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Novel coronavirus (COVID-19) has been spreading and wreaking havoc globally, despite massive efforts by the government and
World Health Organization (WHO). Consideration of partially recovered carriers is hypothesized to play a leading role in the
persistence of the disease and its introduction to new areas. A model for transmission of COVID-19 by symptomless partially
recovered carriers is proposed and analysed. It is shown that key parameters can be identified such that below a threshold level,
built on these parameters, the epidemic tends towards extinction, while above another threshold, it tends towards a nontrivial
epidemic state. Moreover, optimal control analysis of the model, using Pontryagin’s maximum principle, is performed. The
optimal controls are characterized in terms of the optimality system and solved numerically for several scenarios. Numerical
simulations and sensitivity analysis of the basic reproduction number, Rc, indicate that the disease is mainly driven by
parameters involving the partially recovered carriers rather than symptomatic ones. Moreover, optimal control analysis of the
model, using Pontryagin’s maximum principle, is performed. The optimal controls were characterized in terms of the optimality
system and solved numerically for several scenarios. Numerical simulations were explored to illustrate our theoretical findings,
scenarios were built, and the model predicted that social distancing and treatment of the symptomatic will slow down the
epidemic curve and reduce mortality of COVID-19 given that there is an average adherence to social distancing and effective
treatment are administered.

1. Introduction

Coronavirus is one of the major pathogens that primarily tar-
gets the human respiratory system. The previous outbreak of
coronaviruses include the severe acute respiratory syndrome
(SARS), which occurred in 2003 in Mainland China [1], the
Middle East respiratory Syndrome (MERS) in 2012 in Saudi
Arabia [2], and the MERS outbreak in 2015 in South Korea
[3]. In late December 2019, a cluster of patients was admitted
to hospitals with an initial diagnosis of pneumonia of an
unknown etiology. These patients were etiologically linked
to seafood and wet animal wholesale market in Wuhan, the
capital city of the Hubei province, China [4]. Early reports
predicted the onset of a potential coronavirus outbreak and
estimated the reproduction number to be significantly larger
than 1 (ranges from 2.24 to 3.58) [5].

A report published in Nature revealed that Chinese
health authorities concluded that as of February 7, 2020,
there have been 31,161 people who have contracted the infec-
tion in China and more than 630 people have died of the
infection [6] [http://www.nature.com/articles/d41586-020-
00154]. Also, the World Health Organization (WHO)
reported 51,174 confirmed cases including 15,384 severe
cases and 1,666 death cases in China. At the time of prepar-
ing this manuscript, the number of cases (March 7, 2020)
has passed 100,000 worldwide, reported by Euronews.

The most common symptoms at the onset of COVID-19
illness are fever, cough, and fatigue, while other symptoms
include sputum production, headache, hemoptysis, diarrhea,
and lymphopenia [7].

Mathematical models for dynamics of the transmission
and control of COVID-19 have been developed to gain
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insights on the disease dynamics. Also, as recognized by the
WHO [8], mathematical models, especially those who are
timely, play a key role in informing evidence-based decisions
by health decision and policy makers. Only a few mathemat-
ical models have so far been publicly released, to the best of
our knowledge. Notably among these studies are [9–18].

This study has an important difference from those
reported above, in that it presents a mathematical model
that considers a proportion of infectious patients who
recover partially. These proportions may still be virus car-
riers. According to a new study developed by Lan et al.
[19], they followed four medical professionals ages 30 to
36 years who developed COVID-19 and were treated at
Wuhan University’s Zhongnan Hospital in China between
Jan. 1 and Feb. 15. All of the individuals recovered, and
only one was hospitalized during the illness. The patients
were treated with oseltamivir, better known under the
brand name of Tamiflu, an antiviral drug. The patients
were considered recovered after their symptoms. After
recovery, the patients were asked to quarantine themselves
at home for five days. They continued to undergo throat
swabs for the coronavirus after five days for up to 13 days
postrecovery. The results showed that every test between
day 5 and day 13 was positive for the virus. Also, a paper
published by Pappas [20] gave an instance of a Japanese
patient who recovered from COVID-19 and then became
ill with the disease for a second time. Pappas [20] explained
further that one possibility is that the patient’s immune sys-
tem did not fight off the virus completely as it began to rep-
licate inside her lung. These findings suggested that at least
a proportion of infectious individuals did not recover fully
from the disease because a small concentration of the virus
might still be in their system which began to replicate.
Hence, these groups are classified as partially recovered car-
riers, as they are virus carriers. This is a new finding that
has not been modelled mathematically. Therefore, the pres-
ent study bridges this knowledge gap.

The remaining part of this paper is organized as follows:
in Section 2, model description and formulation are pre-
sented. Detailed stability of disease-free equilibrium points
is analysed in Section 3. Sections 4 presents the sensitivity
analysis of the model parameters while in Section 5, we pro-
vide the optimal control problem, its formulation, optimal
strategies, proof of existence, and necessary conditions for
optimal control. Section 6 provides the numerical simula-
tions of the formulated model. Finally, Section 7 gives the
overall concluding remarks of the study.

2. Mathematical Formulation of the COVID-
19 Model

In this section, a model for the spread of COVID-19 in
human and vector population is formulated. The total
human population denoted by NH , is partitioned into five
classes, namely, the susceptible individual SH , the exposed
individual EH , the infectious individual IH , the partially
recovered carriers PC , and the fully recovered individuals
RH , so that NH = SH + EH + IH + PC + RH .

2.1. Assumptions of the Model. The following assumptions
were made in order to formulate the equations of the model:

(a) Containment rate, cm, is introduced into the suscep-
tible population

(b) SARS-COV-2 can persist in the body for at least two
weeks after symptoms of the disease clear up [20]

(c) Infectious patients whose immune system fights off
the virus completely with no single virus left progress
to the fully recovered class

(d) Infectious patients whose immune system does not
fight off the virus completely (i.e., low level of the
virus are still present in their system) progress to
the partially recovered carrier class

(e) Reverse transcription polymerase chain reaction
(RT-PCR) may not be able to detect the presence of
a very low level of the virus in the system of partially
recovered carriers at the time that they are discharged
from the hospital

(f) Virus begins to replicate inside the lungs of the par-
tially recovered carriers again [20]

(g) Partially recovered carriers are contagious but show
mild or no symptoms

(h) Individuals in the partially recovered carrier class can
also recover from COVID-19, but with a significantly
slow rate

Our model includes a net inflow of susceptible individ-
uals into a region at a rate, λh per unit time. This parameter
includes new births, immigration, and emigration. The sus-
ceptible individuals acquire COVID-19 through contact with
either the infectious individuals or partially recovered car-
riers at rates α and β. Also, the susceptible population is
reduced by containment rate, cm. The proportion of the
infectious individuals become partially recovered carriers at
a rate ð1 − εÞ. Individuals in the partially recovered carrier
class recover fully from the disease at a slower rate ψ2η.

Applying the assumptions, nomenclature of parameters,
and definitions of variables, the following system of ordinary
differential equations is formulated:

dSH
dt

= λh − αSHIH − βSHPC − cmSH , ð1Þ

dEH

dt
= αSHIH + βSHPC − θEH , ð2Þ

dIH
dt

= θEH − γIH − ψ1IH − τIH , ð3Þ

dPC

dt
= 1 − εð ÞτIH − ψ2ηPC , ð4Þ

dRH

dt
= ετIH + ψ1IH + ψ2ηPC , ð5Þ
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with initial conditions

SH 0ð Þ = S0h > 0,

EH 0ð Þ = E0
H ,

IH 0ð Þ = I0H 0ð Þ > 0,

PC 0ð Þ = P0
C 0ð Þ,

RH 0ð Þ = R0
H 0ð Þ > 0,

ð6Þ

where the model parameters are nonnegative.

Remark 1. We restructure and modify the model to have
more insightful information. However, it has not in any
way changed the research focus.

The first four equations, i.e., (1), (2), (3), and (4), are
independent of the compartments RH , i.e., (5). Therefore,
after decoupling the equations for RH from models (1), (2),
(3), (4), and (5), we devote analyses on the remaining equa-
tions of (1), (2), (3), and (4) which becomes

dSH
dt

= λh − αSHIH − βSHPC − cmSH , ð7Þ

dEH

dt
= αSHIH + βSHPC − θEH , ð8Þ

dIH
dt

= θEH − γIH − ψ1IH − τIH , ð9Þ

dPC

dt
= 1 − εð ÞτIH − ψ2ηPC , ð10Þ

where the disease-free equilibrium point is E0 = ðSH , EH , IH
, PCÞ = ððλh/cmÞ, 0, 0, 0Þ.

3. Stability Analysis

3.1. Local Stability of Disease-Free Equilibrium Solution.
Using the next-generation operator approach of Diekmann
et al., [21], the effective basic reproduction number associ-
ated with disease-free equilibrium, E0, and denoted by Rc, is
obtained as

Rc =
αS0ψ2η + βS0 1 − εð Þτ

ψ2ηBT
, ð11Þ

where

S0 =
λh
cm

: ð12Þ

Clearly, the disease-free equilibrium is locally asymptoti-
cally stable if Rc < 1. To see this, we obtain the Jacobian
matrix of systems (7), (8), (9), and (10) evaluated at E0:

JE0
=

−cm 0 −αS0 −βS0
0 −θ αS0 βS0

0 θ −BT 0

0 0 τ − ετ −ψ2η

2
666664

3
777775, ð13Þ

where

BT = γ + ψ1 + τ: ð14Þ

One of the eigenvalues is −cm. The other three are eigen-
values of the matrix

−θ αS0 βS0

θ −BT 0

0 τ − ετ −ψ2η

2
664

3
775, ð15Þ

whose characteristic equation is

a3x
3 + a2x

2 + a1x + a0 = 0, ð16Þ

where

a0 = ψ2ηBTθ − αS0ψ2ηθ − βθS0 1 − εð Þτ, ð17Þ

a1 = θψ2η + ψ2ηBT + BTθ − αS0θ, ð18Þ
a2 = θ + BT + ψ2η, ð19Þ
a3 = 1: ð20Þ

The Routh-Hurwitz stability criteria for a 3 × 3 matrix is
that all values of the determinant of Hurwitz matrices are
positive. The determinants of Hurwitz matrices are:

D1 = ∣a2∣ > 0, ð21Þ

where a2 > 0 and

D2 =
a2 a0

1 a1

" #
> 0: ð22Þ

From (22), we have a1a2 − a0 > 0 or a1a2 > a0

D3 =

a2 a0 0

1 a1 0

0 a2 a0

2
664

3
775: ð23Þ

(23) gives a0ða1a2 − a0Þ > 0:
Clearly, a2 is positive in (19). Also, a1a2 > a0 or a1a2 −

a0 > 0, in (17), (18), and (19). Finally, we shall show that a0
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ða1a2 − a0Þ > 0. Since a1a2 − a0 is positive, then, we need to
show that a0 is also positive so that a0ða1a2 − a0Þ > 0.

a0 = ψ2ηBTθ − αS0ψ2ηθ + βθS0 1 − εð Þτð Þ > 0,

1 −
αS0ψ2ηθ + βθS0 1 − εð Þτ

ψ2ηBTθ
> 0,

1 − Rc > 0:

ð24Þ

Hence, 1 − Rc > 0 if Rc < 1. Therefore, a0 > 0 if Rc < 1.
Hence, by Routh-Hurwitz theorem [22], all the eigenvalues
of the Jacobian matrix JE0 have negative real parts when Rc

< 1 and the disease-free equilibrium solution is locally
asymptotically stable if Rc < 1. The following theorem sum-
marizes the above result in what follows:

Theorem 2. The disease-free equilibrium solution is locally
asymptotically stable if Rc < 1.

Remark 3. The biological meaning of the theorem above is
that COVID-19 eradication depends on the initial number
of the infectious individuals in the population. This implies
that a small invasion of infectious individuals into a
completely susceptible population will not lead to an out-
break of the disease.

We present in Figures 1, 2, 3, and 4 the time series
solution of the susceptible, exposed, infected, and partially
recovered population of COVID-19, the prevalence against
time for the unforced COVID-19 model with associated
wavelet spectrum, and the estimated wavelet spectrum of
the first week of the year 2 and year 4.5 for the unforced
COVID-19 model.

3.2. Global Stability of Disease-Free Equilibrium Solution. The
global asymptotic stability of models (19), (20), (22), and (23)
is explored in what follows.

Theorem 4. The disease-free equilibrium E0 is globally asymp-
totically stable if Rc ≤ 1 and unstable if RC > 1.

Proof. Consider the Lyapunov function.

L = ψ2ηIH + S0β +
S0αψ2η

1 − εð Þτ
� �

PC: ð25Þ

Its time derivative is

L′ = ψ2η
dIH
dt

+ S0β +
S0αψ2η

1 − εð Þτ
� �

dPC

dt
,

L′ = ψ2η θEH − BTIHð Þ + S0β +
S0αψ2η

1 − εð Þτ
� �

� 1 − εð ÞτIH − ψ2ηPCð Þ,

L′ = S0αψ2ηIH + S0β 1 − εð ÞτIH − ψ2ηBTIH

+ ψ2ηθEH − S0βψ2ηPC −
S0αψ

2
2η

2PC

1 − εð Þτ ,

= ψ2ηBTIH
αS0ψ2η + βS0 1 − εð Þτ

ψ2ηBT
− 1

� �

+ ψ2η θEH − S0βPC −
S0αψ2ηPC

1 − εð Þτ
� �

,

= ψ2ηBTIH Rc − 1ð Þ − ψ2η
S0αψ2ηPC

1 − εð Þτ + S0βPC − θEH

� �
≤ ψ2ηBTIH Rc − 1ð Þ, ≤0 if Rc ≤ 1:

ð26Þ

Therefore, L′ ≤ 0 if RC ≤ 1 with L′ = 0 if and only if Rc = 1
or EH = IH = PC = 0. It follows that the largest invariant sub-
set in fðSH , EH , IH , PCÞ ∈ T : L′ = 0g is the singleton E0, and
hence by LaSalle’s invariance principle [23], the disease-free
equilibrium E0 will be approached by all solution trajectories,
and hence, the disease-free equilibrium solution is globally
asymptotically stable.

Remark 5. The epidemiological implication of the above the-
orem is that COVID-19 can be eradicated irrespective of the
initial sizes of the subpopulation of the model.

3.3. Global Stability of the Endemic Equilibrium Point. The
endemic equilibrium solution E1 = ðS∗H , E∗

H , I∗H , P∗
CÞ satisfies

the following equations:

λh − αS∗HI
∗
H − βS∗HP

∗
C − cmS

∗
H = 0, ð27Þ

αS∗HI
∗
H + βS∗HP

∗
C − θE∗

H = 0, ð28Þ
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Figure 1: Time series solution of susceptible and exposed population of COVID-19.
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θE∗
H − BTI

∗
H = 0, ð29Þ

1 − εð ÞτI∗H − ψ2ηP
∗
C = 0: ð30Þ

Finding S∗H , I
∗
H , and P∗

C in (27), (28), (29), and (30) gives

S∗H =
λh

αI∗H + βP∗
C + cm

, ð31Þ

I∗H =
θE∗

H

BT
, ð32Þ

P∗
C =

1 − εð ÞτI∗H
ψ2η

: ð33Þ

Adding (27) and (28), we get

λh − cmS
∗
H − θE∗

H = 0: ð34Þ

Substituting (31) and (32) in (33) into (34) gives the
following

−
θcmRc E

∗
Hð Þ2

λh
+ cm RC − 1ð ÞE∗

H = 0: ð35Þ

From (35), we can obtain E∗
H to be

E∗
H =

λh
θ

1 −
1
RC

� �
: ð36Þ

Substituting E∗
H in (31), (32), and (33) gives

S∗H =
λh

cmRC
,

I∗H =
λh
BT

1 −
1
RC

� �
,

P∗
C =

1 − εð Þτλh
BTψ2η

1 −
1
RC

� �
:

ð37Þ

Thus, the endemic equilibrium solution exists whenever
Rc > 1.
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Figure 2: Time series solution of infected and partially recovered population of COVID-19.
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Furthermore, we establish the global asymptotic stability
of the endemic equilibrium solutions converging to the
endemic equilibrium point for Rc > 1. We shall carry out this,
by constructing a suitable Lyapunov function of Goh-
Volterra type; see [24]. The result below establishes the global
stability of the endemic equilibrium solution E1.

Theorem 6. The unique endemic equilibrium E1 is globally
asymptotically stable whenever Rc > 1.

Proof. Given the following equations which are satisfied by
the endemic equilibrium point E1,

λh = αI∗H + βP∗
Cð ÞS∗H + cmS

∗
H , ð38Þ

αI∗H + βP∗
Cð ÞS∗H = θE∗

H , ð39Þ
θE∗

H = BTI
∗
H , ð40Þ

1 − εð Þτ = ψ2γP
∗
C: ð41Þ

Consider the following Goh-Volterra Lyapunov function

V = SH − S∗H − S∗H ln
SH
S∗H

� �
+ EH − E∗

H − E∗
H ln

EH

E∗
H

� �

+ a IH − I∗H − I∗H ln
IH
I∗H

� �
+ b PC − P∗

C − P∗
C ln

PC

P∗
C

� �
,

ð42Þ

where

a = αS∗H/BT and b = βS∗H/ψ2γ,
with the Lyapunov time derivative obtained as

V ′ = 1 −
S∗H
SH

� �
SH′ + 1 −

E∗
H

EH

� �
EH′

+ a 1 −
I∗H
IH

� �
IH′ + b 1 −

P∗
C

PC

� �
PC′ ,

V ′ = 1 −
S∗H
SH

� �
λh − αIH + βPCð ÞSH − cmSHð

+ 1 −
E∗
H

EH

� �
αIH + βPCð ÞSH − θEHð Þ

+ a 1 −
I∗H
IH

� �
θEH − BTIHð Þ

+ b 1 −
P∗
C

PC

� �
1 − εð ÞτIH − ψ2γPC

�
:

ð43Þ

Using (38), we have

V ′ = 1 −
S∗H
SH

� �
αI∗H + βP∗

Cð ÞS∗H + cmS
∗
H − αIH + βPCð ÞSH

− cmSH + 1 −
E∗
H

EH

� �
αIH + βPCð ÞSH − θEHð Þ

+ a 1 −
I∗H
IH

� �
θEH − BTIHð Þ + b 1 −

P∗
C

PC

� �
� 1 − εð ÞτIH − ψ2γPCð Þ:

ð44Þ

Further simplification gives

V ′ = αI∗H + βP∗Cð ÞS∗H + θE∗
H + aBTI

∗
H + bψ2γPC

− αS∗H + βP∗
Cð Þ S∗Hð Þ2

SH
− αIH + βPCð Þ SHE

∗
H

EH

−
aθEHI

∗
H

IH
−
b 1 − εð ÞτIHP∗

C

PC
+ 2cmS∗H

−
cm S∗Hð Þ2

SH
− cmSH + αIH + βPCð ÞS∗H − θEH

+ aθEH − aBTIH + b 1 − εð ÞτIH − bψ2γPC:

ð45Þ

Replacing a and b by their values and exploiting (38),
(39), (40), and (41) give

aθ =
αS∗HI

∗
H

E∗
H

, ð46Þ

d 1 − εð Þτ = βS∗HP
∗
C

I∗H
: ð47Þ
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Figure 4: The estimated wavelet spectrum at the first week of year 2
and year 4.5 for the unforced COVID-19 model.
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Using (38), (39), (40), (41), (46), and (47), we have

V ′ = cmS
∗
H 2 −

S∗H
SH

−
SH
S∗H

� �
+ 3αS∗HI

∗
H − αI∗H

S∗Hð Þ2
SH

− αSHIH
E∗
H

EH
−
αS∗HEH I∗Hð Þ2

E∗
HIH

+ 3βS∗HP
∗
C

− βP∗
C

S∗Hð Þ2
SH

−
βPCSHE

∗
H

EH
−
βS∗HIH P∗

Cð Þ2
I∗HPC

,

V ′ = cmS
∗
H 2 −

S∗H
SH

−
SH
S∗H

� �
+ αS∗HI

∗
H

� 3 −
S∗H
SH

−
SHE

∗
HIH

S∗HEHI
∗
H
−
EHI

∗
H

E∗
HIH

� �
+ βS∗HP

∗
C

� 3 −
S∗H
SH

−
SHE

∗
HPC

S∗HEHP
∗
C
−
IHP

∗
C

I∗HPC

� �
:

ð48Þ

Using arithmetic-geometric means inequality, i.e., n −
ða1 + a2+⋯+anÞ ≤ 0, where a1:a2 ⋯ an = 1 and a1, a2,⋯,
an > 0, it follows that V ′ ≤ 0 with V = 0 if and only if SH
= S∗H , EH = E∗

H , IH = I∗H , and PC = P∗
C .

Hence, the largest compact invariant subset of the set
where V ′ = 0 is ðSH , EH , IH , PCÞ = ðS∗H , E∗

H , I∗H , P∗
CÞ and by

classical stability theorem of Lyapunov and LaSalle’s Invari-
ance Principle, it follows that every solution in T approaches
E1 for Rc > 1 as t→∞.

Remark 7. The epidemiological implication of the above
result is that COVID-19 will establish itself whenever Rc > 1
in the population.

4. Uncertainty and Sensitivity Analysis

4.1. Local Sensitivity Analysis. In this section, we carried out
sensitivity analysis of parameters of model systems (7), (8),
(9), and (10) in order to determine the relative importance
of the model parameters on the disease infection. To deter-
mine how best to reduce the infection, it is necessary to know
the relative importance of the different factors responsible for
the infections.

Sensitivity indices could be computed numerically so as
to figure out parameters that have high impact on basic
reproduction number Rc and which of the parameters should
be given preferential treatment by intervention strategies.

Analytically, sensitivity analysis on all parameters which
account for disease dynamics is done using the Chitnis
et al. [25] approach; we compute sensitivity indices of the
Rc which measures initial disease infection and allows us to
measure the relative change in a state variable when a vari-
able changes.

The normalized forward sensitivity index of a variable
to a parameter is the ratio of the relative change in the
variable to the relative change in the parameter. When
the variable is a differentiable function of the parameter,
the sensitivity index may be alternatively defined using
partial derivatives.

Definition. The normalized forward sensitivity index of a
variable, u, that depends differentially on a parameter, p, is
defined as

Nu
p =

∂u
∂p

×
p
u
, ð49Þ

for u ≠ 0.
Consequently, we derive analytical expression for the

sensitivity index of RC as

NRc
pi =

∂Rc

∂pi
×

pi
Rc

, ð50Þ

where pi, i ∈ℕ denotes each parameter involved in Rc.
Using

Rc =
αS0ψ2η + βS0 1 − εð Þτ

ψ2ηBT
, ð51Þ

where S0 = λh/cm.

BT = γ + ψ1 + τ: ð52Þ

We compute the sensitivity index of each parameter with
respect to the RC , for instance

NRc
α =

∂Rc

∂α
×

α

Rc
= 0:999: ð53Þ

We have Table 1 which summarizes the sensitivity indi-
ces of Rc with respect to parameters

NRc
λh
,NRc

cm
,NRc

γ ,N
Rc
ψ1
,NRc

β ,N
Rc
ε ,N

Rc
ψ2
,NRc

τ : ð54Þ

4.1.1. Interpretation of Sensitivity Indices Obtained in Table 2.
The computed sensitivity indices on Rc with respect to the
involved parameters give insights to the model system pro-
posed. Provided all parameters remain constant, most sensi-
tive parameters are α, λh (the contact rate between
susceptible and infectious individuals, natural birth rate).
The implication is that the increase in contact rate between
susceptible and infectious individuals and natural birth rate
have high tendency to increase in COVID-19 epidemic due
to positive variation on basic reproduction number Rc. γ
(COVID-19-induced rate) is the only parameter that has no
effect on the spread of the disease. Interestingly, improve-
ment in slower rate of recovery (η) and increase in transition
rate from the infectious disease class to the partially recov-
ered (τ) one are major parameters that reduce the disease epi-
demic. In the same vein, the sensitivity indexes of cm, ψ1, ψ2
reveal that the increase in containment rate of susceptible
individuals, recovery rate of infectious individuals, and
recovery rate of partially recovered carriers contribute to
the reduction in the spread of COVID-19 infection.

In light of this, we recommend that the World health
Organization (WHO) should put in place health interven-
tions and strategies that will not only improve the slower
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recovery rate of the partially recovered individuals but also
increase the transition rate from the infectious class to par-
tially recovered one.

4.2. Global Sensitivity Analysis. The global sensitivity analysis
helps to investigate the change in the output values resulting
from changes in all parameter values over the ranges in
parameters ([26]. To perform the global sensitivity analysis
of the reproduction number Rc and the range of values in
Table 3. We aim here to establish the most influential param-
eters in Rc and also give some insightful ideas from the PRCC
plot by running a sample size of 1,000. It was observed that
the scatter plot in Figures 5–8 shows a positive relation
between Rc and parameters α,β, θ, ψ1, ψ2, τ, ϕ, η, λh, ε, and
γ have a negative relation between them and Rc. We under-
stand that the positive relation here implies that a high rate
of either of these parameters α,β, θ, ψ1, ψ2, τ, ϕ, and η will
generate a higher transmission rate during an outbreak, while

the negative relation for λh, ε, and γ will aid in decreasing the
severity of the disease-induced death rate. Figure 8(a) pre-
sents well defined simulation results of the scatter plots in
Figures 5–8 and that of the numerical signs in Table 2.
Figure 8(a) also indicates that the most influential parame-
ters that can make the disease spread fast are α,θ, ψ1, and
τ. Here, any effort to reduce the relative relevance or impact
of α, θ, ψ1, and τ will reduce the spreading rate of COVID-
19. Figure 9(b) shows that while Rc (reproduction number)
is decreasing with an increase in β, it increases with an
increase in ψ2.

5. Analysis of Optimal Control
Strategies against COVID-19

There are several measures of prevention and control of
infectious diseases, but in this paper, we employ the non-
pharmaceutical intervention (NPI), like social distancing, u1
, and the nonspecific treatment effort, u2.

5.1. Social Distancing u1ðtÞ. This is a nonpharmaceutical
intervention (NPI), also known as physical distancing, which
refers to the measures taken to prevent the spread of COVID-
19 disease by maintaining a specific physical distance
between individuals and reducing the number of time per-
sons come in close contact with one another.

5.2. Treatment u2ðtÞ. This involves the use of an agent, proce-
dure, or regimen, such as a drug to cure or mitigate the
COVID-19 disease. This treatment employed here is a non-
specific regimen.

Here, we introduce these time-dependent interventions
ðu1ðtÞ, u2ðtÞÞ where u1ðtÞ is the time-dependent preventive
effort which we refer to as social distancing, while u2ðtÞ is
the time-dependent treatment effort which is an unspecific
regimen to slow the spread of COVID-19. These two con-
trol functions are expected to be bounded and Lebesgue
integrable on the closed interval ½0, T�, where T is the

Table 1: Summary of the parameters.

Parameter Meaning Value Reference

α Contact rate between susceptible and infectious individuals 0.75 Assumed

β Contact rate between susceptible and partially recovered individuals 0.75 Assumed

θ Transition rate from exposed to infectious class 0.143 [15]

ψ1 Recovery rate of infectious individuals 0.33029 [15]

γ COVID-19-induced death rate 1:7826 × 10−5 [15]

ψ2 Recovery rate of partially recovered carriers [0.000315] (day)−1 Assumed

τ Transition rate from infectious class to partially recovered 0.1 Assumed

ε Proportion of the infectious individuals who recover fully 0.5 Assumed

ϕ Loss of immunity rate 0.0017 Assumed

η Slower rate of recovery 0.5[0-1] Varied

cm Containment rate of susceptible individuals Variable (0-1) Assumed

λh Natural birth rate 600 Assumed

Containment rate of susceptible individuals (cm).

Table 2: Numerical values of sensitivity indices of Rc with respect to
the parameter involved.

Parameter symbol Sensitivity index

α +0:999
λh +1:000
cm −1:00
γ 0:00
ψ1 −0:16
β 0:049
ε 0:049
η −11709:42
ψ2 −0:46
τ −4652:26
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duration of time for which we apply our control measures.
The COVID-19 models (1), (2), (3), (4), (5), and (7) become

dSH
dt

= λh − α 1 − u1 tð Þð ÞSHIH − β 1 − u1 tð Þð ÞSHPC − cmSH ,

ð55Þ

dEH

dt
= α 1 − u1 tð Þð ÞSHIH + β 1 − u1 tð Þð ÞSHPC − θEH , ð56Þ

dIH
dt

= θEH − γIH − ψ1IH − τIH − u2 tð ÞIH , ð57Þ

dPC

dt
= 1 − εð ÞτIH − ψ2ηPC , ð58Þ

dRH

dt
= ετIH + ψ1IH + ψ2ηPC + u2 tð ÞIH , ð59Þ

with initial conditions

SH 0ð Þ = S0h > 0,

EH 0ð Þ = E0
H ,

IH 0ð Þ = I0H 0ð Þ > 0,

PC 0ð Þ = P0
C 0ð Þ,

RH 0ð Þ = R0
H 0ð Þ > 0:

ð60Þ

The model equation can be written in the vectorial form

dSH
dt

= g1 SH tð Þ, EH tð Þ, IH tð Þ, PC tð Þ, RH tð Þð Þ, ð61Þ

dEH

dt
= g2 SH tð Þ, EH tð Þ, IH tð Þ, PC tð Þ, RH tð Þð Þ, ð62Þ

dIH
dt

= g3 SH tð Þ, EH tð Þ, IH tð Þ, PC tð Þ, RH tð Þð Þ, ð63Þ

dPC

dt
= g4 SH tð Þ, EH tð Þ, IH tð Þ, PC tð Þ, RH tð Þð Þ, ð64Þ

dRH

dt
= g5 SH tð Þ, EH tð Þ, IH tð Þ, PC tð Þ, RH tð Þð Þ: ð65Þ

NHð0Þ =NH,0 > 0, for NH = ðSHðtÞ, EHðtÞ, IHðtÞ, PCðtÞ,
RHðtÞÞ:dNH/dt =Λh − cmSH − γIH ≤Λh − cmNH − γNH
where the model parameters are nonnegative. The goal here
is to determine the optimal control strategy which mini-
mizes the number of symptomatic infectious humans and
the cost of the control measures and to predict the impact
of these control measures as a means to advice public
health officials on the best control and/or elimination poli-
cies. The control functions u1ðtÞ and u2ðtÞ are defined on
the closed interval ½0, T�, where 0 ≤ u1ðtÞ ≤ 1 and 0 ≤ u2ðtÞ
≤ 1: The objective functional is defined mathematically
which is given by

J u1 tð Þ, u2 tð Þð Þ =
ðT
0

ωIH +
c1
2
u21 +

c2
2
u22

� �
dt, ð66Þ

where ω, c1, and c2 denote the weight constants (it is a
parameter which describes the comparative importance of
the two terms in the functional) for the relative costs of
IH and the control interventions. Hence, there is need to
obtain an optimal control pair ðu∗1 ðtÞ, u∗2 ðtÞÞ such that

J u∗1 tð Þ, u∗2ð Þ = min
u1,u2∈Ω

J u1 tð Þ, u2 tð Þð Þ, ð67Þ

where Ω = fðu1ðtÞ, u2ðtÞÞ ∣ 0 ≤ u1ðtÞ ≤ 1, 0 ≤ u2ðtÞ ≤ 1g:

Table 3: Model parameter descriptions and range.

Parameter Meaning Range

α Contact rate between susceptible and infectious individuals 0.75–1.5

β Contact rate between susceptible individuals and partially recovered ones 0.75–1.5

θ Transition rate from the exposed to infectious class 0.143–1.0

ψ1 Recovery rate of infectious individuals 0.33029–0.5

γ COVID-19-induced death rate 0.000017826–0.0010982

ψ2 Recovery rate of partially recovered carriers 0.000315–0.04398

τ Transition rate from the infectious class to the partially recovered one 0.1–0.2384

ε Proportion of the infectious individuals who recover fully 0.5–1.0

ϕ Loss of immunity rate 0.0017–1.0

cm Containment rate of susceptible individuals (0–1)

λh Natural birth rate of human 0.038–0.5

ν Slower rate of recovery 0.5–1.5
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5.3. The Optimal Control Problem Statement. Here, we pres-
ent the optimal control problem for the COVID-19 disease
which is stated as follows:

J u1 tð Þ, u2 tð Þð Þ =
ðT
0

ωIH +
c1
2
u21 +

c2
2
u22

� �
dt, ð68Þ

subject to the dynamics

dSH
dt

= λh − α 1 − u1 tð Þð ÞSHIH − β 1 − u1 tð Þð ÞSHPC − cmSH ,

ð69Þ

dEH

dt
= α 1 − u1 tð Þð ÞSHIH + β 1 − u1 tð Þð ÞSHPC − θEH , ð70Þ

dIH
dt

= θEH − γIH − ψ1IH − τIH − u2 tð ÞIH , ð71Þ

dPC

dt
= 1 − εð ÞτIH − ψ2ηPC , ð72Þ

dRH

dt
= ετIH + ψ1IH + ψ2ηPC + u2 tð ÞIH , ð73Þ
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Figure 5: The scatter diagrams for some selected parameters in RC
(scatter plots of β, θ, and ψ1, in RC).

0

–0.5

–1

–1.5lo
g 

(R
c)

–2

–2.5
0 0.005 0.01 0.015 0.02

𝜓2

0.025 0.03 0.035 0.0450.04

0

–0.5

–1

–1.5lo
g 

(R
c)

–2

–2.5
0.1 0.2 0.4 1.20.6 0.8

𝛶

1

0

–0.5

–1

–1.5lo
g 

(R
c)

–2

–2.5
0.5 0.6 0.7

𝜖
0.8 0.9 1

Figure 6: The scatter diagrams for some selected parameters in RC
(scatter plots of ψ2, γ, and ε in RC).

10 Journal of Applied Mathematics



with initial conditions

SH 0ð Þ = S0h > 0,

EH 0ð Þ = E0
H ,

IH 0ð Þ = I0H 0ð Þ > 0,

PC 0ð Þ = P0
C 0ð Þ,

RH 0ð Þ = R0
H 0ð Þ > 0:

ð74Þ

The terminal or final time T is fixed and subjected to the
control constraints.

u1, u2 ∈Ω,

∀t ∈ 0, T½ �:
ð75Þ

There is a need to solve the following optimal control
problem such that we find a control u∗1 ðtÞ, u∗2 ðtÞ which min-
imizes the objective functional, that is

J u∗1 tð Þ, u∗2ð Þ = min
u1,u2∈Ω

J u1 tð Þ, u2 tð Þð Þ: ð76Þ

If there exist such u1ðtÞ, u2ðtÞ, it is referred to as optimal
control. The optimal control along side with the correspond-
ing solution gives the optimal control pair

S∗H tð Þ, E∗
H tð Þ, I∗H tð Þ, P∗

C tð Þ, R∗
H tð Þ, u∗1 tð Þ, u∗2 tð Þð Þ: ð77Þ

The first question that we must address is to confirm
whether an optimal control pair ðS∗HðtÞ, E∗

HðtÞ, I∗HðtÞ, P∗
CðtÞ,

R∗
HðtÞ, u∗1 ðtÞ, u∗2 ðtÞÞ exists. Thus, this question of existence

is settled by the following Lemma.

Lemma 8. (Filippov-Cesari existence theorem). For all ðt, xÞ
∈ℝn+1, define the set

L t, xð Þ = f x, uð Þ + ζ, g x, uð Þð Þ: ζ ≤ 0, u ∈Uf g: ð78Þ

Suppose that

(1) Lðt, xÞ is convex for every ðt, xÞ
(2) U is compact

(3) There exists a constantM > 0 such that kxðtÞk ≤M for
all t ∈ ½0, T� and all admissible pairs ðx, uÞ

Then, ∃ is an optimal pair ðx∗ðtÞ, u∗ðtÞÞ where u∗ðtÞ ∈Ω:

Lemma 9. Suppose that there exists a solution of the optimal
control problem (68)–(75).

Proof. We rewrite systems (68)–(73) as follows

d
dt

SH

EH

IH

Pc

RH

0
BBBBBBBBBB@

1
CCCCCCCCCCA

=

g1 SH tð Þ, EH tð Þ, IH tð Þ, PC tð Þ, RH tð Þð Þ
g2 SH tð Þ, EH tð Þ, IH tð Þ, PC tð Þ, RH tð Þð Þ
g3 SH tð Þ, EH tð Þ, IH tð Þ, PC tð Þ, RH tð Þð Þ
g4 SH tð Þ, EH tð Þ, IH tð Þ, PC tð Þ, RH tð Þð Þ
g5 SH tð Þ, EH tð Þ, IH tð Þ, PC tð Þ, RH tð Þð Þ

0
BBBBBBBBBB@

1
CCCCCCCCCCA

= g SH tð Þ, EH tð Þ, IH tð Þ, PC tð Þ, RH tð Þð Þ,
ð79Þ
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Figure 7: The scatter diagrams for some selected parameters in RC
(scatter plots of ϕ and ν in RC).
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where NH = ðSHðtÞ, EHðtÞ, IHðtÞ, PCðtÞ, RHðtÞÞ. We also
define a set Vðt,NÞ = fð f ðN , ui, tÞ + higðN , ui, tÞÞ: h > 0, ui
∈Ug according to the Filippov-Cesari theorem [27], [26].

Here, we first show that Vðt,NÞ is a convex for ðt,NÞ:
Suppose that z1, z2 ∈ Vðt,NÞ, we show that Vðt,NÞ is a

convex for each ðt,NÞ by proving that the line connecting
z1 and z2 is completely in Vðt,NÞ: Thus, we need show
that ρzi1 + ð1 − ρÞz2 ∈ Vðt,NÞ∀ρ ∈ ½0, 1�. For xi ∈ Vðt,NÞ⇒
∃h1, h2 ≤ 0 and that the control function u1ðtÞ, u1ðtÞ ∈U
such that zi = fð f ðN , ui, tÞ + higðN , ui, tÞÞ: h > 0, ui ∈Ug
for i = 1, 2: Let f ðN , ui, tÞ = ωIH + ð1/2Þciu2i , i = 1, 2,and gð
N , ui, tÞ = RHS of 69 − 73.

Thus, we have

ρ f N , u1, u2, tð Þ + h1ð Þ + 1 − ρð Þ f N , u3, u4, tð Þ + h2ð Þ
= ρ ωIH +

1
2
c1u

2
1 +

1
2
c2u

2
2

� �

+ 1 − ρð Þ ωIH +
1
2
c1u

2
3 +

1
2
c2u

2
4

� �
+ ρh1 + 1 − ρð Þh2

= ωIH + ρ
1
2
c1u

2
1 +

1
2
c2u

2
2

� �
+ 1 − ρð Þ 12 c1u

2
3 +

1
2
c2u

2
4

+ ρh1 + 1 − ρð Þh2:
ð80Þ

Suppose that u5 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðu21 + u22Þ + ð1 − ρÞðu23 + u24Þ

p
, it is

observed that u5 ∈U and if we let h3 ≤ 0:Y = Therefore, the
first part of the convex combination belongs to Vðt,NÞ:
The second component will be checked as follows:

ρ g N , u1, u2, tð Þð Þ + 1 − ρð Þ g N , u3, u4, tð Þð Þ
= ρ λh − α 1 − u1 tð Þð ÞSHIH − β 1 − u1 tð Þð ÞSHPC + cmSHð Þ½

+ α 1 − u1 tð Þð ÞSHIH + β 1 − u1 tð Þð ÞSHPC − θEHð Þ
+ θEH − γIH − ψ1IH − τIH − u2 tð ÞIHð Þ
+ 1 − εð ÞτIH − ψ2ηPCð Þ + ετIH + ψ1IH + ψ2ηPCð
+ u2 tð ÞIHÞ� + 1 − ρð Þ λh − α 1 − u3 tð Þð ÞSHIHð½
− β 1 − u3 tð Þð ÞSHPC = cmSHÞ + α 1 − u3 tð Þð ÞSHIHð
+ β 1 − u3 tð Þð ÞSHPC − θEHÞ + θEH − γIH − ψ1IHð
− τIH − u4 tð ÞIHÞ + 1 − εð ÞτIH − ψ2ηPCð Þ
+ ετIH + ψ1IH + ψ2νPC + u4 tð ÞIHð Þ� =Λh

− ραð 1 − u1 tð Þð ÞSHIH + 1 − ρð Þα 1 − u3 tð Þð ÞSHIH
− ρβ 1 − u1 tð Þð ÞSHPC + 1 − ρð Þβ 1 − u3 tð Þð ÞSHPCð
− cmSHÞ+− ρα 1 − u1 tð Þð ÞSHIHð
+ 1 − ρð Þα 1 − u3 tð Þð ÞSHIH + ρβ 1 − u1 tð Þð ÞSHPCð
+ 1 − ρð Þβ 1 − u3 tð Þð Þ − cmSHÞ − θEH + θEH − γIH
− ψ1IH − τIH − ρu2 tð Þ + 1 − ρð Þu4 tð Þð ÞIH
+ 1 − εð ÞτIH − ψ2ηPC + ετIH + ψ1IH + ψ2ηPC

+ ρu2 tð Þ + 1 − ρð Þu4 tð Þð ÞIHÞ:
ð81Þ

Suppose that u6 = ρðu1 + u3Þ + ð1 − ρÞðu3 + u4Þ. It is
observed that u6 belongs to U . Hence, we say finally that
the convex combination of ρz1 + ð1 − ρÞz2 is in Vðt,N , u1,
u2Þ and U is clearly compact. Secondly, we show that the
solution of (69)–(73) is bounded.

For all initial conditions in Δ = fðSHðtÞ, EHðtÞ, IHðtÞ, PC
ðtÞ, RHðtÞÞ ∈ℝ5 : SHðtÞ + EHðtÞ + IHðtÞ + PCðtÞ + RHðtÞ ≤ 1
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Figure 9: Partial rank correlation coefficient (PRCC) of the parameters in RC (Tornado plot of parameters in Rc) in Figure 9(a). The coupling
effects of both the recovery rate of partially recovered carriers and the contact rate between susceptible individuals and partially recovered
ones on Rc (3D plot of ψ2, β, and Rc)in Figure 9(b).

12 Journal of Applied Mathematics



g, the trajectory obtained from the initial condition remains
in a bounded domain included in Δ:

The total population is given byNH = SHðtÞ + EHðtÞ +
IHðtÞ + PCðtÞ + RHðtÞ with the derivative ðdNH/dtÞ =ΛhNH
− μhNH − γIH .

It is observed that

0 ≤ IH tð Þ ≤NH tð Þ,

Λh − cmNH − γIH ≤
dNH

dt
≤ΛhNH − cmNH − γNH ,

dNH

dt
≤ΛhNH − μhNH − γNH :

ð82Þ

We have thatNHðtÞ ≤ supt �NH where NH is the solution
of equation

dNH

dt
≤Λh − cmNH − γNH : ð83Þ

Thus, suptNH ≤max fNH,0,NHg: If NH,0 ≤NH , then
maxtfNHðtÞg ≤NH : If any solution exists, we can find it with
the Pontryagin’s maximum principle (PMP). This is done
first, by incorporating a time-varying Lagrange multiplier λ
ðtÞ, whose elements are referred to as the adjoint or costate
variables. We hereby analyse the model equations (68),
(69), (70), (71), (72), (73), and (75) with control variables ð
u1ðtÞ, u2ðtÞÞ. We seek an optimal control ðu∗1 ðtÞ, u∗2 Þ by
applying the Pontryagin’s maximum principle (PMP) ([28])
and reformulating (68), (69), (70), (71), (72), (73), and (75)
into a problem of minimizing pointwise a Hamiltonian H,
with respect to the control variables ðu1ðtÞ, u2ðtÞÞ . Hence,
the Hamiltonian H is defined for all t ∈ ½0, T� by

H SH tð Þ, EH tð Þ, IH tð Þ, PC tð Þ, RH tð Þ, u1 tð Þ, u2 tð Þ,ð
λSH tð Þ, λEH

tð Þ, λIH tð Þ, λPC
tð Þ, λRH

tð ÞÞ
= ωIH +

c1
2
u21 + u22

� �
+ λSH λh − α 1 − u1 tð Þð ÞSHIH½

− β 1 − u1 tð Þð ÞSHPC − cmSH � + λEH
α 1 − u1 tð Þð ÞSHIH½

+ β 1 − u1 tð Þð ÞSHPC − θEH � + λIH θEH − γIH − ψ1IH½
− τIH − u2 tð ÞIH � + λPC

1 − εð ÞτIH − ψ2νPC½ �
+ λRH

ετIH + ψ1IH + ψ2ηPC + u2 tð ÞIH½ �,
ð84Þ

where λSH , λEH
, λIH , λPC

, λRH
represent the adjoint variables

or costate variables. Next, we obtain the following using the
Pontryagin maximum principle (PMP) and the existence
result of the Filippov-Cesari theorem.

Lemma 10. Suppose an optimal control u∗1 and u∗2 and the
corresponding trajectories S∗HðtÞ, E∗

HðtÞ, I∗HðtÞ, P∗
CðtÞ, and R∗

H

ðtÞ of state systems (68), (69), (70), (71), (72), and (73) which
minimize Jðu∗1 , u∗2 Þ overΩ. Then, there exist adjoint variables
λSH ðtÞ, λEH

ðtÞ, λIH ðtÞ, λPC ðtÞ, and λRH
ðtÞ which satisfy

−
dλSH
dt

=
δH
δSH

= −λH −α 1 − u1 tð Þð ÞIH − β 1 − u1 tð Þð ÞPC − cmð Þ

− λEH
α 1 − u1 tð Þð ÞIH + β 1 − u1 tð Þð ÞPCð Þ − dλEH

dt

=
δH
δEH

= −λEH
−θð Þ − θλIH −

dλIH
dt

=
δH
δIH

= −ω +
λSHα 1 − u1ð ÞSH

NH
− λEH

α 1 − u1ð ÞSH − λIH

� −γ − ψ1 − τ − u2 tð Þð Þ − λPC
1 − εð Þτð Þ

− λRH
τε + ψ1 − u2 tð Þð Þ − dλPC

dt
=

δH
δPC

= λSHβ 1 − u1 tð Þð ÞSH − λSHβ 1 − u1 tð Þð ÞSH − λPC
� −ψ2ηð Þ − ψ2ηλPC

ð85Þ

and with transversality conditions λSH ðTÞ = λEH
ðTÞ = λIH ðTÞ

= λPC ðTÞ = λRH
ðTÞ = 0 and controls u∗1 and u∗2 satisfy the

optimality conditions

u∗1 =max 0, min 1,
αI∗HS

∗
H λEH

− λSH
� �

+ βP∗
CS

∗
H λEH

− λSH
� �

c1

 !( )
,

u∗2 =max 0, min 1,
λIH − λRH

� �
IH

c2

 !( )
:

ð86Þ

Proof.We obtained the nonlinear system of differential equa-
tions for the adjoint variables by differentiating the Hamilto-
nian function ðHÞ, which is evaluated at the optimal control
such that the adjoint/costate system is given by

−
dλSH
dt

= ∂H
∂SH

= −λH −α 1 − u1 tð Þð ÞIH − β 1 − u1 tð Þð ÞPC − cmð Þ

− λEH
αð 1 − u1 tð Þð ÞIH + β 1 − u1 tð Þð ÞPC −

dλEH

dt

=
∂H
∂EH

= −λEH −θð Þ − θλIH −
dλIH
dt

=
∂H
∂IH

= −ω + λSHα 1 − u1ð ÞSH − λEH
α 1 − u1ð ÞSH

− λIH −γ − ψ1 − τ − u2 tð Þð Þ − λPC 1 − εð Þτð Þ

− λRH
τε + ψ1 − u2 tð Þð Þ − dλPC

dt
=

∂H
∂PC

= λSHβ 1 − u1 tð Þð ÞSH − λSHβ 1 − u1 tð Þð ÞSH
− λPC

−ψ2ν − μhð Þ − ψ2ηλPC
,

ð87Þ
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and with transversality conditions λSH ðTÞ = λEH ðTÞ = λIH ðTÞ
= λPC

ðTÞ = λRH
ðTÞ = 0 and the controls.

From the optimality condition

∂H
∂u1

= c1u1 + λSH αSHIH + βSHPC½ � + λEH −αSHIH − βSHPC½ � = 0,

ð88Þ

we obtain

u∗1 =
αI∗HS

∗
H λEH − λSH
� �

+ βP∗
CS

∗
H λEH

− λSH
� �

c1
,

∂H
∂u2

= c2u
∗
2 + λIH −I∗H½ � + λRH

I∗H½ � = 0:
ð89Þ

And we obtain

u∗2 =
λIH − λRH

� �
I∗H

c2
: ð90Þ

Then we have

u∗1 = max 0, min 1,
αI∗HS

∗
H λEH

− λSH
� �

+ βP∗
CS

∗
H λEH

− λSH
� �

NHc1

 !( )
,

ð91Þ

u∗2 = max 0, min 1,
λIH − λRH

� �
I∗H

c2

 !( )
: ð92Þ

To obtain the optimal control and the corresponding
prevalence IH , we therefore solve the following system

dSH
dt

= λh − α 1 − u1 tð Þð ÞSHIH − β 1 − u1 tð Þð ÞSHPC − cmSH ,

dEH

dt
= α 1 − u1 tð Þð ÞSHIH + β 1 − u1 tð Þð ÞSHPC − θEH ,

dIH
dt

= θEH − γIH − ψ1IH − τIH − u2 tð ÞIH ,
dPC

dt
= 1 − εð ÞτIH − ψ2νPC ,

dRH

dt
= ετIH + ψ1IH + ψ2νPC + u2 tð ÞIH ,

ð93Þ

with initial conditions

SH 0ð Þ = S0h > 0,

EH 0ð Þ = E0
H ,

IH 0ð Þ = I0H 0ð Þ > 0,

PC 0ð Þ = P0
C 0ð Þ,

RH 0ð Þ = R0
H 0ð Þ > 0,

ð94Þ

−
dλSH
dt

= g1, ð95Þ

−
dλEH

dt
= g2, ð96Þ

−
dλIH
dt

= g3, ð97Þ

−
dλPC

dt
= g4, ð98Þ

−
dλRH

dt
= g5, ð99Þ

where

g1 = −λH −α 1 − u1 tð Þð ÞIH − β 1 − u1 tð Þð ÞPC − cmð Þ
− λEH

α 1 − u1 tð Þð ÞIH + β 1 − u1 tð Þð ÞPCð Þ,

g2 = −λEH
−θð Þ − θλIH ,

g3 = −ω + λSHα 1 − u1ð ÞSH − λEH
α 1 − u1ð ÞSH

− λIH −γ − ψ1 − τ − u2 tð Þð Þ − λPC
1 − εð Þτð Þ

− λRH
τε + ψ1 − u2 tð Þð Þ,

g4 = λSHβ 1 − u1 tð Þð ÞSH − λSHβ 1 − u1 tð Þð ÞSH
− λPC

−ψ2ηð Þ − ψ2ηλPC
,

g5 = −λRH
−ϕð Þ,

ð100Þ

and with transversality conditions λSH ðTÞ = λEH
ðTÞ =

λIH ðTÞ = λPC ðTÞ = ðTÞ = 0 where u∗1 and u∗2 are given by
(91) and (92). We cannot solve systems (95), (96), (97),
(98), and (99) manually but numerical methods must be
employed.

We hereby present the numerical solution of the optimal-
ity system and its corresponding optimal control pairs, the
parameter values, and the various scenarios and interpreta-
tion in the next section.

6. Numerical Results

In this section, we present our numerical findings based on
the optimal transmission parameter control measures for
the COVID-19 dynamic model. We obtained the optimal
control by solving the optimality system which involves the
nonlinear differential equations (state equation) and the
adjoint or costate equations. We applied the iterative scheme
to solve the optimality system, and using the fourth-order
Runge-Kutta method, we start to solve the state equations
while we guess for the control measures over the simulated
time. We solved the adjoint equations by a backward
fourth-order Runge-Kutta scheme using the present iterative
solutions of the state equation because of the transversality
conditions. We employed a convex combination of the previ-
ous controls to update the controls and the value from the
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characterizations of the optimality conditions. We repeat the
process, and iterations are truncated if the values of the
unknowns at the preceding iteration are near to the present
iterations ([29]). A COVID-19 model with preventive and
treatment as control measures was investigated to predict
the effects of control practices and the transmission of
COVID-19. Building various scenarios of the two control
measures either one control measure at a time or two control
measures at a time, we examine and compare numerical
results from simulations using the following scenarios.

(1) Strategy A: employing social distancing ðu1Þ without
treatment ðu2 = 0Þ

(2) Strategy B: treatment of the symptomatic individuals
ðu2Þ without using social distancing ðu1 = 0Þ

(3) Strategy C: employing all the two control measures
ðu1, u2Þ

The parameter values are given in Tables 1 and 3, and we
obtained the optimal control strategy by the forward-
backward sweep Runge-Kutta method of order 4. The
weight constants ω = 500, c1 = 200, and c2 = 200. We ran
the simulations for T = 1,000 days, and the results from the
simulations with parameters in Table 3 are presented in
Figures 10, 11, and 12.

In strategy A, we use only the control measure ðu1Þ to
optimize the objective functional J , while the control mea-
sure on treatment ðu2Þ is set to zero. The results in
Figure 10(a) reveal that the control strategy provide a
decrease in the number of symptomatic human ðIHÞ as
against the increase in the uncontrolled case. The control
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Figure 10: Simulations showing the effect of social distancing only on infected human ðIhÞ in Figure 10(a) and the control profile in
Figure 10(b).
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Figure 11: Simulations showing the effect of treatment only on infected human ðIhÞ in Figure 11(a) and the control profile in Figure 11(b).
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profile is presented in Figure 10(b), where the optimal social
distancing control ðu1Þ remains constant till the final time.

Applying this strategy B, we employed the treatment con-
trol measure only ðu2Þ while we set the control on social dis-
tancing ðu2Þ to zero. We observed that Figure 11(a) showed
that effective treatment only has significant impact in
decreasing COVID-19 incidence in the population, while
the control profile in Figure 11(b) showed also that the con-
trol remains constant till the final time.

In strategy C, we applied the two controls ðu1, u2Þ, to
optimise the objective functional J . For this strategy, in
Figure 12(a), it was observed that the control strategy had sig-
nificant impact in reducing the number of symptomatic
humans as against the increased number of cases under the
uncontrolled case. The control profile in Figure 12(b) showed
also that the control remains constant till the final time.

7. Conclusion

Hence, we presented a COVID-19 model with partially
recovered carriers. We investigated the stability of the model
which revealed that the disease-free equilibrium is locally and
globally asymptotically stable. Scatter plots and the tornado
plots of the parameters in Rc (reproduction number) revealed
that the contact rate between susceptible and infectious indi-
viduals (α) has a major impact on the transmission of
COVID-19 disease, followed by the transmission rate from
the exposed to infectious class, θ. This supports the fact that
since the transmission rate is very high, the disease can
spread fast in the population. We also observed from our
results that the influence of the partially recovered contact
rate is lower compared to the contact rate between suscepti-
ble and infectious individuals. The scenarios built on the
optimal control strategies showed that the use of social dis-
tancing and treatment are the best option to control the dis-
ease in that they reduce the impact of the epidemic in the
community and slows down the epidemic curve. Other inter-
estingmodeling works can be found in [30, 31]. The developed

models predicted the reduction and control of COVID-19
through incorporating multiple control interventions.
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