
Research Article
Consensus Patterns of a Set of Time Series via a Wavelet-Based
Temporal Localization: Emphasizing the Utility over Point-Wise
Averaging and Averaging under Dynamic Time Warping

Chekhaprabha Priyadarshanee Waduge,1 Naleen Chaminda Ganegoda ,2

Darshana Chitraka Wickramarachchi,3 and Ravindra Shanthakumar Lokupitiya3

1Faculty of Graduate Studies, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
2Department of Mathematics, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
3Department of Statistics, University of Sri Jayewardenepura, Nugegoda, Sri Lanka

Correspondence should be addressed to Naleen Chaminda Ganegoda; naleen@sjp.ac.lk

Received 30 January 2021; Accepted 23 June 2021; Published 5 August 2021

Academic Editor: Fernando Simoes

Copyright © 2021 Chekhaprabha Priyadarshanee Waduge et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Summarizing or averaging a sequential data set (i.e., a set of time series) can be comprehensively approached as a result of
sophisticated computational tools. Averaging under Dynamic Time Warping (DTW) is one such tool that captures consensus
patterns. DTW acts as a similarity measure between time series, and subsequently, an averaging method must be executed upon
the behaviour of DTW. However, averaging under DTW somewhat neglects temporal aspect since it is on the search of similar
appearances rather than stagnating on corresponding time-points. On the contrary, the mean series carrying point-wise averages
provides only a weak consensus pattern as it may over-smooth important temporal variations. As a compromise, a pool of
consensus series termed Ultimate Tamed Series (UTS) is studied here that adheres to temporal decomposition supported by the
discrete Haar wavelet. We claim that UTS summarizes localized patterns, which would not be reachable via the series under
DTW or the mean series. Neighbourhood of localization can be altered as a user can customize different levels of
decomposition. In validation, comparisons are carried out with the series under DTW and the mean series via Euclidean
distance and the distance resulted by DTW itself. Two sequential data sets are selected for this purpose from a standard repository.

1. Introduction

Classical topic of summarizing and classifying a sequential
data set (i.e., a set of time series) has recently gained a new
outlook because of data mining and machine learning proce-
dures [1–3]. Investigating common pattern (or shape) attri-
butes (e.g., monotonic, oscillatory, and periodic) of a set of
time series is ever so attainable, but still challenging even with
advanced computer technology. The basic reason is that data
are ordered unlike in a usual data set. In practice, time series
arise in many scenarios such as economic and financial indi-
ces, weather forecasting, disease transmission, census data,
market surveys, quality control, and inventory studies [4].
Data availability is also unprecedented as digital platforms
facilitate gathering, storing, and processing data in profound

ways [5]. Therefore, we always need effective and efficient
techniques to extract valuable information from sequential
data [6–8].

Finding a consensus or representative time series for a set
of time series (i.e., a pattern similar to many series) is often
found in a handful of phenomena. Daily rainfall of a region
reported by several substations, fluctuation of a financial
index in different stock markets and banks, daily sales of
goods in different outlets of a supermarket chain, speech
and gesture recognition, and genetic sequencing of an organ-
ism are among such phenomena [9–11]. The domain of a
time series does not necessarily stand for time; for instance,
it refers to the order of nucleotides in deoxyribonucleic acid
(DNA). Pattern recognition not only in series-wise but also
as a whole set of series is a key concern. In this work, we
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are interested in the latter. A measure called Dynamic Time
Warping (DTW) is frequently used to extract similarity
between time series. Then, one can design an averagingmethod
based on the behaviour of DTW that gives a consensus pattern
(i.e., a pattern aligned with many series in the set) [9, 12]. DTW
has been developed as a nonlinearmapping between time series
to map similar features, neglecting temporal distortions [13].
Thus, a resulting series under DTW captures attributes of pat-
tern rather than attributes of point-wise central tendency. We
name the “series under DTW” as “Dynamic Time Warping
Series (DTWS).” This is similar to the naming of “mean series”
giving the “series under point-wise averaging.”Themain draw-
back of DTWS is its limitations on representing local patterns
(i.e., corresponding patterns upon temporal proximity). DTW
approaches two time series at a time structuring a distance
matrix and backtracks in the direction of minimum cumula-
tive distances to achieve so called warping path [14, 15]. For-
mulation of this output (DTWS) for a set of time series via
DTW is explained in detail in Section 2. Improved versions
of DTW are available in the literature such as NLAAF (Non-
linear Alignment and Averaging Filters), PSA (Prioritized
Shape averaging), and RSA (Re-sampling Shape Averaging)
which address the limitations of the algorithm in different
aspects. Further, there are techniques such as Contrast
EnhancedDynamic TimeWarping (CEDTW) and DTWBar-
ycenter Averaging (DBA) which have greater accuracy and
higher performance [15]. However, for this study, we stick to
the basic DTW algorithm leaving improved versions into
future work. This study is the first of this kind that compares
UTS with consensus series under DTW.

In contrast to DTWS, the series produced by point-wise
averages (the mean series) represents central tendency, but
hardly absorbs pattern attributes. The mean �x for any set of
data points xi ; i = 1, 2,⋯n yields the minimum squared
deviation ∑n

i=1 ðxi − �xÞ2 with the data set. Therefore, for any
set of time series, the mean series assures the minimum
point-wise squared deviation. Consequently, the mean series
may be an over-smoothed representative, restricting to
impart patterns of data series.

To address the limitations of the mean series, an alternative
technique called Ultimate Tamed Series (UTS) has been pro-
posed [16–18]. On top of DTWS, it acquires local patterns with
customized temporal windows. UTS is based on discrete Haar
wavelet transform. In literature, Haar wavelet is recorded as the
earliest wavelet approach and also the simplest in structure
[19–21]. In formulating UTS, a variant of Haarmatrix is imple-
mented transforming a time series into two series, termed as
scaling coefficients (father wavelets) and wavelet coefficients
(mother wavelets). These two wavelet types are worked out in
a specific way called taming [22]. Preliminary details of wave-
lets and taming are recalled in Section 3. This paper extends
UTS technique into higher levels of transform aligning with
multiterminal binary decision diagrams available to Haar
wavelet [19]. It is designed upon father wavelets that behaves
as level-wise representatives of the original time series.

Similar to DTWS, UTS is also operated with two time
series at a time. After operating for two time series (chosen
from a given set of data series), the resultant series and the

next data series are operated together and the same process
is recursively carried out. Since DTWS and UTS do not
accommodate commutative and associative properties, a lot
of consensus series can be determined. Note that DTW is a
pseudo-metric which preserves the commutative property
giving the same warping distance irrespective of the order
of concern for two time series. However, DTWS for two time
series may vary with its order of concern due to the
backtracking process in generating the consensus series. In
the backtracking process, different warping paths can be gen-
erated when there is a tie between minimum neighbouring
elements in the distance matrix. This scenario is explained
in [23], and the DTWS formulation is described in Section
2. Thus, DTW and UTS depend on hierarchies of taking time
series into the respective computational procedures [22, 23].
In this comparative study, two specific hierarchies are con-
sidered catering the highest and the lowest variations among
consecutive data points in each series.

Three consensus approaches, the mean series, DTWS,
and UTS, establish pattern attributes in different extents.
Identifying the capability of representing patterns is worth
investigating which is the main task of this paper. We test
these measures for OSULeaf data set and Yoga data set avail-
able in UEA & UCR Time Series Classification Repository
[24]. Section 5 contains details of data processing used to
implement consensus approaches mentioned above. In the
sequel, we present basic routines of DTW (Section 2) and
UTS (Section 3) along with comparison tools (Section 4).
Furthermore, Section 3.3 presents theoretical support for
the claims tested in Section 6.

2. Dynamic Time Warping Series (DTWS)

DTW algorithm is based on a distance measure called
Levenshtein distance [13, 25]. For two time series of equal

length N denoted in sequential terminology Sð1Þ = fsð1Þn gNn=1
and Sð2Þ = fsð2Þn gNn=1, the Levenshtein string metric D is recur-
sively obtained by
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where dðsð1Þp , sð2Þq Þ is the distance between sð1Þp and sð2Þq given by

dðsð1Þp , sð2Þq Þ = jsð1Þp − sð2Þq j. Here, Sð1Þp = fsð1Þn gpn=1 and Sð2Þq =
fsð2Þm gqm=1 are subsequences of S

ð1Þ and Sð2Þ, respectively (i.e.,
1 ≤ p ∣ q ≤N). Using the metric D, a matrix DN×N is formed

where the entry ðp, qÞ is determined by the value DðSð1Þp , Sð2Þq Þ.
Next, a string called the optimal warping path W = fwrgRr=1,
wherewr = ½a, b� for some a, b ∈ℕ, is constructed by backtrack-
ing the entries of the matrixDN×N in the direction of minimum
cumulative distance starting from the entry ðN ,NÞ to the entry
(1,1) [26]. Note that, for each a and b, there is a corresponding
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entry from series Sð1Þ and Sð2Þ (sayðsð1Þa , sð2Þb Þ). Then, a consen-
sus series of Sð1Þ and Sð2Þ named as Dynamic Time Warping

Series (DTWS) is obtained by averaging the pairs ðsð1Þa , sð2Þb Þ
(i.e., ðsð1Þa + sð2Þb Þ/2) corresponding to each selected entry in the
path W. This is the process we refer by “averaging under
DTW.” This consensusmeasure need not to have similar length
to the original series, and also, the original series need not to be
similar in length.D brings a quantification of similarity between
two series. Thus, we further use overall similarity given by

DðSð1ÞN , Sð2ÞN Þ to design a comparison tool later in Section 4.
Here, lesser D shows more similarity.

For more than two time series, DTWS is computed recur-
sively considering the DTWS of the first two series with the
third series and that resultant DTWS with the fourth series

and so on [15]. In this process, pairs ðsð1Þa , sð2Þb Þ should be
averaged in a weighted manner by considering number of

series infused in each appearance of DTWS. For a pair ð�sðjÞa ,
sðjÞb Þ where sðjÞb is the bth entry of the jth series according to

the hierarchy in the set and �sja is the ath entry of the jth

averaged (according to DTW) series, the entries are paired

as ðj�sðj−1Þa + sðj+1Þb Þ/ðj + 1Þ [15]. As mentioned, hierarchy of
arranging series into the warping process comes into play
here giving different DTWS for different hierarchies. Since
the final output in the warping process is substantially longer
than the original lengths of the series, the uniform scaling is
applied to achieve a consensus series of a length similar to
that of data series [14, 27]. A series W = fwrgRr=1 can be
scaled to a sequence Z = fzngNn=1 of required length N ,
with zn =wdn:R/Ne. Then, the new series Z yields a scaled
DTWS. This constraint on length forms a common plat-
form for upcoming comparisons. We execute scaling after
all the series are taken into warping process allowing tem-
poral distortions to remain flexible.

3. Ultimate Tamed Series (UTS)

In this section, we present the structure of UTS, and next two
sections direct its implementation as a comparable tool to the
mean series and DTWS. We start with two time series where
the procedure is to be recursively used upon any number of
time series. First, obtaining father and mother wavelets is
described in Section 3.1 as designed via Haar wavelet. Next,
the taming procedure is structured in Section 3.2 emphasiz-
ing extended work on higher levels. In the final implementa-
tion, we should decide a hierarchy of taking time series into
the taming procedure. Section 3.5 sets that hierarchy, and
Section 5 contains some illustrations of it in association with
data. In this study, we execute computer programs designed
using the MATLAB software for all the implementations of
UTS and DTWS, whereas any other mathematical software
can also be used.

3.1. The Discrete Haar Wavelet as a Weak Form: Father and
Mother Wavelets. In mathematical analysis, weak forms are
applicable when it is difficult to deal with strong forms. If
we treat pattern recognition of time series as a strong form,

recognizing patterns via wavelet transform resembles a weak
form. Then, different transforms lead to different outlooks of
statistics of time series. In general, implementation of weak
forms may have their own limitations as we see in Finite
Element Methods that require careful choice of weight func-
tions and trial solutions [28, 29]. UTS can also be considered
as one that arises from a weak form.

The initial step of UTS is to partition time series into two-
tuples (two-component vectors). For instance, for a time
series fsng, the discrete Haar transform works on two-tuples:
ðs1, s2Þ, ðs3, s4Þ, ðs5, s6Þ,⋯, when we start by s1. This coupling
leads to partial associations since two-tuples generated by
shifting the start by one data point (i.e., ðs2, s3Þ, ðs4, s5Þ,
ðs6, s7Þ,⋯) are not directly approached. In a comprehensive
analysis, both these couplings can be trialed to curtail missing
associations in one coupling. However, the first data point s1
is not considered in the shifted case, and inclusion of the last
data point is based on whether the series has even or odd
number of points. This would not be a major drawback when
we deal with lengthy time series in practice. Then, the
extreme data points do not hinder much the overall context
of the series.

Hereafter, we name ðs1, s2Þ, ðs3, s4Þ, ðs5, s6Þ,⋯ as 1st cou-
pling and ðs2, s3Þ, ðs4, s5Þ, ðs6, s7Þ,⋯ as 2nd coupling. Further-
more, we proceed with time series containing odd number of
data points: fsng2N+1

n=1 (N ∈ℕ), where we ignore the first data
point in 2nd coupling and the last data-point in 1st coupling
to read as

1st coupling : S2n−1, S2nð Þf gNn=1 and 2nd coupling
: S2n, S2n+1ð Þf gNn=1: ð2Þ

Next, father and mother wavelets are determined by
right-multiplying the two-tuples by variant Haar matrix

Hv = 1/2
1 1
1 −1

 !
as in Definition 1. Here, the classical

Haar matrix
1 1
1 −1

 !
is scaled by 1/2 to cater average

of data points in father wavelets. It facilitates interpreta-
tions in a way that father wavelets act as representatives
of the original time series in further transform levels.

Definition 1 (Hv-transform). Right-multiplying the two-

tuples of fsng2N+1
n=1 by Hv = 1/2

1 1
1 −1

 !
gives

1st coupling—father wavelets: f f n = ðs2n−1 + s2nÞ/2gNn=1.
1st coupling—mother wavelets: fmn = ðs2n−1 − s2nÞ/2gNn=1.
Alterations to the 2nd coupling comes as
2nd coupling—father wavelets: f f n = ðs2n + s2n+1Þ/2gNn=1.
2nd coupling—mother wavelets: fmn = s2n − s2n+1/2gNn=1.

The inverse transform of the above Hv-transform is
structured into Definition 2.
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Definition 2 (inverse Hv-transform). Data points of fsng2N+1
n=1

can be obtained back by the following inverse operations.
1st coupling: s2n−1 = f n +mn and s2n = f n −mn; n = 1, 2,

⋯,N:
2nd coupling: s2n = f n +mn and s2n+1 = f n −mn; n = 1, 2,

⋯,N .

Note that the inverse ofHv is given byHv
−1 =

1 1
1 −1

 !
,

where right-multiplying the two-tuples ð f n,mnÞ provides
back the time series fsng2N+1

n=1 .

Remark 3. The Hv-transform in Definition 1 is continued
into further levels upon father wavelet series. We address this
in Section 3.2.1 with required work of UTS.

3.2. Taming Procedure. So called taming is the key procedure
that articulates UTS. It is nurtured in the transformed series
obtained via Hv-transform. Here, we first present the way
of taming two series and next extend it into more series
and more transform levels. Only 1st coupling is demonstrated
here, where the same approach is applicable to 2nd coupling.

Step 1 (father and mother wavelets). Two time series

Sð1Þ = fsð1Þn g2N+1
n=1 and Sð2Þ = fsð2Þn g2N+1

n=1 are partitioned into

two-tuples of 1st coupling as fðsð1Þ2n−1, s
ð1Þ
2n Þg

N

n=1 and

fðsð2Þ2n−1, s
ð2Þ
2n Þg

N

n=1, respectively. By Hv-transform, we have

father wavelets of series SðiÞ ; i = 1, 2 as f ðiÞn = ðsðiÞð2n−1Þ +
sðiÞ2nÞ/2 and mother wavelets of series SðiÞ ; i = 1, 2 as mðiÞ

n =
ðsðiÞ2n−1 − sðiÞ2nÞ/2.

Here, n = 1, 2,⋯N .

Step 2 (taming criteria). We define the differences Df n and
Dmn for the father and mother wavelets of two time series

as Df n = j f ð1Þn − f ð2Þn j and Dmn = jmð1Þ
n −mð2Þ

n j.

The taming procedure is performed via averaging either
father wavelet or mother wavelet subject to the highest
of Df n and Dmn as follows (taming criteria). Superscript
ðnewÞ stands for newwavelets produced by the taming criteria.

(i) If Df n >Dmn, then f ðnewÞn = ð f ð1Þn + f ð2Þn Þ/2 and

mðnewÞ
n =mð1:Þ

n

(ii) If Df n <Dmn, then f ðnewÞn = f ð1Þn and mðnewÞ
n = ðmð1Þ

n

+mð2Þ
n Þ/2

(iii) If Df n =Dmn, thenf ðnewÞn = ð f ð1Þn + f ð2Þn Þ/2 and

mðnewÞ
n = ðmð1Þ

n +mð2Þ
n Þ/2

Remark 4.Geometric motivation for the above procedure has
been addressed in [16–18, 22, 30]. To recall along with
Figure 1, let L1 be the line segment joining the data points

sð1Þ2n−1 and sð1Þ2n , and L2 be the line segment joining the data

points sð2Þ2n−1 and sð2Þ2n in a time series plot. Then, L1 and L2

(i) do not intersect if and only if Df n >Dmn

(ii) intersect at a data point or coincide if and only if
Df n =Dmn

(iii) intersect at a point other than to data points if and
only if Df n <Dmn

In summary, we tend to tame by father wavelets if the dif-
ference of them are higher (i.e., line segments are apart) and
otherwise, we tame by mother wavelets. Case (ii) compro-
mises qualitatively moderate situation.

Step 3 (tamed series). A tamed series Tð1Þ = ftð1Þn g2Nn=1 is

obtained by the inverse Hv-transform tð1Þ2n−1 = f ðnewÞn +mðnewÞ
n

and tð1Þ2n = f ðnewÞn −mðnewÞ
n . We denote Tð1Þ = Sð1Þ ⊕ Sð2Þ show-

ing Tð1Þ as the end result of taming Sð1Þ and Sð2Þ. Thus, Tð1Þ

is considered as a consensus series.

Remark 5.Note that Tð1Þ is the same as the mean series of Sð1Þ

and Sð2Þ, if both father and mother wavelets are averaged in
Step 2 instead of one. This coins the word taming as it sounds
a lesser smoothing effect compared to usual averaging. Geo-
metric illustration of the taming criteria is available in [17, 30].

Remark 6. Operation ⊕ is noncommutative and nonassocia-
tive since we bias on first series in deciding new wavelet that
is not averaged in (i) and (ii) of Step 2.

We see these as optimistic properties that allow a hierar-
chical procedure into a consensus measure, which is not
available for the mean series. A user can customize the hier-
archy according to a required descriptive analysis.

Step 4 (UTS). To find a consensus series for more than two
time series, the taming procedure must be extended by tam-
ing new series with already tamed series. Figure 2 indicates
the flow of this recursive procedure for a set of k time series
fSð1Þ, Sð2Þ,⋯SðkÞg. Here, Tðk−1Þ is considered as an end result
giving a consensus series for all k series and named it as Ulti-
mate Tamed Series (UTS), i.e., Tðk−1Þ = ððS1 ⊕ S2Þ ⊕ S3 ⋯ Þ
⊕ Sk. At the rth taming step, averaging must be done in a
weighted manner as f ðnewÞn = ðrf ð1Þn + f ð2Þn Þ/ðr + 1Þ instead of

f ðnewÞn = ð f ð1Þn + f ð2Þn Þ/2 and mðnewÞ
n = rmð1Þ

n +mð2Þ
n /ðr + 1Þ

instead ofmðnewÞ
n = ðmð1Þ

n +mð2Þ
n Þ/2, where now the superscript

(1) stands for already tamed series and superscript (2) stands
for the next series newly entering to the taming process.

The entries of the above UTS acquire local trend only
with an adjacent point partitioned in 1st coupling. Indeed,
sign of mother wavelet illustrates increasing/decreasing
trends as it caters a difference. In order to capture pattern
attributes by more data points, taming procedure should be
applied to further transform levels as described in Section
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3.2.1. As we suggested earlier, repeating the work for 2nd cou-
pling yields a more comprehensive analysis.

3.2.1. Higher Level Taming. After carrying out Step 1 in
Section 3.2, we continue the same for resultant father wavelets.
Immediate level resulting from Step 1 is termed as level 1. Next,
father and mother wavelets of level 2 are taken by coupling
father wavelets of level 1 and carrying out Hv-transform for
those two-tuples. In general, father andmother wavelets of level
h = 2, 3,⋯ are obtained by carrying out Step 1 for father
wavelets of level h − 1. Note that still we proceed with the two

time series Sð1Þ = fsð1Þn g2N+1
n=1 and Sð2Þ = fsð2Þn g2N+1

n=1 separately.
Figure 3 depicts how a time series fsng with eight data points
is transformed into four levels as a binary diagram.

Father wavelets in level h rescale original time series by
averaging 2h adjacent points (data points with temporal
proximity), while mother wavelets associate with the
difference of such rescaled father wavelets in the previous
level. The averaging occurs due to the scaling by 1/2 in
Hv-transform, giving a representative role (i.e., average)
to father wavelets. We later illustrate our results with these
2h-tuple windows.

Now, we can move into higher level taming after trans-

forming two time series Sð1Þ = fsð1Þn g2N+1
n=1 and Sð2Þ = fsð2Þn g2N+1

n=1
up to required levels. Taming for higher levels h = 2, 3,⋯ is
carried out via Step 2 in Section 3.2 for father and mother
wavelets of respective level. Suppose we select a particular
h as the taming level that we implement Step 2. Next, the
inverse procedure similar to Step 3 is carried out in level
h to obtain new father wavelets of level h − 1. Note that
here, we have only the father wavelets by inverse transform
in Step 3. Moreover, to make a complete taming, we must
continue the inverse up to the level of original series. Then,
we need corresponding mother wavelets, and for that, we
propose two ways as follows.

(i) Inverse with Average Mother (AM-Inverse). For all
the levels from level h − 1 to level 1, we use respective
averages of mother wavelets corresponding to two
series Sð1Þ and Sð2Þ.

(ii) Inverse with Previous Mother (PM-Inverse). For all
the levels from level h − 1 to level 1, we use mother
wavelets corresponding to the first series Sð1Þ.

Case (i)

S2n–1
(1)

S2n–1
(2)

S2n–1
(1)

S2n–1
(1)

S2n–1
(2)

S2n–1
(2)

S2n
(1)

S2n
(1)

= S2n
(2)

S2n
(2)

S2n
(2)

S2n
(1)

Case (ii) Case (iii)

Figure 1: Illustrations of Remark 4.

S(1) S(2)

S(3)T(1)

T(2)

T(r–1)

T(k–2)

T(k–1)

S(r+1)

S(k)

T(r)

1st taming

2nd taming

...
...

...
...

(k–1)th taming

rth taming

Figure 2: Taming k number of time series.
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For a set of k time series, we execute the same procedure
given in Step 4 (i.e., taming already tamed series with the next
series adhering to weighted averages). We denote UTS
obtained by taming at level h as UTS-Lh, and to distinguish
under AM-inverse and PM-inverse, we further denote it as
UTS- Lh(AM) and UTS-Lh(PM), respectively. UTS- L1
stands for the same UTS formulated in Section 3.2. In this
manner, we can generate a pool of consensus series giving
options for customizing.

Remark 7. UTS-Lh(PM) is biased more to the pattern of
earlier series than the latter series in the hierarchy (order)
of taking time series into the taming procedure. It is because
of taking new mother wavelets as the mother wavelets of the
first series (or already tamed series). UTS-Lh(AM) is unbi-
ased in that sense.

We further discuss about hierarchy of taming in the
Section 3.5.

3.3. Well-Posedness of Hv-Transform and Its Inverse. This
subsection presents well-posedness of Hv-transform and its
inverse enclosing existence, uniqueness, and continuous
change of the concerned series. We assure these properties
for a given set of data series subject to a given coupling
method (1st or 2nd) and for a given mother wavelet for inverse
(AM-inverse or PM-inverse). Both Hv-transform and its
inverse are encountered here. Without loss of generality, we
articulate propositions between level 1 and level 2 that can
be generalized between level h and level h + 1.

Proposition 8 (existence). There exist father and mother
wavelets of level 2 corresponding to two-tuples of father wave-
lets of level 1 (via Hv-transform) and vice-versa (via inverse
Hv-transform).

Proof. This result is straightforward by Definition 1 applied
to the series of father wavelets of level 1 and Definition 2
applied to the inverse operations. ☐

Proposition 9 (uniqueness).

(i) Father and mother wavelets of level 2 are uniquely
determined by father wavelets of level 1 via
Hv-transform

(ii) Conversely, father wavelets of level 1 are uniquely
determined by father and mother wavelets of level 2
via inverse Hv-transform

Proof. It is enough to show the result for one two-tuple as the
same can be repeated throughout. Suppose ð f1, f2Þ is a two-
tuple of father wavelets of level 1 corresponds to father
wavelet F1 and mother wavelet M1 of level 2.

Then, we have the following two linear systems by adjust-
ing right-multiplying into left-multiplying appropriately.

Hv

f1

f2

 !
=

F1

M1

 !
, whereHv =

1
2

1 1
1 −1

 !
,

Hv
−1 F1

M1

 !
=

f1

f2

 !
, whereHv

−1 =
1 1
1 −1

 !
:

ð3Þ

Since the determinants ofHv and Hv
−1 are nonzero, both

the systems have unique solutions guaranteeing the result. ☐

Proposition 10 (continuous dependency).

(i) Father and mother wavelets of level 2 continuously
depend on the changes of father wavelets of level 1

s1 s2 s3 s4 s5 s6 s7 s8time series 

Level 1

Level 2

Level 3

s1 + s1
2

f := 

s1 + s2 + s3 + s4
4

f := 
s1 + s2 – s3 – s4

4
m := s5 + s6 + s7 + s8

4
f := 

s5 + s6 – s7 – s8
4

m := 

s1 + s2 + s3 + s4 + s5 + s6 + s7 + s8
8

f := 
s1 + s2 + s3 + s4 – s5 – s6 – s7 – s8

8
m := 

s3 + s4
2

f := 
s5 + s6

2
f := 

s7 + s8
2

f := s5 – s6
2

m := 
s1 – s2

2
m := 

s3 – s4
2

m := 
s7 – s8

2
m := 

Figure 3: Illustration of Hv-transform for different levels.
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(ii) Conversely, father wavelets of level 1 continuously
depend on the changes of father and mother wavelets
of level 2

Proof. Here also, it is enough to show the result for one two-
tuple. Suppose ð f1, f2Þ is a two-tuple of father wavelets of
level 1 corresponds to father wavelet F1 and mother wavelet

M1 of level 2. If we change the two-tuple into ð f ðnewÞ1 , f ðnewÞ2 Þ,
then resulting wavelets of level 2 are changed (say F1 into

FðnewÞ
1 and M1 into MðnewÞ

1 ). Observe that

F newð Þ
1 − F1

��� ��� = f newð Þ
1 + f newð Þ

2
2 −

f1 + f2
2

�����
�����

= f newð Þ
1 − f1

2 −
f newð Þ
2 − f 2

2

�����
�����

≤
1
2 f newð Þ

1 − f1
��� ��� + 1

2 f newð Þ
2 − f2

��� ���:
ð4Þ

For a given ε > 0, there exists δ = 2ε > 0 such that j f ðnewÞ1
− f1j < δ and j f ðnewÞ2 − f2j < δ⟹ jFðnewÞ

1 − F1j < ε. Similarly,

we can show that, j f ðnewÞ1 − f1j < δ and j f ðnewÞ2 − f2j < δ⟹ j

MðnewÞ
1 −M1j < ε, establishing Proposition 10 (i).
For (ii), observe that

f newð Þ
1 − f1

��� ��� = F newð Þ
1 +M newð Þ

1

� �
− F1 +M1ð Þ

��� ���
= F newð Þ

1 − F1
� �

+ M newð Þ
1 −M1

� ���� ���
≤ F newð Þ

1 − F1

��� ��� + M newð Þ
1 −M1

��� ���:
ð5Þ

For a given ε > 0, there exists δ = ε/2 > 0 such that j
FðnewÞ
1 − F1j < δ and jMðnewÞ

1 −M1j < δ⟹ j f ðnewÞ1 − f1j < ε.

Similarly, we can show that, jFðnewÞ
1 − F1j < δ and

jMðnewÞ
1 −M1j < δ⟹ j f ðnewÞ2 − f2j < ε, establishing Propo-

sition 10 (ii). ☐

Remark 11. Above propositions can be advanced by taking
level 1 as original time series and level 2 as level 1. Then, data
points of time series (or entries of already tamed series)
replacing father wavelets of level 1 and wavelets of level 2
are replaced by those of level 1.

3.4. Qualitative Illustration. As guaranteed by the Proposi-
tion 10 (i) in the view of Remark 11, wavelets of two close
time series do not vary much. Here, by the term “close,” we
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Figure 4: Qualitative illustration of taming two close time series (four two-tuples are shown): f1 and f2—father wavelets of series 1 and series
2, f ðnewÞ—new father wavelet, m1 and m2—mother wavelets of series 1 and series 2, and mðnewÞ—new mother wavelet.
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mean positioning of corresponding data points is close (i.e.,
one can say that one series is obtained by making small
changes to the other series). Figure 4(a) illustrates two time
series that are close to each other compared to the two time
series in Figure 5(a). Corresponding wavelets are shown in
Figures 4(b), 4(d), 5(b), and 5(d) that illustrate small changes
in data points lead to small changes in wavelets and vice versa.

When wavelets are close, resulting new wavelets by the
taming criteria are also close to corresponding wavelets.
Then, the resultant UTS is also close to two time series veri-
fying Proposition 10 (ii). This is illustrated in Figures 4(c)
and 5(c).

3.5. Hierarchy for DTWS and UTS. As seen in formulation,
both DTWS and UTS vary according to the hierarchy (order)
of taking time series into the taming procedure. In our trials,
we focus on two specific hierarchies based on variations of
consecutive data points. As an aggregated measure, we con-
sider sum of squared differences of consecutive data points
of each series. For a set of k time series fSð1Þ, Sð2Þ,⋯, SðkÞg
of length 2N + 1, these sums are given by AðiÞ =∑2N

n=1

ðsðiÞn+1 − sðiÞn Þ2 ; i = 1, 2,⋯, k. Now the set of time series is hier-
archically arranged according to the ascending and descend-
ing order of AðiÞ values. Thus, we look forward to immediate
closeness/variation of data points rather than their magni-
tude. AðiÞ of a particular series SðiÞ does not depend on other
series. In addition, it caters every consecutive variation with-
out restricting to two-tuples in coupling technique. There-

fore, hierarchy does not depend on coupling technique.
These characteristics motivate deciding hierarchy via AðiÞ.

4. Tools for Comparison

The main task of this paper is to compare UTS-Lh, DTWS,
and the mean series in the sense of grasping consensus pat-
terns of a set of time series. Meanwhile, one can see how far
central tendency can be reflected by UTS- Lh measures. By
central tendency, we mean how each entry in a consensus
series represents the center of corresponding data points.
We introduce two comparison tools: Euclidean distance and
DTW distance between series are utilized. They are the well-
known distance measures used in similar work [9, 12, 31].

4.1. Euclidean Distance. Point-wise squared deviation is
taken in the Euclidean sense to estimate central tendency
acquired by consensus series. The Euclidean distance
between a consensus series C = fcng2Nn=1 and each time series

SðiÞ = fsðiÞn g2Nn=1 ; i = 1, 2,⋯, k (say PiðCÞ) is given by

Pi Cð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
N

n=1
s ið Þ
n − cn

� �2s
: ð6Þ

Next a representative of PiðCÞ ; i = 1, 2,⋯, k should be
determined (say PðCÞ) for comparisons between consensus
series. Thus, PðCÞ represents overall deviation of time series
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Figure 5: Qualitative illustration of taming two time series not close to each other (four two-tuples are shown): f1 and f2—father wavelets of
series 1 and series 2, f ðnewÞ—new father wavelet, m1 and m2—mother wavelets of series 1 and series 2, and mðnewÞ—new mother wavelet.
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from a consensus series C in the Euclidean sense. Mean and
median of PiðCÞ’s are two possible candidates for PðCÞ.
4.2. Dynamic Time Warping Distance. The string metric D in
Section 5 yields the optimal warping path generated for two
time series. We can make use of this measure to quantify
the similarity between a consensus series C = fcng2Nn=1 and

each data series SðiÞ = fsðiÞn g2Nn=1 ; i = 1, 2,⋯, k in the sense of
pattern. Suppose DiðCÞ stands for that similarity between C

and SðiÞ (i.e., DiðCÞ =DðC2N , S
ðiÞ
2NÞ). This comes recursively

via Equation (7), which is in accordance with Equation (1).

D Cp, S ið Þ
q

� �
= d c 1ð Þ

p , s ið Þ
q

� �
+min

D Cp−1, S
ið Þ
q−1

� �
,

D Cp, S
ið Þ
q−1

� �
,

D Cp−1, S ið Þ
q

� �
:

8>>>>><
>>>>>:

ð7Þ

We recall that lesser D indicates more similarity in pat-
terns. A representative DTW distance can be obtained by
taking an appropriate central measure (e.g., mean or median)
of DiðCÞ ; i = 1, 2,⋯, k (say DðCÞ). Thus, we expect DðCÞ to
represent overall deviation of time series from a consensus
series C in the sense of pattern. Determining DðCÞ and
PðCÞ is further discussed in Section 6.2.

Remark 12. Suppose Cð1Þ and Cð2Þ be two consensus series of
the same set of time series. In summary, if DðCð1ÞÞ >DðCð2ÞÞ
then we would expect time series are more deviated from Cð1Þ

than Cð2Þ when pattern attributes are concerned. If PðCð1ÞÞ
> PðCð2ÞÞ then Cð2Þ shows more central tendency than Cð1Þ.

5. Data Processing

We test consensus series using two data sets from UEA &
UCR Time Series Classification Repository, namely, OSU-
Leaf and Yoga [24] (http://www.timeseriesclassification
.com). All the data series are stored as normalized series by
z-scores. It is a usual measure for many experimental settings
in pattern recognition [12, 32]. Such normalization is com-
patible with the work of UTS too. OSULeaf data set contains
one-dimensional outlines of leaves obtained by colour image
segmentation and boundary extraction from digitized leaf
images of six classes. Angles measured at each pixel point
along the boundary of leaves form a set of series. We are
motivated to choose this particular data set due to shifted
fluctuating patterns in different phases. In order to preserve
the meaning of summarizing a set of time series, we stick into
a one class of data, class six, which includes 15 time series
each having 427 data points. Note that to see a complete
decomposition up to a certain level, say level h, we need num-
ber of data points to be divisible by 2h. We choose first 384
consecutive data points to attain maximal comparison up

OUS leaf data
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Figure 6: Mean series, DTWS with ascending hierarchy (Asc.) and DTWS with descending hierarchy (Des.) of two data sets: OSULeaf
and Yoga.
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to seven levels of UTS. We start by the second data point for
2nd coupling.

The second data set, Yoga, has been generated by captur-
ing two actors transiting between yoga poses in front of a
green screen giving to two classes of data. Each image has
converted to a one-dimensional series by finding the outline
and measuring the distance of the outline to the center. That
is, the motion of an actor captured by sensors is transformed

to a time series. We proceed with class 1 containing 137
series. Out of 426 data points, we proceed with the first 384
consecutive data points, again to compatible with seven levels
of UTS.

All 15 series of OSULeaf data are shown in Figure 6(a)
along with the mean series and DTWS. Figure 6(b) depicts
those of Yoga data. Here, only a few of data series (15) are
shown for clear appearance, picking every 10th series in the
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ascending order ofAðiÞ (see Section 3.5) and the series having
the least and the highest AðiÞ.

Notably, two cases of DTWS of OSULeaf data follow
opposite patterns (increasing and decreasing) in many seg-
ments of time-points. However, Yoga data do not show such
a significant difference in pattern. Sensitivity of ascending
and descending hierarchies to the pattern of UTS- Lh can be
scrutinized later in Section 6.

6. Results

We present consensus series (UTS-Lh, DTWS, and the mean
series) in a systematic way for comparisons. Applicability of
UTS- Lh is overseen on top of DTWS and the mean series.

6.1. Illustrations of Consensus Series. We illustrate results on
four pillars: (i) coupling approach—1st coupling and 2nd

coupling (from Section 3.1), (ii) taming levels and mother
wavelet for inverse—average mother (AM-inverse) and
previous mother (PM-inverse) (from Section 3.2.1), (iii) hier-
archy of data series—ascending and descending (from
Section 3.5), and (iv) comparisons—via the Euclidean dis-
tance and DTW distance (from Section 4). Pattern recogni-
tion becomes more challenging when adjacent data points
are highly varied in dissimilar way. If it is required to priori-
tize sizable adjacent variations, the preferable combination is
to execute descending hierarchy with PM-inverse. As pro-
jected by Remark 6, new wavelets in taming level are biased
on that of first series. Therefore, descending hierarchy brings
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more sensitivity to adjacent variations. This is further sup-
ported by PM-inverse as per Remark 7. According to that,
not only at the taming level but also all the earlier levels in
inverse procedure are biased on the first series. In addition,
a theoretical support is established by Proposition 10 (gener-
alized version) that assures higher variations in tamed series
for higher variations in data series. Finally, such variations
are infused into consensus series UTS-Lh.

In the other extreme, ascending hierarchy with AM-
inverse yields much smoothed output close to the mean series.
It seems OSULeaf data do not show significant adjacent
variations. It is observed in Figure 7 that even descending
hierarchy with PM-inverse provides UTS-Lh, h = 1, 2, 3, 4,
more or less the same as the mean series. In general, if we
see this similarity until we proceed into higher levels, then
we have less variation in early windows of temporal proximity.
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Once we consider the wavelet-based temporal aspect,
four windows relevant to UTS-Lh, h = 1, 2, 3, 4, consist of 2-
tuples, 4-tuples, 8-tuples, and 16-tuples, respectively. This is
due to each wavelet in level h is responsible for 2h data points
(Section 3.2.1). Next, UTS-L5 has a window of 32 data points,
where a wavelet in level 5 is obtained using averages of 16-
tuples. Thus, taming at level 5 deals with pattern of the series
of 16-tuple averages. According to Figure 8, UTS deviates
from the mean series, in particular with PM-inverse, suggest-
ing considerable variations in 16-tuple averages. In 16-tuple
windows (between vertical lines), we have the relevant consen-
sus series. It can be observed that two DTWS do not adhere to
such localized patterns. Moreover, DTWS is highly sensitive to
hierarchy (ascending/descending) in many windows.

A similar visualization is carried out for UTS-L6 and
UTS-L7 in Figures 9 and 10, respectively. Note that UTS-L6
and UTS-L7 bring consensus patterns in 32-tuples and 64-
tuples, respectively. Now, UTS-Lh follow the pattern with
much relaxed localization. It is visually verified by closeness

to DTWS than the mean series. In a holistic approach, a user
can adjust the windows either by size or position to see
respective consensus patterns, subject to the requirements
ofHv-transform. This customizing option facilitates a setting
of moving-window that can be conceptualized analogous to
moving-average.

Observe that skips appear in UTS-Lh at the vertical lines
separating windows. This is a result of independent backward
calculation (inverse procedure) in each window that yields
loss of connection across those vertical lines. In these trials
of OSULeaf data, we used first 384 data points out of total
length of 427 points. This is to satisfy the requirement of level
7, where the tail or rest of the data points cannot be compiled
into one complete window. If someone needs to generate
UTS-Lh, say up to level 7 including the tail, we may select last
384 data points. This is only a matter of one input command
in an algorithm for UTS-Lh.

As a further verification, we produce the same illustra-
tions for Yoga data (Figure 11). Here also, two DTWS fails
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to show localized pattern attributes of the data series. How-
ever, both cases of (Asc., AM) and (Des., PM) show almost
similar patterns compared to that of OSULeaf data. This
interprets a lesser sensitivity of hierarchy in producing local-
ized consensus patterns via UTS-Lh. The same is hinted by
the similarity of two DTWS in more nonlocalized aspect. In
such a way, observation of UTS-Lh along with DTWS yields
more useful descriptive analysis of a set of time series.

Next, we demonstrate consensus series associated with
2nd coupling. As assured by general versions of Proposition

8 and Proposition 9, existence and uniqueness preserve for
both couplings, subject to a choice for hierarchy (descendin-
g/ascending) and mother wavelet for inverse (AM-inver-
se/PM-inverse). Here, the aim is to see whether UTS-Lh
differ in general agreement shown by 1st coupling. We pro-
ceed with 384 data points starting from the second point of
OSULeaf data. Figure 12 illustrates UTS-L1–UTS-L4 analo-
gous to that of Figure 7. It demonstrates no significant differ-
ence showing slight wobbles around the mean series similar
to 1st coupling.

Table 1: Statistics of the Euclidean distance between consensus series and data series. Data track: OSULeaf data.

Consensus series (C) Mean Median Min Max Standard deviation

Mean series 316.79 346.01 184.72 479.84 86.36

UTS-L1 (Asc.) 317.08 346.44 185.04 480.02 86.30

UTS-L2 (Asc., AM) 317.84 347.28 186.24 480.57 86.03

UTS-L3 (Asc., AM) 319.45 349.58 190.20 481.17 84.85

UTS-L4 (Asc., AM) 323.64 350.87 193.46 485.17 85.48

UTS-L5 (Asc., AM) 331.10 345.90 218.54 467.95 73.69

UTS-L6 (Asc., AM) 337.21 321.61 227.04 527.77 85.61

UTS-L7 (Asc., AM) 370.84 336.31 225.00 651.82 114.22

DTWS (Asc.) 554.60 497.50 325.54 919.09 181.40

UTS- L1 (Des.) 317.43 346.79 185.75 480.65 86.19

UTS- L2 (Des., PM) 319.56 349.39 190.34 482.43 85.21

UTS- L3 (Des., PM) 325.42 356.63 201.91 490.22 83.54

UTS- L4 (Des., PM) 337.16 346.41 225.98 490.45 77.75

UTS- L5 (Des., PM) 367.26 349.37 247.46 535.26 75.14

UTS- L6 (Des., PM) 427.95 426.61 216.20 619.07 107.64

UTS- L7 (Des., PM) 573.80 624.46 110.61 899.26 206.04

DTWS (Des.) 543.82 528.70 243.52 793.35 132.99

Table 2: Statistics of DTW distance between consensus series and data series. Data track: OSULeaf data.

Series Mean Median Min Max Standard deviation

Mean series 188.30 174.53 151.43 240.59 30.11

UTS-L1 (Asc.) 183.59 170.75 147.25 234.94 30.17

UTS-L2 (Asc., AM) 178.60 166.70 142.48 229.29 30.36

UTS-L3 (Asc., AM) 174.33 159.81 135.78 225.57 30.24

UTS-L4 (Asc., AM) 166.83 154.30 134.56 215.11 26.46

UTS-L5 (Asc., AM) 157.25 142.02 125.26 209.32 28.41

UTS-L6 (Asc., AM) 150.56 143.95 114.81 204.70 29.03

UTS-L7 (Asc., AM) 138.90 124.01 104.93 220.32 32.00

DTWS (Asc.) 87.43 80.93 60.37 144.11 24.82

UTS-L1 (Des.) 184.30 172.92 149.16 236.35 30.08

UTS-L2 (Dec., PM) 180.37 172.12 146.78 231.15 29.22

UTS-L3 (Dec., PM) 168.48 157.73 139.92 220.45 28.16

UTS-L4 (Dec., PM) 154.50 145.63 124.92 211.09 25.95

UTS-L5 (Dec., PM) 140.42 131.75 113.14 196.65 23.80

UTS-L6 (Dec., PM) 116.24 103.95 91.84 174.46 22.98

UTS-L7 (Dec., PM) 95.21 92.70 63.79 174.48 25.19

DTWS (Des.) 80.40 84.85 36.72 144.53 30.77
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Figure 13 illustrates the rest of UTS-Lh preserving similar
windowing effect followed earlier, subject to a shift by one
point. If UTS-Lh (Des., PM) measures do not deviate much
from 1st coupling counterparts, then it is hard to expect devi-
ations in other options of descending/ascending, AM-inver-
se/PM-inverse. Therefore, we present only that category
showing comparison between 1st and 2nd couplings for the
sake of brevity too. According to Figure 13, UTS-Lh behave
almost the same way in both the couplings.

6.2. Comparisons of Consensus Series. Earlier section is
devoted to visualize the behaviour of UTS-Lh. In this section,
we provide numerical quantification to how far they deviate
from data series in the sense of the Euclidean distance and
DTW distance. These two distance measures are presented
in Section 4 as PiðCÞ and DiðCÞ, respectively, where i stands
for data series and C is the concerned consensus series.

We have 15 data series for the trial of OSULeaf data.
Table 1 contains basic statistics of corresponding PiðCÞ ;
i = 1, 2,⋯, 15. Here also, we consider UTS-Lh of descending
hierarchy with PM-inverse and ascending hierarchy with
AM-inverse. For brevity, only 1st coupling is implemented.
The Euclidean distances when C is the mean series and
DTWS are also included as baselines for comparisons.

According to Table 1 The mean series shows the least
mean, while DTWS leans towards the greatest mean. There-
fore, UTS-Lh are characterized with much compromised
overall deviations. Mean increases when level of taming h
increases in both cases of descending hierarchy with PM-
inverse and ascending hierarchy with AM-inverse. Notably,

this guides that higher level taming directs to lesser concern
on point-wise central tendency. Median does not show the
same monotonic behaviour as mean. However, median of
UTS-Lh with higher h is closer to that of two DTWS than
the mean series. It also shows the loss of point-wise central
tendency. In contrast, we expect that UTS-Lh with higher h
reflect pattern attributes rather than point-wise location. To
claim this, we present statistics of DTW distances in
Table 2. This pattern-oriented characteristic can be declared
as a key applicability of UTS-Lh as consensus series.

According to Table 2 also, UTS-Lh are in a compromised
context as far as the mean series and DTWS are concerned.
This is implied by acquiring the least mean by DTWS and
the greatest mean by the mean series. The same is observed
in median as well. Both mean and median decrease when
level of taming h increases (except in median of UTS-L6
(Asc., AM)), giving opposite to what we observe in Table 1.
This verifies that UTS-Lh with higher h align more with pat-
tern attributes. Interestingly, UTS-Lh still follow temporal
windows, where DTWS is not abide by such localization.

The standard deviation of certain UTS is comparatively
high. This may be due to outliers of distance measures result-
ing from outlier data series rather than unsuitability of UTS
as a consensus series. Therefore, as a holistic view, we depict
box-plot diagrams carrying statistics of above two tables in
Figure 14. The boxes are generated for UTS measures at each
level together with DTWS and mean series representative.
The spread of Euclidean distances and DTW distances are
produced for extreme hierarchies ascending with average
mother inversion and descending with previous mother

Figure 14: Box-plot diagrams of the Euclidean distances and DTW distances (lower box limit: 1st quartile (Q1), upper box limit: 3rd quartile
(Q3), middle line: median, cross ( × ): mean, lower whisker: Q1 − 1:5 IQR, and upper whisker: Q3 + 1:5 IQR). Data track: OSULeaf data.
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inversion to generate the box plots. Now, increasing trend in
the Euclidean distance and decreasing trend in DTW dis-
tance as h increases are clearly visualized.

We demonstrate the same for Yoga data in Figure 15, and
the same trends can be observed as in Figure 14. In a data
mining process, one may investigate all those UTS-Lh and
select a fair enough representative for further work, knowing
which temporal windowing prevails.

7. Discussion

Wavelet techniques are utilized in time series analysis in
order to investigate trends, recurring fluctuations, and
autocorrelation effects [33, 34]. These applications refer to lon-
gitudinal aspect of time series. The approach via the discrete
Haar wavelet proposed in this work adds on a utility in terms
of cross-sectional characteristics of a set of time series. It is asso-
ciated with the central topic of consensus patterns. Its novelty
lies with the ability of customizing a consensus pattern bymain-
taining localized temporal concern in different extents.

The study is centralized around a pool of measures desig-
nated as Ultimate Tamed Series (UTS). A theoretical plat-
form is also established enclosing existence, uniqueness,
and continuous dependency (Proposition 8, 9, and 10).
Implementation of UTS in different hierarchies (ascending
and descending), taming levels and inverse procedure
(AM-inverse and PM-inverse), and coupling formation
(1st coupling and 2nd coupling) bring the essence of the over-
all performance, again highlighting customizing options.
Hierarchical arrangement facilitates bringing adjacent
variations of data points into proposed consensus series. A
window of 2h data points is catered at a time in taming by

level h. UTS-Lh measures owe this characteristic by the rou-
tine set by the discrete Haar wavelet decomposition. Wavelet
approaches gain their reputation due to such localized treat-
ment as evident in many applications [35–37]. In fact, father
wavelets in different levels allow rescaling data series, while
mother wavelets affix localized trends. The work relevant to
this begins in Definition 1 (Hv-transform), and it is further
illustrated in Figure 3.

If we shift the implementation of UTS by one point of each
data series (2nd coupling), then all outputs are different. We
accept this as an optimistic feature than a limitation, sincemore
pattern attributes can be extracted. Both classes of UTS (1st and
2nd couplings) show similar pattern if there are no contrasting
variations because of the shift, which is the case for trialed data
in this work (Figures 12 and 13). Otherwise, it is preferred to
determine UTS-Lh for both couplings in all illustrations since
we identify discrete Haar wavelet as a weak form (Section 3.1).

As baselines, we consider two consensus series, the mean
series (series of point-wise averages) and Dynamic Time
Warping Series (DTWS), to show how far UTS-Lh can illus-
trate patterns emphasizing local attributes. Note that we have
illustrated normalized data series, and hence, the mean series
acts as a guide for over-smoothed representation for pattern.
Option of PM-inverse avoids over-smoothing, which is often
the main advantage of UTS-Lh over the mean series. Higher
level UTS-Lh visualize pattern attributes fairly, while lower
level UTS-Lh locate closer to the mean series. By moving back
and forth with different levels of taming, one can extract
important characteristics of a set of time series. Thus, UTS-
Lh measures are pooled as a collection of statistics, where a
user can see more complete profile rather than seeing one
consensus series. Its computational burden is redundant in
modern computer technology. A DTWS (without scaling)

Figure 15: Box-plot diagrams of the Euclidean distances and DTW distances (lower box limit: 1 st quartile (Q1), upper box limit: 3rd quartile
(Q3), middle line: median, cross ( × ): mean, lower whisker: Q1 − 1:5 IQR, and upper whisker: Q3 + 1:5 IQR). Data track: Yoga data.
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is substantially longer compared to the original series. This
expansion happens in a nonlinear manner so that uniform
scaling techniques may not align the series properly to the
temporal axis. Therefore, improved versions such as NLAAF
and PSA [14, 26] can be tested with UTS-Lh in a future work.

8. Conclusion

UTS-Lh bridge the gap between the mean series and DTWS
in the sense of displaying consensus patterns. The classical
DTW approaches only recognize patterns somewhat neglect-
ing the correspondence to the temporal axis while the mean
series restricts into point-wise concerns. UTS-Lh with differ-
ent levels of taming allow seeing consensus patterns by
expanding and shrinking the localization of time-points
(Figures 14 and 15). We verify these effects via two compar-
ison tools: Euclidean distance and DTW distance.

UTS-Lh can also be tested for data sets that are highly var-
ied. For that, clustering tools must be proposed to see informa-
tive consensus patterns. Several motivations can be obtained by
existing clustering algorithms including well-known k-means
[32, 38, 39]. In the broader scope of data mining, one needs
not only extracting important data but also extracting useful
patterns [40]. Thus, we further propose UTS as a technique
for mining consensus patterns of sequential big data.

Data Availability

UEA&UCRTime Series ClassificationRepository can be found
at http://www.timeseriesclassification.com/index.php. OSU
Leaf data is available at http://www.timeseriesclassification
.com/description.php?Dataset=OSULeaf. Yoga data can be
found at http://www.timeseriesclassification.com/description
.php?Dataset=Yoga.
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