,

* * *
')Xsn’Xl’Xz’ ”"Xn—Sn)

(4) Assume F is in the Maximum Domain of Attraction
(MDA) for a suitable tail index & as is the case in a
semiparametric framework and select the k upper

order statistics in X . < X - < X

(5) Estimate & using the standard estimators (Hill and
the geometric-type without any mod1ﬁcat1on) based

on k upper order statistics, X , <X - <

nektln S RXpran S0 S
Xn)n where k is an intermediate sequence
2.6. Simulation Design. In this section, we present a simula-
tion study to compare the results of the data enhancement
method to some existing methods, such as Mladenovic and
Piterbarg [17], for estimating the tail index as discussed in
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and 60% missingness, respectively.

Section 2.3. We generate samples from distributions from the
Pareto domain of attraction for the simulation study. Table 1
contains the distribution functions used for the simulation
study and their characteristics.

A step-by-step procedure for the simulation study is out-
lined in the flowchart in Figure 1.

In the next section, we present and discuss the simulation
results. However, for brevity and ease of presentation, we
provide the simulation results and discussion of the perfor-
mance of the estimators for samples generated from the Burr
distribution only. The results from the other distributions did
not differ significantly from the Burr distribution and are
available upon request from the authors.

3. Results and Discussion

Generally, an estimator with relatively smaller bias and MSE
is preferred. In addition, we require such an estimator to be
stable as k increases. An estimator that is less sensitive to
the changing values of k maintains a stable outlook through-
out the evolution of k. Such an estimator is deemed as the
most appropriate for the estimation of the tail index as it
maintains a better balance between bias and variance.

Since extreme value analysis for the right tail concerns
larger observations, we assess the estimators’ performances
for k up to 60% of the sample size. Thus, this enables the
inclusion of smaller order statistics and the assessment of
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estimators’ performance across a broad spectrum of k where
bias is expected to be prevalent.

Table 2 contains the notations of estimators used in the
study.

Also, all the simulation and practical application (i.e.,
Section 3.2) results were obtained using the R statistical
package, and the codes are available upon request from
the authors.

3.1. Results from the Burr Distribution. For each figure dis-
cussed in this subsection, the left and the right panels show
the absolute bias and the MSE of an estimator. Also, the
top, middle, and bottom panels depict 10%, 30%, and 60%
missing observations, respectively relative to the sample size.

Figure 2 shows the absolute bias and MSE of the esti-
mators of the tail index for samples of size, n =50, gener-
ated from the Burr distribution. It is evident from the left
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panel (i.e., consisting of 10%, 30%, and 60% missingness)
of Figure 2 that the Hill on MICE imputed dataset
(Im.Hill) has the smallest absolute bias for small values
of k. Generally, the bias of Im.Hill increases as k increases
regardless of the percentage of missing observations. Also,
Im.Hill is not stable as k increases above the first five top
order statistics.

Although the M_Hill estimator is the most biased estima-
tor for small values of k, it has the least bias for larger values
of k. The Im.Hill estimator is competitive to the M_Hill for
larger values of k.

In terms of MSE, the right panel of Figure 2 shows that all
the estimators diverge as k increases. However, the Im.Hill is
closer to zero for smaller values of k in all the percentages of
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missingness, i.e., 10%, 30%, and 60%. Also, for large k, gener-
ally, the Im.Hill estimator has smaller MSE comparable to
that of the M_Hill in the case of samples with high percent-
ages of missingness.

Therefore, in terms of bias and MSE, the proposed
Im.Hill can be considered as the most appropriate across a
large spectrum of k.

In addition, the simulation results for samples of size n
=500 are shown in Figure 3. In the case of bias, the Im.Hill
estimator exhibits the least bias and relative stable for k less
than 40% of the sample size. Beyond this value of k, M_Hill
relatively has the smallest bias but unstable as it diverges as
k increases. For MSE, Im.Hill has the least MSE for k approx-
imately less than 50% of the sample size. Again, M_Hill has
better MSE values than all the other estimators for k over
50% of the sample size. However, for high percentage of
missingness, the proposed Im.Hill outperforms the M_Hill
estimator. Thus, overall, the Im.Hill provides a better estima-
tor of the tail index in terms of bias and MSE across the
values of k.

Furthermore, in the case of samples of size n = 2000, the
estimators exhibit similar performance characteristics to the
two preceding cases discussed. More importantly, a closer
look at the corresponding graphs for all the sample sizes indi-
cates that the MSE generally decreases as n increases. This is
empirically consistent with the consistency property of esti-
mators of the tail index.

Moreover, the right panel which shows the estimators’
performance in terms of MSE indicates that the Im.Hill,
Geom, and Im.Geom estimators are more stable within the
50 and 200 upper order statistics, whereas M_Hill is not sta-
ble within the 50 and 200 upper order statistics. Here again,
the Hill on MICE imputed dataset (Im.Hill) has the smallest
MSE within the 200 upper order statistics. Hence, Im.Hill is
the preferred estimator for estimating the tail index under
missing observations when the sample of size n =500 is
drawn from the Burr distribution.

The results of the tail index estimators on a sample of size
n =2000 drawn from the Burr distribution are presented in
Figure 4. The results in the left panel (subgraphs (a), (c)
and (e) representing absolute bias for the 10%, 30%, and
60% missingness) indicate that Geom, Im.Geom, and M_Hill
are not stable within the first 200 upper order statistics.

Specifically, the absolute bias of M_Hill decreases as k
increases within 200 and 1000 upper order statistics whereas
the absolute bias of Im.Hill, Geom, and Im.Geom increases as
k increases. Comparatively, Im.Hill is stable within the first
200 upper order statistics with smallest absolute bias. There-
fore, Im.Hill can be said to be the best/preferred estimator in
terms of low bias. Figures 4(b), 4(d), and 4(f) present the
MSE of the tail index estimators on a sample of size n =
2000 drawn from the Burr distribution. Within 200 and
800 upper order statistics, the MSE of M_Hill decreases as
k increases. The MSE of Im.Hill, Geom, and Im.Geom are
more stable as k increases. Im.Hill has the smallest MSE
within the first 400 upper order statistics and hence is
selected as the most appropriate estimator for estimating
the tail index under missing observations using a sample
drawn from the Burr distribution with size n = 2000.
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FIGURE 5: Scatter plot of the wind speed data.

3.2. Application to Real-Life Data. In this section, we illus-
trate the enhanced and existing methods of estimating tail
index under missing observations, on a real-life wind
speed data obtained from the extremefit package in R
(Durrieu et al. [30]). The wind speed data contains the
average wind speed in meters per second (m/s) per day
in Brest (France) from 1976 to 2005. The data contains
10903 observations with minimum wind speed of 0.700,
maximum of 27.400, and an average daily mean wind
speed of 8.553.

High wind speeds are known to cause collapse of build-
ings, ships, difficulties in aircraft takeoff and landing, among
others (see, e.g., Marchigiani et al. [31]). Therefore, model-
ling the tail behaviour of an underlying distribution of wind
speed will help in planning and mitigating the effects of
extreme wind speeds. The presence of missing values in his-
toric wind data speed needs to be taken care of in the model-
ling process. In the case of the present wind speed data, there
are 6 missing values. In addition, in order to further assess
the suitability of the proposed data enhancement method
for tail index estimation, we introduced missingness up to
45% (i.e., 10%, 25%, and 45% to represent small, medium,
and large percentage of missingness, respectively) of the sam-
ple size.

The application of the proposed data enhancement
method of estimating tail index begins with a search for the
domain of attraction of the underlying distribution of the
wind speed dataset. Figure 5 (the scatter plot of the wind
speed data) shows some few observations are detached from
the majority of the data values. Thus, the detached values
(large values) may be outliers or extreme observations.

It is evident from the histogram that the wind speed data
is positively skewed which suggests that the data has a heavy
tail. Also, the general increasing trend of the mean excesses as
the threshold decreases indicates that the wind speed data has
an underlying distribution which is heavy-tailed than the
exponential. Again, the QQ-plots at the bottom of
Figures 6(c) and 6(d) compare the sample quantiles of the
wind speed data to the theoretical quantiles of the exponen-
tial and Pareto distributions. Both plots support the assertion
from the previous graphs that the underlying distribution has
a Pareto-type tail.



Journal of Applied Mathematics

2500 — —

1500 —

Frequency

500 —

(==}
w
—
S
—
wu
[3=]
S

25

Wind speed
(@)

25 | [e]e}

20 —

15

10 H

Sample quantiles

T T T T
2 4 6 8

o —

Quantiles of standard exponential

(c)

11

8 —
7
6
5 |
4
3
2 -
1 -

Mean excess

Threshold
(b)

o0 O

Log (X)

T T T T
2 4 6 8

o <00

Quantiles of standard exponential

(d)

FIGURE 6: Preliminary analysis: (a) histogram, (b) mean excess plot, (c) exponential QQ-plot, and (d) Pareto QQ-plot.

Next, we apply the geom estimator to estimate the tail
index of the available data and call this the “gold standard.”
Subsequently, a set of missing percentages of data relative
to the sample size, i.e., 10%, 25%, and 45% were created ran-
domly in the data using the ampute () function in the R
package MICE. The existing modified Hill and geometric-
type estimators in the literature are used to estimate the tail
index of the underlying distribution of the wind speed data-
sets with the missing observations. However, in the applica-
tion of our method, we impute the missing observations
using the mice () function in each of the three datasets con-
taining the various percentages of missing observations.
Thereafter, we use the standard Hill and geometric-type esti-
mators to estimate the tail index of the underlying distribution
from each sample.

Figure 7 presents the results of the tail index estimators
on the wind speed data as a function of the number of top
order statistics, k.

For each of the estimators of the tail index, the perfor-
mance is assessed on their closeness to the standard
geometric-type estimator (i.e., C Geom, of which the estima-
tion is done on a complete dataset of the wind speed data) at
different values of k.

It can be seen from Figure 7 that, as k increases, almost all
the estimators deviate from the standard geometric-type on
complete dataset (C_Geom). From Figure 7(a) (i.e., 10%
missingness), estimates of Geom and Im.Geom are almost

the same as estimates of the C Geom, whereas estimates of
Im.Hill and M_Hill are farther away from C_Geom. Also,
in Figure 7(b) (with 25% missingness) the Im.Geom estima-
tor is closer to C_Geom but it diverges as the number of top
order statistics increases. Also, the proposed Im.Hill is closer
to C_Geom than the rest of the estimators for k € [1000,
4000] and diverges beyond this range. In the case of the intro-
duction of high percentage of missingness (i.e., 45%),
Figure 7(c) shows that the estimates of Im.Hill are almost
the same as those of C_Geom and quite stable compared with
the other estimators of the tail index of the underlying distri-
bution of the wind speed data.

In all the cases considered, it is evident that the M_Hill
deviates more from the standard as compared to the Geom,
Im.Geom, and Im.Hill. Thus, it can be ruled out as not good
for the tail index of the wind speed data.

Generally, Im.Hill and Im.Geom are relatively closer to
standard (C_Geom) whereas M_Hill deviates from the stan-
dard in all the scenarios. Therefore, the estimators of tail
index that are based on our proposed data enhancement
method can be considered as appropriate for estimating
the tail index of the underlying distribution of the wind
speed data. With these estimates, other parameters of
extreme events such as high exceedance probability, extreme
quantiles, and return periods for certain wind speeds, which
are the focus of extreme value analysis, can be obtained
more readily.
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4. Conclusion

In this paper, a data enhancement method is proposed in the
estimation of tail index of an underlying distribution of a
dataset when some observations are missing. This method
involves imputing the missing data with an appropriate
imputation method and thereafter the application of stan-
dard tail index estimators such as Hill and geometric-types.
This method is contrary to the existing approach where stan-
dard estimators are augmented to use only the nonmissing
part of a dataset to estimate the tail index.

The estimators based on the data enhancement method
are compared with the existing estimators of tail index in
the presence of missingness using a simulation study. The
results of the simulation study show that no estimator is uni-
versally the best across a broad spectrum of the number of
top order statistics and percentages of missingness. However,
generally, the proposed estimators based on the data
enhancement method exhibit smaller bias and MSE across
larger spectrum of top order statistics. More importantly, in
the presence of high percentage of missingness, the estima-
tors based on the proposed data enhancement method show
smaller bias and MSE and can thus be considered appropri-
ate for estimating the tail index under missing observations.

In addition, the proposed data enhancement method
of estimating tail index together with the existing estima-
tors were illustrated with a practical dataset on wind
speed. The results show that the estimators based on the
data enhancement method are competitive when there
are few missing observations and are more suitable when
there is a high percentage of missing observations. There-
fore, the imputation of missing data to obtain a semblance
of the complete data offers a good approach in tail index
estimation. In this regard, the MICE algorithm is recom-
mended as a suitable imputation mechanism for enhanc-
ing the performance of tail index estimators under
missingness.

Data Availability

The wind speed data used in this study is publicly available in
the R package, extremefit, and it is named dataWind.
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